министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.02.02 ВОЛНОВОДНАЯ ФОТОНИКА

(код и наименование дисциплины в соответствии с учебным планом)

Направление под	готовки
	ммуникационные технологии и системы связи
-	(код и наименование направления подготовки)
Направленность (профиль)
Оптические систе	мы и сети связи
	(наименование направленности (профиля))
Форма обучения	заочная
	(очная, очно-заочная, заочная)
Квалификация	бакалавр

Рабочая программа дисциплины "Б1.В.ДВ.02.02_Волноводная_фотоника" составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Bey

Векшин Михаил Михайлович, профессор кафедры оптоэлектроники, доктор физико-математических наук

Рабочая программа дисциплины "Волноводная фотоника" утверждена на заседании кафедры оптоэлектроники КубГУ протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ протокол № 11 «29» апреля 2025 г. Председатель УМК факультета Богатов Н.М.

Рецензенты:

Галуцкий Валерий Викторович, профессор кафедры теоретической физики и компьютерных технологий, д.ф.-м.н.

Шевченко Александр Владимирович, ведущий специалист ООО «Южная аналитическая компания», к.ф.-м.н.

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины:

Изучение физико-технических и технологических принципов построения и фундаментальных физических основ функционирования устройств и элементов волноводной фотоники, выполняющих функции обработки оптических сигналов в оптических системах связи и системах обработки информации.

1.2 Задачи дисциплины

Изучение фундаментальных основ функционирования и базовых приемов разработки интегрально-оптических функциональных схем и исследования их основных характеристик

2. Изучение основных технологий построения и материалов элементов и схем интегральной оптики

.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Волноводная фотоника» относится к части дисциплин по выбору блока 1 учебного плана.

Данный курс опирается на знания, полученные при изучении дисциплин «Физика». Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Оптоэлектронные и квантовые приборы», "Системы и сети оптической связи".

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-1 Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций,	В результате освоения дисциплины студент должен: Знать: Физические принципы работы элементов и устройств планарной фотоники и нанофотоники, основные технологии
использованию и внедрению результатов исследований	формирования интегрально-оптических схем. Современный уровень, основные тенденции и перспективы развития оптической элементной
ИПК-1.1 Использует основы сетевых технологий, нормативно-техническую документацию, требования технических регламентов,	базы инфокоммуникационных технологий. Основы работы с источниками научнотехнической информации.
международные и национальные стандарты в области качественных показателей работы	Уметь: Проводить расчеты и проектировать базовые элементы интегрально-оптических схем. Изучать научно-техническую информацию, отечественный и зарубежный
инфокоммуникационного оборудования; ИПК-1.2 Работает с программным обеспечением, используемым при обработке информации	опыт при проектировании сетей и систем связи Владеть: Методиками проектирования и измерения параметров схем планарной фотоники. Первичными навыками изучения

Код и наименование индикатора*	Результаты обучения по дисциплине
инфокоммуникационных систем и их составляющих; ИПК-1.3 Владеет навыками анализа оперативной информации о запланированных и аварийных работах, связанных с прерыванием предоставления услуг, контроля качества предоставляемых услуг	научно-технической информации, отечественного и зарубежного опыта при проектировании оптических элементов и схем для сетей и систем связи.
Способен к проектированию объектов и систем связи,	
телекоммуникационных систем с применением систем автоматизированного проектирования	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице

Видн	и работ	Всего	Форма обучения			
		часов	очная		очно-з	аочная
			X	X	Зимняя	Летняя
			семестр	семестр	сессия	сессия
			(часы)	(часы)	(часы)	(часы)
Контактная рабо	га, в том числе:					
Аудиторные занят	гия (всего):					
занятия лекционно	го типа	8			8	
лабораторные заня	гия	2			2	
практические занят	Р ИЯ	6			6	
семинарские заняти	Я					
Иная контактная	работа:					
Контроль самостоя	тельной работы					
(KCP)	_					
Промежуточная ат	гестация (ИКР)					
Самостоятельная		96			64	32
Контроль		4				4
Общая	час.	108				
трудоемкость	в том числе					
	контактная	16				
	работа					
	зач. ед	3				

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые на 3 курсе (заочная форма обучения)

			К	оличество	о часов	
№	Наименование разделов (тем)	Всего	Аудиторная работа		Внеаудито рная работа	
			Л	П3	ЛР	CPC
1	Обзорная лекция по интегральной оптике и нанофотонике		1			14
2	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.		1			12
3	Волноводные устройства с применением электрооптического и акустооптического эффекта			1		14
4	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры.и их применение		1			14
5	Методы измерения параметров волноводов интегральной оптики			1		14
6	Материалы и технологии формирования интегрально-оптических схем.			1		7
7	Интегрально-оптические датчики			1		7
8	Субмикронная интегральная оптика.		1			7
9	Фотонные кристаллы и оптические микрорезонаторы.		1			7

