министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.16 ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

(код и наименование дисциплины в соответствии с учебным планом)

Направление под	готовки	
	оммуникационные технологии и системы связи	
•	(код и наименование направления подготовки)	
Направленность ((профиль)	
Оптические систе	емы и сети связи	
	(наименование направленности (профиля))	
Форма обучения	заочная	
	(очная, очно-заочная, заочная)	
Квалификация	бакалавр	_

Рабочая программа дисциплины "Б1.О.16 Теория электрических цепей" государственным федеральным C соответствии составлена (ФГОС ВО) образования высшего стандартом образовательным направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Коротков Константин Станиславович, профессор кафедры оптоэлектроники,

Рабочая программа дисциплины "Теория электрических цепей" утверждена на заседании кафедры оптоэлектроники КубГУ

протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ протокол № 11 «29» апреля 2025 г.

Председатель УМК факультета Богатов Н.М.

Рецензенты:

Попов Юрий Борисович, доцент кафедры радиофизики и нанотехнологий КубГУ, к.т.н.

Кулиш Ольга Александровна, доцент Краснодарского высшего военного Краснознаменного училища имени генерала армии С.М.Штеменко

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целью изучения дисциплины является достижение следующих результатов образования:

- получение студентами профессиональных знаний, умений и навыков в области теоретической электротехники;
- комплексное формирование профессиональных компетенций обучающихся, необходимых для последующей производственной деятельности бакалавра по направлению подготовки «Инфокоммуникационные технологии и системы связи» в условиях современного рынка при решении задач в областях электротехники, электроники, аналоговой и цифровой схемотехники.

1.2 Задачи дисциплины

Задачами освоения дисциплины являются:

- овладение учащимися способностью решать задачи анализа и расчета характеристик электрических цепей;
- формирование у студентов способности учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.О.16 «Теория электрических цепей» для бакалавриата по направлению 11.03.02 Инфокоммуникационные технологии и системы связи (профиль: Оптические системы и сети связи) относится к базовой части Блока 1 «Дисциплины (модули)» Б1 учебного плана. Дисциплина логически и содержательно-методически связана с дисциплинами базовой и вариативной частей модуля Б1 и является основой для дальнейшего изучения дисциплин: «Электроника», «Электропитание устройств и систем телекоммуникаций». Дисциплина базируется на успешном усвоении сопутствующих дисциплин: «Физика», «Математический анализ». В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей модуля Б1, обеспечивая согласованность и преемственность с этими дисциплинами при переходе к оптическим и цифровым технологиям.

Программа дисциплины «Теория электрических цепей» согласуется со всеми учебными программами дисциплин базовой Б1.О и вариативной Б1.В частей модуля (дисциплин) Б1 учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся *общепрофессиональных и профессиональных* компетенций: ОПК-1, ОПК-2.

Код и наименование индикатора достижения компетенции

Результаты обучения по дисциплине

ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности.

ОПК-1.1 Знает фундаментальные законы природы и основные физические математические законы и методы накопления, передачи и обработки информации;

ОПК-1.2 Способен применять физические законы и математически методы для решения задач теоретического и прикладного характера;

ОПК-1.3 Владеет навыками использования знаний физики и математики при решении практических задач.

Знать методы и средства теоретического и экспериментального исследования электрических цепей.

Умеет системно анализировать информацию, использовать теоретические знания для генерации новых идей.

Владеет навыками ориентирования в профессиональных источниках информации (журналы, сайты, образовательные порталы и т.д.)

ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных.

ОПК-2.1 Находит и критически анализирует информацию, необходимую для решения поставленной задачи; ОПК-2.2 Способен выбирать способы и средства измерений и проводить экспериментальные исследования; ОПК-2.3 Владеет способами обработ-

ОПК-2.3 Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений. Знать основные методы анализа электрических цепей, частотные характеристики электрических цепей, методы анализа электрических цепей при негармонических воздействиях, основы тории четырехполюсников и цепей с распределенными параметрами.

Уметь рассчитывать и измерять параметры и характеристик и линейных и нелинейных электрических цепей.

Владеть навыками экспериментального исследования электрических цепей в рамках физического и математического моделирования.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет $_{7}$ зачетных единиц ($_{252}$ часов), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения			
	часов	O.M.	uo a	очно-	заочная
		041	ная	заочная	
		X	X	X	2
		семестр	семестр	семестр	курс
		(часы)	(часы)	(часы)	(часы)
Контактная работа, в том числе:					
Аудиторные занятия (всего):					30
занятия лекционного типа					8
лабораторные занятия					12
практические занятия					10
семинарские занятия					
Иная контактная работа:					
Контроль самостоятельной работы					

(KCP)				
Промежуточная аттестация (ИКР)				9
Самостоятельная р	работа, в том чис-			
ле:				
Самостоятельное и	изучение разделов,			213
самоподготовка				213
Подготовка к текущему контролю				
Контроль:				
Подготовка к экзаме	ену			
Общая трудоем-	час.			252
кость	в том числе кон-			30
	тактная работа			30
	зач. ед			7

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые на 2 курсе заочной формы.

