МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

УТВЕРЖДАЮ:
Проректор по учебной работе,
качеству образования — первый
проректор

Т.А. Хагуров

«30»

2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) <u>Б1.В.ДВ.03.02 Методы и средства тестирования программного обеспечения</u>

Направление подготовки/специальность

09.04.02 Информационные системы и технологии

Направленность (профиль) / специализация

Системы и сети доставки цифрового контента

Форма обучения	очно-заочная
-	
Квалификация	магистр

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки / специальности

Программу составил(и):

Рабочая программа дисциплины на заседании кафедры $\,$ ИФ и КТ протокол $\,$ № $\,$ 9 от $\,$ « $\,$ 08» $\,$ 04 $\,$ 2025 $\,$ $\,$ $\,$ $\,$ $\,$

Заведующий кафедрой д. физ.-мат. наук, профессор К.А. Лебедев.

Jost

Утверждена на заседании учебно-методической комиссии факультета/института <u>УМК ФТФ №11 от 21.04. 2025 г</u> Председатель УМК факультета/института

д-р физ. мат. наук, профессор

Богатов Н. М.

Рецензенты:

Абрамов Д. Е. канд. хим. наук директор ООО «Ресурс»

Шевченко А. В. канд. физ-мат. наук. Ведущий специалист ООО «Южная аналитическая компания»

2. Аннотация

Дисциплина "Методы и средства тестирования программного обеспечения" формирует у магистрантов системное представление о современных подходах к обеспечению качества программного обеспечения через комплексное тестирование. Курс охватывает полный спектр методов тестирования - от модульного и интеграционного до системного и приемочного, с акцентом на автоматизацию процессов тестирования.

Особое внимание уделяется методологиям тест-дизайна, созданию автоматизированных тестовых фреймворков, непрерывному тестированию в CI/CD, а также метрикам и управлению качеством ПО на основе данных тестирования.

3. Место дисциплины в структуре ОПОП

Пререквизиты:

- "Технологии разработки программного обеспечения"
- "Объектно-ориентированное программирование"
- "Базы данных"
- "Операционные системы"

Последующие дисциплины:

- "Управление ІТ-проектами"
- "DevOps-практики и CI/CD"
- "Проектирование и архитектура программных систем"
- "Магистерская диссертация"

4. Планируемые результаты обучения

Дисциплинарные компетенции (ДК):

В результате освоения дисциплины студент должен:

Знать:

- Фундаментальные принципы и виды тестирования ПО
- Методологии тест-дизайна и техники тестирования
- Процессы и жизненный цикл тестирования
- Методы автоматизации тестирования
- Метрики и оценку качества ПО

• Современные инструменты и фреймворки тестирования

Уметь:

- Разрабатывать тестовую стратегию и планы тестирования
- Создавать тестовые сценарии и тест-кейсы
- Автоматизировать процессы тестирования
- Анализировать результаты тестирования и отчеты
- Интегрировать тестирование в CI/CD процессы
- Оценивать покрытие кода и эффективность тестирования

Владеть:

- Навыками работы с инструментами автоматизации тестирования
- Методами тест-дизайна и создания тестовой документации
- Технологиями модульного, интеграционного и системного тестирования
- Практиками тестирования производительности и безопасности
- Инструментами анализа покрытия кода и метрик качества

5. Содержание дисциплины

Модуль 1: Основы тестирования ПО

1. Фундаментальные принципы тестирования

- Цели и задачи тестирования ПО
- о Принципы тестирования (7 фундаментальных принципов)
- о Основные понятия: ошибки, дефекты, сбои
- о Психология тестирования

2. Процесс тестирования

- о Жизненный цикл тестирования
- о Тест-анализ и проектирование тестов
- о Реализация и выполнение тестов
- о Оценка критериев выхода и отчетность

3. Уровни тестирования

- Модульное тестирование (Unit Testing)
- о Интеграционное тестирование
- о Системное тестирование
- о Приемочное тестирование

Модуль 2: Методы тест-дизайна

1. Техники тестирования черного ящика

о Эквивалентное разделение

- о Анализ граничных значений
- о Таблицы решений
- о Тестирование переходов между состояниями

