министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.17 ЭЛЕКТРОНИКА

(код и наименование дисциплины в соответствии с учебным планом)

Направление под	готовки	
11.03.02 Инфоко	оммуникационные технологии и системы связи	
•	(код и наименование направления подготовки)	
Направленность (профиль)	
Оптические систе	емы и сети связи	
	(наименование направленности (профиля))	
Форма обучения	заочная	
	(очная, очно-заочная, заочная)	
Квалификация	бакалавр	

Рабочая программа дисциплины "Б1.О.17 Электроника" составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Аванесов Владимир Михайлович, доцент кафедры оптоэлектроники, к.т.н.

Рабочая программа дисциплины "Электроника" утверждена на заседании кафедры оптоэлектроники КубГУ

протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М. Векшин М.М.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ Torand протокол № 11 «29»<u>апреля</u> 2025 г.

Председатель УМК факультета Богатов Н.М.

Рецензенты:

Попов Юрий Борисович, доцент кафедры радиофизики и нанотехнологий КубГУ, к.т.н.

Гоменюк Александр Владимирович, директор центра эксплуатации Краснодарского филиала ПАО «Ростелеком» МРФ "ЮГ"

Аннотация к рабочей программы дисциплины **Б1.О.16** «Электроника»

Объем трудоемкости: 6 зачетных единиц (216 часа, из них -20 часа аудиторной нагрузки: лекционных 8 ч., практических 6 ч., лабораторных 6 ч.; 183 часа самостоятельной работы).

Цель дисциплины

Учебная дисциплина «Электроника» ставит своей целью: изучение студентами физических эффектов и процессов, лежащих в основе принципов действия полупроводниковых, электровакуумных и оптоэлектронных приборов и устройств, с одновременным изучением элементной базы средств связи, применяемой в телекоммуникационных системах, телевизионной, радиорелейной, тропосферной, космической и радиолокационной связи.

Электроника, являясь одним из сложнейших технических и наукоемких направлений развития нашей цивилизации, служит фундаментом для интенсивно развивающейся электронной промышленности. Благодаря ее теоретическим исследованиям и разработке новых электронных компонентов, появляются в свет все более новые приборы и оборудование, в которых применяются самые инновационные решения.

Задачи дисциплины

Основной задачей дисциплины является изучение принципов действия, характеристик, параметров и особенностей устройства важнейших полупроводниковых, электровакуумных и оптоэлектронных приборов, используемых в системах связи. К их числу относятся диоды, биполярных и полевые транзисторы, приборы с отрицательной дифференциальной проводимостью, оптоэлектронные и электровакуумные приборы, элементы интегральных схем и основы технологии их производства. В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие использовать полупроводниковые, электровакуумные и оптоэлектронные приборы, при разработке и эксплуатации средств связи.

Место дисциплины в структуре образовательной программы

Дисциплина «Электроника» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 2-м и 3-м курсе по заочной форме обучения. Вид промежуточной аттестации: на втором курсе — зачет, а на третьем — экзамен.

В результате изучения дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения последующих схемотехнических дисциплин: «Схемотехника ряда телекоммуникационных систем», «Электропитание устройств И систем телекоммуникаций», «Микропроцессорная техника в оптических системах связи», «Цифровая электроника».

Настоящая дисциплина находится на стыке дисциплин, обеспечивающих базовую и специальную подготовку студентов, необходимую для эксплуатации электронных приборов в средствах связи. Изучая эту дисциплину, студенты, кроме теоретических получают и практические навыки экспериментальных измерений параметров и технических характеристик, методов измерений разнообразных электровакуумных и полупроводниковых приборов, их маркировку. Поэтому для её освоения необходимо успешное усвоение сопутствующих дисциплин: «Физика», «Математический анализ», «Дискретная математика», «Теория электрических цепей».

Требования к уровню освоения дисциплины

обучающихся общепрофессиональных компетенций: ОПК-1, ОПК-2 Код и наименование

индикатора достижения Результаты обучения по дисциплине компетенции

ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности.

ИОПК-1.1. Формулирует фундаментальные законы природы и основные физические математические законы и методы накопления, передачи и обработки информации.