	Наименование разделов (тем)		Количество часов				
№			Аудиторная работа			Внеауди- торная работа	
			Л	П3	ЛР	CPC	
1.	Анализ разветвлённых электрических цепей	50	2	2	4	42	
2.	Принципы и теоремы теории цепей	46	2	2		42	
3.	Спектральный метод анализа цепей	49	1	2	4	42	
4.	Четырёхполюсники	49	1	2	4	42	
5.	Цепи с распределёнными параметрами	49	2	2		45	
	ИТОГО по разделам дисциплины	243	8	10	12	213	
	Контроль самостоятельной работы (КСР)						
	Промежуточная аттестация (ИКР)						
	Подготовка к текущему контролю		•				
	Общая трудоемкость по дисциплине	252	•				

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π – лабораторные занятия, Π – лабораторные занятия, Π – лабораторные занятия, Π – лабораторные занятия Π – лабораторные занаторные занаторные занятия Π – лабораторные занаторные занаторн

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела (темы)	Форма текуще-
31=	(темы)	Содержиние раздела (темы)	го контроля
1	Анализ разветвлённых	Законы Ома и Кирхгофа. Метод контурных токов. Метод уз-	КВ/ПЗ
	электрических цепей	ловых потенциалов.	KD/113
2	Принципы и теоремы	Принцип и метод наложения. Принцип взаимности. Принцип	КВ/ПЗ
	теории цепей	компенсации. Теорема и метод эквивалентного генератора.	KD/113
3	Спектральный метод	Разложение периодических сигналов в ряд Фурье. Частотные	КВ
	анализа цепей	и временные характеристики линейных цепей.	KD
4	Четырёхполюсники	Основные уравнения четырёхполюсников. Схемы замещения	КВ/ПЗ
	четырехполюсники	четырёхполюсников. Схемные функции.	KD/113
5	Цепи с распределённы-	Теория линии передачи. Волны мощности. Потоковые графы.	КВ/ПЗ
	ми параметрами	Параметры рассеяния.	KD/113

Примечание: KB – ответы на контрольные вопросы, ПЗ – выполнение практических заданий, ЛР – защита лабораторной работы.

2.3.2 Занятия семинарского типа

Согласно учебному плану в 5 семестре семинарские занятия по учебной дисциплине Б1.О.16 «Теория электрических цепей» не предусмотрены.

2.3.3 Лабораторные занятия

№	Наименование лабораторных работ	Форма текущего контроля
1	Исследование переходных процессов RC-цепях	Защита ЛР
2	Исследование переходных процессов RLC-цепях	Защита ЛР
3	Исследование фильтров ФНЧ, ФВЧ	Защита ЛР

Проведение занятий лабораторного практикума предусмотрено в «компьютерном классе» (аудитории 327с или 211с).

В результате выполнения лабораторных работ у студентов формируются и оцениваются все требуемые $\Phi \Gamma$ ОС и ООП для направления 11.03.02 Инфокоммуникационные технологии и системы связи (профиль: Оптические системы и сети связи) компетенции: ОПК-1, ОПК-2.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисци- плины по выполнению самостоятельной работы
1	Проработка учебного	Методические рекомендации по организации и выпол-
	(теоретического материа-	нению самостоятельной работы студентов для бакалав-
	ла), подготовка к текущей	ров направления подготовки 11.03.02 «Инфокоммуни-
	и промежуточной аттеста-	кационные технологии и системы связи»
	ции (зачёту и вопросам)	
2	Подготовка к выполнению	
	лабораторных работ	

Перечень учебно-методического обеспечения дисциплины по темам программы для проработки теоретического материала

