министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.02.01.04 ВОЛОКОННЫЕ ЛАЗЕРЫ И УСИЛИТЕЛИ

(код и наименование дисциплины в соответствии с учебным планом)

Направление под	готовки	
	оммуникационные технологии и системы связи	
•	(код и наименование направления подготовки)	
Направленность (профиль)	
Оптические систе	емы и сети связи	
	(наименование направленности (профиля))	
Форма обучения	заочная	
	(очная, очно-заочная, заочная)	
Квалификация	бакалавр	

Рабочая программа дисциплины "Б1.В.ДВ.02.01.04 Волоконные лазеры и усилители" составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Векшин Михаил Михайлович, профессор кафедры оптоэлектроники, доктор физико-математических наук

Bene

Рабочая программа дисциплины "Волоконные лазеры и усилители" утверждена на заседании кафедры оптоэлектроники КубГУ протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М.

1304

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ протокол № 11 «29» апреля 2025 г. Председатель УМК факультета Богатов Н.М.

Рецензенты:

Попов Юрий Борисович, доцент кафедры радиофизики и нанотехнологий КубГУ, к.т.н.

Кулиш Ольга Александровна, доцент Краснодарского высшего военного Краснознаменного училища имени генерала армии С.М.Штеменко

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины:

Изучение физико-технических принципов построения и функционирования волоконнооптических усилителей и лазеров.

1.2 Задачи дисциплины

- 1. Изучение фундаментальных основ функционирования волоконно-оптических лазеров и усилителей.
- 2. Изучение технических особенностей конструкций волоконно-оптических лазеров и усилителей и их характеристик.
- 3. Изучение вариантов применения волоконных лазеров и усилителей в промышленности (включая волоконно-оптические линии связи (ВОЛС)) и медицине.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Волоконно-оптические усилители и лазеры» относится к части блока 1 дисциплин учебного плана, формируемого участниками образовательных отношений

Данный курс опирается на знания, полученные при изучении дисциплин «Оптоэлектронные квантовые приборы и устройства в инфокоммуникационных системах и сетях», "Оптическое материаловедение" на 1 курсе магистратуры. Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Радиофотоника», "Технология спектрального мультиплексирования в оптической связи", "Сети оптической связи".

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

№ п.п.	Индекс компет енции	Код и наименование компетенции и индикатора	Результаты обучения по дисциплине
	ПК-2	Способен проводить анализ научно-технической проблемы на основе подбора и изучения литературных и патентных источников в целях совершенствования радиоэлектронных средств и систем в области инфокоммуникаций ИПК-2.1 Знает методики сбора, анализа и обработки статистической информации инфокоммуникационных систем;	Студент должен: Знать: Основы функционирования, современный уровень, основные тенденции и перспективы развития инфокоммуникационных технологий, включая их активные фотонные компоненты и узлы. Основы работы с источниками научно-технической информации. Уметь: Проектировать волоконно-оптические системы, подсистемы и сети связи, а также их компонентную базу. Владеть: Первичными навыками эксплуатации техники оптической связи с волоконно-оптическими усилителями.

№ п.п.	Индекс компет енции	Код и наименование компетенции и индикатора	Результаты обучения по дисциплине
		ИПК-2.2. Умеет проводить исследования характеристик телекоммуникационного оборудования и оценки качества предоставляемых услуг; ИПК-2.3. Владеет навыками анализа научнотехнической проблемы на основе подбора и изучения литературных и патентных источников; ИПК-2.4. Владеет навыками проведения экспериментальных работ по проверке достижимости технических характеристик, радиоэлектронной аппаратуры.	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице:

Виды работ	Всего	Форма обучения			
	часов	O.H.	ная	очно-	заочная
		041	кън	заочная	
		3	4	X	X
		семестр	семестр	семестр	курс
		(часы)	(часы)	(часы)	(часы)
Контактная работа, в том числе:		30,2			
Аудиторные занятия (всего):					
занятия лекционного типа		10			
лабораторные занятия		10			
практические занятия		10			
семинарские занятия					
Иная контактная работа:					
Контроль самостоятельной работы					
(KCP)					
Промежуточная аттестация (ИКР)		0,2			
Самостоятельная работа		77,8			
Подготовка к текущему контролю					

Контроль:				
Подготовка к экзамену				
Общая	час.	108		
трудоемкость	в том числе контактная работа	30,2		
	зач. ед	3		

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

			Количество часов				
No	Наименование разделов (тем)	Всего		Аудиторная работа		Внеаудито рная работа	
			Л	П3	ЛР	CPC	
1	Основные принципы работы твердотельных лазеров. Поглощение и эмиссия ионов редкоземельных элементов. Оптические резонаторы. Схемы накачки.		2			11	
2	Принципы работы волоконно-оптических лазеров. Типы резонаторов Фабри-Перо, применяемых для волоконных лазеров. Лазеры с волоконным кольцевым резонатором.		2			11	
3	Динамика излучения волоконного лазера.			2		11	
4	Технические особенности конструкций волоконно-оптических лазеров.		2			11	
5	Лазеры с синхронизацией мод.			2	2	11	
6	Планарные волноводные усилители и лазеры.			2		11	
7	Эрбиевые волоконно-оптические усилители EDFA. Источники широкополосного излучения на основе EDFA.		2		4	11	
8	Рамановские волоконно-оптические усилители (усилители на основе вынужденного комбинационного рассеяния (ВКР)). ВКР-лазеры.		2			11	
9	Применение волоконно-оптических усилителей в ВОЛС. Моделирование ВОЛС с EDFA- и ВКР-усилителями.			2	4	11	
10	Применение волоконно-оптических лазеров в промышленности и медицине.			2		11,8	