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа и семинарские занятия

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Обзорная лекция по интегральной оптике и нанофотонике	Обзорная лекция по материалам дисциплины	КВ
2.	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.	Планарные оптические волноводы. Волноводные и излучательные моды. Интегрально-оптические канальные волноводы, сегментированные канальные волноводы. Волноводы с вытекающими волнами (leaky waveguides). Базовые волноводные структуры интегральной оптики. Гибридные и монолитные интегрально-оптические схемы. Нелинейно-оптические эффекты в оптических волноводах.	КВ, реферат
3.	Волноводные устройства с применением	Фазовые и амплитудные волноводные модуляторы.	КВ, реферат

	электрооптического и акустооптического эффекта	Спектральные электрооптические и акустооптические фильтры. Перестраиваемые оптические спектральные фильтры	
4.	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры.и их применение	Интегрально-оптические направленные ответвители. переключатели и коммутаторы. Устройства на основе Y-разветвителей. AWG-мультиплексоры.	КВ, реферат
5.	Методы измерения параметров волноводов интегральной оптики	Методы измерения параметров волноводов: затухания, размеров поля моды и волноводных характеристик	КВ, реферат
6	Материалы и технологии формирования интегрально-оптических схем.	Методы формирования элементов и устройств интегральной оптики в стекле, сегнетоэлекрических кристаллах, полупроводниковых и полимерных материалах. Промышленные технологии производства элементов и устройств интегральной фотоники в стекле и полупроводниковых материалах	КВ, реферат
7	Интегрально-оптические датчики	Интегрально-оптические датчики физических величин (давления, температуры, скорости) и химико-биологических реагентов.	КВ, реферат
8	Субмикронная интегральная оптика.	Технология формирования волноводных схем "кремний на изоляторе".	КВ, реферат
9	Фотонные кристаллы и оптические микрорезонаторы.	Фотонные кристаллы и устройства на их основе	КВ, реферат

Примечание: КВ – ответы на контрольные вопросы

2.3.2 Лабораторные работы

No	Тема	Форма текущего
п/ п		контроля
1	Расчеты волноводных характеристик и распределений полей планарных оптических волноводов различных типов.	Отчет по лабораторной работе

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
---	---------	---

1	Изучение тем	Методические указания по организации самостоятельной работы
	дисциплины,	по дисциплине «Волноводная фотоника»
	вынесенные на СРС	
2	Подготовка отчетов по лабораторным работам	Методические указания по организации самостоятельной работы по дисциплине «Волноводная фотоника»
3	Подготовка к зачету	Методические указания по организации самостоятельной работы по дисциплине «Волноводная фотоника»

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

1. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электротехника и электроника».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме контрольных вопросов по темам дисциплины и по отчетам лабораторных работ и промежуточной аттестации в форме вопросов и заданий к зачету.

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет) Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Физический механизм каналирования оптического излучения в интегральнооптических волноводах.
- 2. Принцип работы интегрально-оптического направленного ответвителя.
- 3. Принцип работы AWG-мультиплексора.
- 4. Применение электрооптического эффекта для создания волноводного модулятора оптического излучения Маха-Цендера.
- 5. Технология формирования элементов интегральной оптики методом ионного обмена в стекле.
- 6. Оптические характеристики фотонных кристаллов.
- 7. Принцип действия интегрально-оптического датчика вращения на основе эффекта Саньяка.
- 8. Оптические свойства метаматериалов
- 9. Субмикронная интегральная оптика на основе диэлектрических и металлодиэлектрических плазмонных волноводных структур.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по разделам дисциплины, допускает незначительные ошибки; студент умеет правильно объяснять основной материал дисциплины, иллюстрируя его практическими примерам;

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести практические примеры, довольно ограниченный объем знаний материала программы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература Основная литература

1.Кульчин, Ю. Н. Современная оптика и фотоника нано- и микросистем / Кульчин Ю. Н. - М. : ФИЗМАТЛИТ, 2016. - 440 с. - https://e.lanbook.com/book/91158#book_name.

2. Никитин, В.А. Электростимулированная миграция ионов в интегральной оптике / В. А. Никитин, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. унт. - [3-е изд., доп.]. - Краснодар: [Кубанский государственный университет], 2013. - 245 с. 3. Салех, Бахаа Е. А. Оптика и фотоника. Принципы и применения: [учебное пособие: в 2 т.]. / Б. Салех, М. Тейх; пер. с англ. В. Л. Дербова. - Долгопрудный: Интеллект, 2012. - 759 с.,

4. Ларкин, А.И. Когерентная фотоника: [учебник] / А. И. Ларкин, Ф. Т. С. Юу. - М. : БИНОМ. Лаборатория знаний, 2009. - 317 с.

5. Панов, М.Ф. Физические основы интегральной оптики: учебное пособие для студентов вузов / М. Ф. Панов, А. В. Соломонов, Ю. В. Филатов. - М.: Академия, 2010. - 427 с.