		Перечень учебно-методического обеспечения дисци-
№	Наименованиераздела	плины по выполнению самостоятельной работы
1	Анализ разветвлённых	Соболев, В.Н. Теория электрических цепей [Электрон-
1	электрических цепей	ный ресурс]: учеб. пособие — Электрон. дан. –
	*	
2	Принципы и теоремы тео-	Москва: Горячая линия-Телеком, 2014. — 502 с. – Ре-
	рии цепей	жим доступа: https://e.lanbook.com/book/55667.
3	Спектральный метод анали-	1. Татаринов В. Н., Татаринов С. В. Спектры и анализ.
	за цепей	Учебное пособие для студентов специальностей «Тех-
		ническая эксплуатация транспортного радиооборудо-
		вания» и «Проектирование и технология радиоэлек-
		тронных средств». Томск: Томский государственный
		университет систем управления и радиоэлектроники,
		2012, 324 с – Режим доступа:
		https://edu.tusur.ru/publications/1490/download
4	Четырёхполюсники	1. Коновалов Б.И. Теоретические основы электротехни-
ļ -	10124	ки: Учебное пособие. – Томск: Томский государственный
		университет систем управления и радиоэлектроники,
		2007. – Режим доступа:
		https://edu.tusur.ru/publications/824/download
		2. Литвинов, С.А., Яковенко, Н.А. Теоретические основы
		электротехники: лабораторный практикум. Краснодар:
		Кубанский гос. ун-т, 2017.
5	Цепи с распределёнными	1. Попова А.И., Попова К.Ю. под общей редакцией
	параметрами	Поповой К. Ю. Теория электрических цепей. Часть 2:
	параметрами	Учебное пособие Томск: Томский государственный
		, ,
		университет систем управления и радиоэлектрони-
		ки,2015160 с. – Режим доступа:
		https://edu.tusur.ru/publications/5535/download

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются вформах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

При изучении дисциплины проводятся следующие виды учебных занятий и работ: лекции, лабораторные работы, домашние задания, консультации с преподавателем, контроль самостоятельной работы студентов (по изучению теоретического материала, подго-

товке к практическим и лабораторным занятиям, выполнению домашних заданий, подготовке к тестированию, зачёту и экзамену).

Лекционные занятия проводятся в аудитории, оснащённой мультимедийными средствами воспроизведения активного содержимого (занятия в интерактивной форме), позволяющие студенту воспринимать особенности изучаемой дисциплины, играющие решающую роль в понимании и восприятии, а также в формировании профессиональных компетенций.

При проведении лабораторных работ преподаватель контролирует ход выполнения работы каждого студента, уточняя ход работы, и если студенты что-то выполняют неправильно, преподаватель помогает им преодолеть сложные моменты, проверяет достоверность полученных экспериментальных результатов. После выполнения контрольных заданий приведенных в конце описания каждой лабораторной работы студенты отвечают на теоретические контрольные и дополнительные вопросы, таким образом, защищая лабораторную работу.

По изучаемой дисциплине студентам предоставляется возможность пользоваться учебно-методическими материалами и рекомендациями, размещенными в электронной информационно-образовательной среде «Модульного Динамического Обучения КубГУ» http://moodle.kubsu.ru/enrol/index.php?id=462.

Консультации проводятся раз в две недели для разъяснения проблемных моментов при самостоятельном изучении вопросов изучаемой дисциплины.

Таким образом, основными образовательными технологиями, используемыми в учебном процессе являются: интерактивная лекция с мультимедийной системой и активным вовлечением студентов в учебный процесс; обсуждение сложных и дискуссионных вопросов и проблем и с последующим разбором этих вопросов на практических занятиях; лабораторные занятия — работа студентов в малых группах в режимах взаимодействия «преподаватель — студент», «студент — преподаватель», «студент — студент». При проведении практических и лабораторных учебных занятий предусмотрено развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

n		
RADITING TINAD	CONTRACTOR OF THE CONTRACTOR O	интерактивных технологии
Janatha, npob	одимые с использованием	MILLEDGRINGHBIA TEXHOLOGICAN

Семестр	Вид занятия	Используемые интерактивные образователь-	Количество
	(Л, ПЗ)	ные технологи	часов
3	Л	Интерактивная лекция с мультимедийной системой	16
3	ПЗ	Индивидуальное выполнение лабораторных заданий	30
Итого:			46

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля

Контрольные вопросы по учебной программе

Ниже приводятся примеры контрольных вопросов рабочей программы.

Пример контрольных вопросов для раздела «Принципы и теоремы теории цепей»

- 1. Что представляет собой идеальный источник ЭДС? Приведите примеры.
- 2. Разъясните понятие активного, реактивно и комплексного сопротивления.
- 3. Как влияет напряжение генератора на мощность в нагрузке?