2. Техники тестирования белого ящика

- о Покрытие операторов
- о Покрытие решений
- о Покрытие условий
- о Покрытие путей

3. Специализированные виды тестирования

- о Тестирование производительности (Load, Stress, Volume)
- о Тестирование безопасности
- о Тестирование удобства использования (Usability)
- о Тестирование совместимости

Модуль 3: Автоматизация тестирования

1. Фреймворки автоматизации

- о Принципы автоматизации тестирования
- о Архитектура тестовых фреймворков
- o Page Object Pattern и другие паттерны
- о Критерии выбора инструментов автоматизации

2. Инструменты тестирования

- о Фреймворки модульного тестирования (JUnit, TestNG, pytest)
- о Инструменты веб-тестирования (Selenium, Cypress)
- о API тестирование (Postman, RestAssured)
- Мобильное тестирование (Appium)

3. Непрерывное тестирование

- Интеграция тестирования в CI/CD
- о Тестирование в DevOps-процессах
- о Мониторинг качества в реальном времени

Модуль 4: Управление качеством и метрики

1. Управление тестированием

- о Оценка и планирование тестирования
- о Мониторинг и контроль тестирования
- о Управление тестовой документацией
- Управление дефектами

2. Метрики качества

- о Метрики покрытия кода
- о Метрики эффективности тестирования
- о Метрики качества дефектов
- о Оценка зрелости процессов тестирования

3. Современные тенденции

• TestOps и AI в тестировании

- о Тестирование в Agile и DevOps
- o Shift-left подходы
- о Тестирование микросервисных архитектур

6. Образовательные технологии

- Практико-ориентированные занятия с реальными проектами
- Лабораторные работы с современными инструментами тестирования
- Кейс-стади из промышленной практики
- Мастер-классы от ведущих QA-инженеров
- Проектная работа в командах
- Парное программирование и ревью тестов

7. Оценочные средства

Текущий контроль (40%):

- Лабораторные работы (25%):
 - о Разработка модульных тестов
 - о Создание автоматизированных UI-тестов
 - о Тестирование REST API
 - о Нагрузочное тестирование
- Практические задания (15%):
 - о Разработка тест-плана и тест-кейсов
 - о Анализ покрытия кода
 - о Ревью тестовой документации

Рубежный контроль (60%):

- Курсовой проект (35%):
 - Разработка комплексной системы тестирования для реального приложения
 - о Создание автоматизированного тестового фреймворка
 - о Интеграция тестирования в CI/CD конвейер
 - о Защита проекта с демонстрацией результатов
- Экзамен (25%):
 - о Теоретическая часть (методологии, принципы, процессы)
 - о Практический кейс (разработка тестовой стратегии)

8. Учебно-методическое обеспечение

Основная литература:

- 1. Савин Р. "Тестирование Dot Com"
- 2. Куликов С.В. "Автоматизация функционального тестирования"
- 3. Котляров В.П. "Основы тестирования программного обеспечения"

Дополнительная литература:

- 1. Myers G.J., Sandler C., Badgett T. "The Art of Software Testing"
- 2. Selenium WebDriver documentation
- 3. JUnit 5 User Guide

Программное обеспечение:

- Фреймворки тестирования: JUnit, TestNG, pytest
- Инструменты веб-тестирования: Selenium WebDriver, Cypress
- API тестирование: Postman, RestAssured
- Системы CI/CD: Jenkins, GitLab CI
- Инструменты анализа: JaCoCo, SonarQube

Онлайн-ресурсы:

- Официальная документация инструментов тестирования
- ISTQB учебные материалы
- Онлайн курсы по автоматизации тестирования
- Профессиональные сообщества QA-инженеров

9. Материально-техническое обеспечение

- Компьютерные классы с установленным ПО для тестирования
- Лицензии на коммерческие инструменты тестирования
- Доступ к облачным средам для тестирования
- Лабораторные стенды для нагрузочного тестирования
- Мобильные устройства для кроссплатформенного тестирования