6.Янг, Матт. Оптика и лазеры, включая волоконную оптику и оптические волноводы / М. Янг; пер. с англ. Н. А. Липуновой, О. К. Нания, В. В. Стратонович; под ред. В. В. Михайлина. - М.: Мир, 2005. - 541 с.: ил. - ISBN 5030034579. - ISBN 354065741X: 586 р. 7.Барыбин, А.А. Электродинамика волноведущих структур. Теория возбуждения и связи

волн / А. А. Барыбин. - М.: ФИЗМАТЛИТ, 2007. - 510 с.

8. Гончаренко А.М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко. - Изд. 2-е, испр. - М. : [Едиториал УРСС], 2004. - 237 с.

Дополнительная литература

1.Волноводная оптоэлектроника / под ред. Т. Тамира ; пер. с англ. А. П. Горобца, Г. В. Корнюшенко, Т. К. Чехловой под ред. В. И. Аникина. - М. : Мир, 1991. - 574 с.

2.Прохоров В.П. Моделирование физико-технологических параметров оптических ионообменных волноводов : монография / В. П. Прохоров, Н. А. Яковенко ; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. - Краснодар : [Кубанский государственный университет], 2014. - 197 с.

3.Желтиков, А.М. Микроструктурированные световоды в оптических технологиях / А. М. Желтиков. - М. : Φ ИЗМАТЛИТ , 2009. - 191 с.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru

- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда

https://ebookcentral.proquest.com/lib/kubanstate/home.action

- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/"Лекториум ТВ" http://www.lektorium.tv/
 - 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Электротехника и электроника».

Контроль осуществляется посредством тестирования студентов по окончании изучения тем учебной дисциплины и выполнения письменных контрольных работ.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- выполнение семестровой контрольной работы по индивидуальным вариантам;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «Электротехника и электроника» также относятся электронные варианты дополнительных учебных, научно-популярных и научных изданий по данной дисциплине.

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

Типовые задания для самостоятельной работы студентов

№	Тема или задание текущей работы	Форма пред-	Сроки
темы	тема или задание текущей расоты	ставления	выпол-

		результатов	нения
			(недели)
1.	Метод эффективного показателя преломления расчета волноводных характеристик канальных оптических волноводов	Устный ответ, текстовый документ	1
2.	Формирование волноводного режима распространения оптического излучения в волноводах с утечкой (leaky waveguides)	Устный ответ, текстовый документ	1
3.	Измерение эффективного показателя преломления волноводной моды методом ее призменного возбуждения	Устный ответ, текстовый документ	1
4.	Принцип работы электрооптического волноводного оптического модулятора Маха-Цендера в различных режимах работы	Устный ответ, текстовый документ	1
5.	Формирование волноводного режима распространения оптического излучения в фотонных кристаллах	Устный ответ, текстовый документ	1
6	Интегрально-оптические датчики концентрации химических веществ: принцип действия	Устный ответ, текстовый документ	
7	Технология формирования элементов субмикронной интегральной оптики "кремний на изоляторе"	Устный ответ, текстовый документ	
8.	Оптические свойства фотонных кристаллов	Устный ответ, текстовый документ	1
9	Метаматериалы	Устный ответ, текстовый документ	
10	Субмикронная интегральная оптика	Устный ответ, текстовый документ	

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных			Оснащенность специальных	Перечень лицензионного		o
помещений			помещений	программного обеспечения		
Учебная	аудитория	для	Мебель: учебная мебель	Операционная	система	MS

проведения занятий лекционного	Технические средства обучения:	Windows 10; интегрированное	
типа	экран, проектор, компьютер	офисное приложение MS Office	
Учебная аудитории N137с для	Мебель: учебная мебель		
проведения лабораторных работ.	Оборудование:		
	специализированные учебно-		
	исследовательские стенды для		
	проведению лабораторных работ		
	по интегральной оптике и		
	нанофотонике		
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS	
проведения лабораторных работ	Технические средства обучения:	Windows 10; приложение Matlab.	
	экран, проектор, компьютерный		
	класс		
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS	
проведения текущего контроля и	Технические средства обучения:	Windows 10; интегрированное	
промежуточной аттестации	экран, проектор, компьютерный	офисное приложение MS Office,	
	класс	приложение Matlab.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного	
самостоятельной работы	самостоятельной работы	программного обеспечения	
обучающихся	обучающихся		
Помещение для самостоятельной	Мебель: учебная мебель	Операционная система MS	
работы обучающихся (читальный	Комплект специализированной	Windows 10; интегрированное	
зал Научной библиотеки)	мебели: компьютерные столы	офисное приложение MS Office.	
	Оборудование: компьютерная		
	техника с подключением к		
	информационно-		
	коммуникационной сети		
	«Интернет» и доступом в		
	электронную информационно-		
	образовательную среду		
	образовательной организации,		
	веб-камеры, коммуникационное		
	оборудование, обеспечивающее		
	доступ к сети интернет		
	(проводное соединение и		
	беспроводное соединение по		
	технологии Wi-Fi)		