- 4. Переходный процесс в последовательной RL цепи при коммутации к источнику постоянной ЭДС.
- 5. Переходный процесс в RL цепи при замыкании L на R.
- 6. Переходный процесс в последовательной RC цепи при коммутации к источнику постоянной ЭДС.
- 7. Переходный процесс в RC цепи при замыкании C на R.
- 8. Размыкание цепи с индуктивным элементом.
- 9. Коммутация последовательной RLC цепи к источнику постоянной ЭДС.
- 10. Апериодический режим в последовательной RLC цепи.
- 11. Критический режим в последовательной RLC цепи.
- 12. Затухающий колебательный режим в последовательной RLC цепи.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Вопросы, выносимые на экзамен по дисциплине Б1.О.16 «Теория электрических цепей» для направления 11.03.02 «Инфокоммуникационные технологии и системы связи», направленность (профиль) «Оптические системы и сети связи»

- 1. Электрические цепи, виды, состав, описание.
- 2. Законы Ома, Кирхгофа.
- 3. Анализ эл. цепи методом контурных токов.
- 4. Анализ эл. цепи методом узловых потенциалов.
- 5. Анализ эл. цепи методом наложения.
- 6. Анализ эл. цепи методом эквивалентного генератора.
- 7. Переменный ток и его основные характеристики. Комплексные числа в анализе цепей.
- 8. Активная, реактивная и полная мощности.
- 9. Реакция *RLC*-цепи на гармоническое воздействие.
- 10. Основные уравнения четырёхполюсников. Z- и H-параметры.
- 11. Основные уравнения четырёхполюсников. У- и А-параметры.
- 12. Схемы замещения четырёхполюсников.
- 13. Составные четырёх полюсники.
- 14. Цепи с распределёнными параметрами. Линии передачи.
- 15. Нагруженная линия передачи.
- 16. Волны мощности.
- 17. Параметры рассеяния. Определение, физический смысл и свойства S-параметров.
- 18. Измерение S-параметров.
- 19. Передача мощности.
- 20. Параметры линейных устройств СВЧ.

В процессе подготовки и сдачи экзамена формируются и оцениваются требуемые ФГОС и ООП компетенции: ОПК-1, ОПК-2.

Критерии оценивания ответов студентов:

Оценку «отлично» заслуживает студент, показавший:

- всесторонние и глубокие знания программного материала учебной дисциплины; изложение материала в определенной логической последовательности, с использованием современных научных терминов;
- освоившему основную и часть дополнительной литературы, рекомендованную программой, проявившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний;
- полные, четкие, логически последовательные, правильные ответы на поставленные вопросы, способность делать обоснованные выводы;
- умение самостоятельно анализировать факты, события, явления, процессы в их взаимосвязи и развитии; сформированность необходимых практических навыков работы с изученным материалом.

Оценку «хорошо» заслуживает студент, показавший:

- систематический характер знаний и умений, способность к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности;
- достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);
- последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы; уверенность при ответе на дополнительные вопросы;
- знание основной рекомендованной литературы; умение достаточно полно анализировать факты, события, явления и процессы, применять теоретические знания при решении практических задач.

Оценку «удовлетворительно» заслуживает студент, показавший:

- знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности;
- знакомому с основной рекомендованной литературой;
- допустившему неточности и нарушения логической последовательности в изложении программного материала в ответе на экзамене, но в основном обладающему необходимыми знаниями и умениями для их устранения при корректировке со стороны экзаменатора.
- продемонстрировавшему правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки;
- проявившему умение применять теоретические знания к решению основных практических задач, ограниченные навыки в обосновании выдвигаемых предложений и принимаемых решений; затруднения при выполнении практических работ; недостаточное использование научной терминологии; несоблюдение норм литературной речи.

Оценка «неудовлетворительно» ставится студенту, обнаружившему:

- существенные пробелы в знании основного программного материала по дисциплине;
- отсутствие знаний значительной части программного материала; непонимание основного содержания теоретического материала; неспособность ответить на уточняющие вопросы; отсутствие умения научного обоснования проблем; неточности в использовании научной терминологии;
- неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений;
- допустившему принципиальные ошибки, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1. Основная литература

- 1. Дмитриев В.М., Шутенков А.В., Ганджа Т.В., Шандарова Е.Б. Теоретические основы электротехники. Ч. 2: Переходные и статические режимы в линейных и нелинейных цепях. Электромагнитное поле: Учебное пособие. Томск: 2015. 237 с Режим доступа: https://edu.tusur.ru/publications/5377/download
- 2. Дмитриев В.М., Шутенков А.В., Хатников В.И., Ганджа Т.В., Шандарова Е.Б. Теоретические основы электротехники. Ч. 1: Установившиеся режимы в линейных электрических цепях: Учебное пособие. Томск: 2015. 187 с. Режим доступа: https://edu.tusur.ru/publications/5376/download
- 3. Коновалов Б.И. Теоретические основы электротехники: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. Режим доступа: https://edu.tusur.ru/publications/824/download
- 4. Попова А.И., Попова К.Ю. под общей редакцией Поповой К. Ю. Теория электрических цепей. Часть 2: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники,2015. -160 с. Режим доступа: https://edu.tusur.ru/publications/5535/download