ИОПК-1.2. Применяет физические законы и математические методы для решения задач теоретического и прикладного характера.

ИОПК-1.3. Использует знания физики и математики при решении практических задач.

знать функциональное назначение изучаемых приборов: принцип действия изучаемых приборов и понимать сущность физических процессов и явлений, происходящих в них; физические явления и эффекты, определяющие принцип действия основных полупроводниковых, электровакуумных и оптоэлектронных приборов; зонные диаграммы собственных и примесных полупроводников, р-п перехода, контакта металл-полупроводник и простейшего гетероперехода; математическую модель идеализированного р-п перехода и влияние на ВАХ ширины запрещенной зоны (материала), температуры и концентрации примесей; физический смысл дифференциальных, частотных и импульсных параметров приборов; эквивалентные схемы биполярного и полевого транзисторов; преимущества интегральных схем; принцип работы базовых каскадов аналоговых и базовых ячеек цифровых схем.

уметь объяснять устройство изучаемых приборов, их принцип действия, назначение элементов структуры и их влияние на электрические параметры и частотные свойства; находить значения электрофизически х параметров основных полупроводников ых материалов в учебной и справочной литературе для опенки их влияния на параметры структур; объяснять физическое назначение элементов и влияние их параметров на электрические параметры и частотные свойства базовых каскадов аналоговых схем и переходные процессы в базовых ячейках цифровых схем; пользоваться

справочными эксплуатационны ми параметрами приборов;

владеть навыком расчета базовых каскалов аналоговых и ячеек цифровых схем; навыками определения неисправных компонентов (элементарных электронных полупроводниковых приборов) по их внешнему виду и электрическим характеристикам; навыками изображения полупроводниковых структур с использованием зонных энергетических диаграмм; навыками определения параметров и поиска компонентов элементарных приборов взамен или аналогов для замещения в электронных схемах;

ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных.

Код и наименование					
индикатора достижения	Результаты обучения по дисциплине				
компетенции	1 co year in co y relining the direction in the				
ИОПК-2.1. Применяет	знать условные	уметь определять	владеть навыками		
основные методы и средства	графические	дифференциальны	работы с контрольно-		
проведения	обозначения изучаемых	е параметры по	измерительной		
экспериментальных	приборов, схемы	статическим	аппаратурой;		
исследований, системы	включения и режимы	характеристикам;	навыками работы с		
стандартизации и	работы электронных	по виду	типовыми		
сертификации;	приборов; вид	статических	средствами		
ИОПК-2.2. Использует способы	статических	характеристик	измерений с целью		
и средства измерений и	характеристик и их	определять тип	измерения основных		
проводить экспериментальные	семейств в различных	прибора и схему	параметров и		
исследования;	схемах включения;	его включения;	статических		
ИОПК-2.3. Применяет способы	основные методы	выбирать на	характеристик		
обработки и представления	аппроксимации	практике	изучаемых структур;		
полученных данных и оценки	результатов	оптимальные	навыками		
погрешности результатов	экспериментальных	режимы работы	составления и		
измерений.	измерений.	изучаемых	оформления отчетов		
1		приборов;	по результатам		
		экспериментально	экспериментальных		
		определять	лабораторных		
		статические	исследований		
		характеристики и	изучаемых структур,		
		параметры	навыками чтения		
		различных	принципиальных		
		структур.	схем электронных		
			устройств;		

Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Nº	Наименование разделов (тем)	Количество часов				
		Всего	Аудиторная работа			Внеаудит орная работа
			Л	П3	ЛР	CPC
1.	Основы физики полупроводников		2			30
2.	Полупроводниковые диоды.		2			30
3.	Биполярные транзисторы.		2		2	30
4	Введение работы элементов электроники в аналоговых схемах		2	2	4	30
5	Диоды и транзисторы - основа цифровой микросхемотехники			2		30
6	Оптоэлектронные приборы			2		33
	Общая трудоемкость по дисциплине	216				183

Курсовые проекты: не предусмотрены **Форма проведения аттестации по дисциплине:** зачёт (летняя сессия на 2-м курсе) и экзамен (зимняя сессия на 3-м курсе).

Зав. кафедрой оптоэлектроники _____ Яковенко Н.А.