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература

- 1. Теория электрических цепей: Методическое пособие к практическим занятиям/ Мельникова И.В., Дубовик К.Ю. ТУСУР. Томск, 2012.- 156 с Режим доступа: https://edu.tusur.ru/publications/1432/download
- 2. Носов Г.В. Теоретические основы электротехники. Установившийся режим: учебное пособие / Г.В. Носов, Е.О. Кулешова, В.А. Колчанова; Национальный исследовательский Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2011. 216 с.
- 3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы электротехники: лабораторный практикум. Краснодар: Кубанский гос. ун-т, 2017.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Электронная информационно-образовательная среда Модульного Динамического Обучения КубГУ: http://moodle.kubsu.ru/enrol/index.php?id=462

- 1. Электронная библиотека ЮРАЙТ: www.biblio-online.ru
- 2. Электронно-библиотечная система ЛАНЬ: https://e.lanbook.com

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению: 11.03.04 Электроника и наноэлектроника, отводится около 28.5 % времени (24 час. срс) от общей трудоемкости дисциплины (108 часа.). Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Теоретические основы электротехники».

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем конспекта;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

8.1 Перечень информационных технологий

- 1. Консультирование посредством электронной почты.
- 2. Использование электронной презентации на сайте Moodle КубГУ.

8.2 Перечень необходимого программного обеспечения

- 1. Операционная система Microsoft семейства Windows (7/8/10), в рамках программы компании Microsoft "Enrollment for Education Solutions" для компьютеров и серверов Кубанского государственного университета и его филиалов.
 - 2. Интегрированное офисное приложение MS Office (© Microsoft Corporation).
 - 3. Программное средство Mathcad.

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU:

http://www.elibrary.ru

- 2. Информационная система «Единое окно доступа к образовательным ресурсам»: http://window.edu.ru/window
- 3. Большая научная библиотека:

http://www.sci-lib.com/

4. Естественно-научный образовательный портал:

http://www.en.edu.ru/catalogue/

5. Техническая библиотека:

http://techlibrary.ru/

- 6. Электронная библиотека ЮРАЙТ: www.biblio-online.ru
- 7.Электронно-библиотечная система ЛАНЬ: https://e.lanbook.com

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Каждый обучающийся в течение всего периода обучения должен быть обеспечен индивидуальным неограниченным доступом к одной или нескольким электронно-библиотечным системам (электронным библиотекам) и к электронной информационно-образовательной среде ФГБОУ ВПО «КубГУ». Электронно-библиотечная система (электронная библиотека) и электронная информационно-образовательная среда должны обеспечивать возможность доступа обучающегося из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети Интернет (далее - сеть Интернет).

Электронная информационно-образовательная среда ФГБОУ ВПО «КубГУ» должна обеспечивать:

доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочих программах;

фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения программы бакалавриата;

проведение всех видов занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;

формирование электронного портфолио обучающегося, в том числе сохранение работ обучающегося, рецензий и оценок на эти работы со стороны любых участников образовательного процесса;

взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие, посредством сети "Интернет".

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих. Функционирование электронной информационно-образовательной среды должно соответствовать законодательству Российской Федерации.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выходом в Интернет, в соответствии с объемом изучаемых дисциплин.

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1	Лекционные занятия	Учебные аудитории для проведения занятий лекционно-
		го типа, промежуточной аттестации и текущего кон-
		троля – ауд. 201, корп. С (ул. Ставропольская, 149)
2	Лабораторные занятия	Учебные аудитории для проведения лабораторных ра-
		бот – ауд. 327, корп. С (ул. Ставропольская, 149)
3	Курсовое проектирование	Учебной программой выполнение не предусмотрено
4	Групповые (индивидуаль-	Учебные аудитории для проведения лабораторных ра-
	ные) консультации	бот – ауд. 327, корп. С (ул. Ставропольская, 149)
5	Текущий контроль, про-	Учебные аудитории для проведения лабораторных ра-
	межуточная аттестация	бот – ауд. 207, корп. С (ул. Ставропольская, 149)
6	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный
		компьютерной техникой с возможностью подключения
		к сети «Интернет», программой экранного увеличения
		и обеспеченный доступом в электронную информаци-
		онно-образовательную среду университета № 208С