Примечание: Л - лекции, ПЗ - практические занятия / семинары, ЛР - лабораторные занятия, СРС - самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа и семинарские занятия

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Основные принципы работы твердотельных лазеров. Поглощение и эмиссия ионов редкоземельных элементов. Оптические резонаторы. Схемы накачки.	Принципы работы твердотельных лазеров. Общая схема. Активная среда. Инверсная заселенность. Накачка. Резонаторы различных типов.	КВ
2.	Принципы работы волоконно- оптических лазеров. Типы резонаторов Фабри-Перо, применяемых для волоконных лазеров. Лазеры с волоконным кольцевым резонатором.	Принципы работы волоконных лазеров. Активная среда. Разновидности резонаторы типа Фабри — Перо: резонаторы с использованием диэлектрических зеркал, резонаторы с использованием волоконных брэгговских решёток. Кольцевые резонаторы. Схемы накачки. 'Up'-конверсионные волоконные лазеры.	КВ
3.	Динамика излучения волоконного лазера.	Основные понятия лазерной динамики. Переходные процессы в лазерах. Динамика поляризации излучения в волоконных лазерах.	КВ
4.	Технические особенности конструкций волоконно- оптических лазеров.	Непрерывная и импульсная генерация Лазеры непрерывной генерации. Лазеры с импульсной генерацией. Однополяризационные волоконные лазеры. Лазеры на основе фотонно-кристаллического волокна.	KB
5.	Лазеры с синхронизацией мод	Физический принцип синхронизации мод. Интерференция продольных мод лазерного резонатора. Генерация пико- и фемтосекундных импульсов. Иллюстрация физического принципа синхронизации мод путем физмат. моделирования.	KB
6	Планарные волноводные усилители и лазеры	Интегрально-оптические лазеры и усилители. Лазеры и усилители (EDWA) на основе фосфатного эрбиевого стекла.	КВ

7	оптические усилители EDFA.	Оптические усилители. Физический принцип работы. Усилители EDFA. Активная среда. Схемы накачки. Конструкция EDFA-усилителей. Мультиплексоры и изолятор в схеме EDFA. Технические параметры промышленны эрбиевых волоконнооптических усилителей.	КВ
8	вынужденного	Нелинейно-оптические процессы. Вынужденное комбинационное рассеяние (ВКР). Оптическая схема и физический принцип работы ВКРлазеров. Схемы накачки ВКР-лазера. Физический принцип работы ВКРусилителя. Схемы накачки ВКРусилителя и линеаризация его частотной характеристики. Технические параметры промышленных рамановских волоконно-оптических усилителей.	КВ
9	Применение волоконно- оптических усилителей в ВОЛС. Моделирование ВОЛС с EDFA- и ВКР-усилителями.	Магистральные и внутризоновые ВОЛС с волоконно-оптическими усилителями. Каскадирование усилителей EDFA. Подводные ВОЛС. Удаленная накачка EDFA в подводных ВОЛС. Модели ВОЛС с EDFA- и ВКР-усилителями.	КВ
10	Применение волоконно- оптических лазеров в промышленности и медицине	Преимущества и недостатки волоконных лазеров. Сварка, гравировка и резка металлов. Биомедицинские приложения.	КВ

Примечание: КВ – ответы на контрольные вопросы

2.3.2 Лабораторные работы

No	Тема	Форма текущего
π/		контроля
П		
1	Физмат. моделирование принципа синхронизации мод. Расчет продольных мод лазера и их суммы.	Отчет по лабораторной работе
2	Исследование параметров промышленного эрбиевого волоконно-оптического усилителя. Ч.1. Исследование спектра и мощности выходного излучения.	Отчет по лабораторной работе
3	Исследование параметров промышленного эрбиевого волоконно-оптического усилителя. Ч.2. Многоканальный режим.	Отчет по лабораторной работе
4	Моделирование ВОЛС с EDFA- и ВКР-усилителями в специализированной программе проектирования систем	Отчет по лабораторной

№	Тема	Форма текущего
π/		контроля
П		
	ВОЛС "OptiSys".	работе

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Изучение тем дисциплины, вынесенные на СРС	Методические указания по организации самостоятельной работы по дисциплине «Волоконно-оптические усилители и лазеры»
	Подготовка отчетов по лабораторным работам	Методические указания по организации самостоятельной работы по дисциплине «Волоконно-оптические усилители и лазеры»
3	Подготовка к зачету	Методические указания по организации самостоятельной работы по дисциплине «Волоконно-оптические усилители и лазеры»

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационноттелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

1. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электротехника и электроника».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме контрольных вопросов по темам дисциплины и по отчетам лабораторных работ и промежуточной аттестации в форме вопросов и заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Пыл средеть для теку	Наименование оценочн	·
п/	, ,	Результаты обучения	таименование оценочн	
	индикатора	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная
П	(в соответствии с п. 1.4)	, , , , , , , , , , , , , , , , , , ,	• •	аттестация
	ПК-1	1.Разрабатывает и согласует	Контрольные вопросы по	Вопросы на
	Способен разрабатывать	технические задания на	темам дисциплины	зачете по темам
	структурные и	проектирование,	Отчет о выполненных	дисциплины
	функциональные схемы	технические условия,	лабораторных работах с	(приведены
	радиоэлектронных систем и комплексов в области	программы и методики испытаний	дополнительными	ниже)
	и комплексов в области инфокоммуникаций,	радиоэлектронных	контрольными вопросами	
	принципиальных схем	устройств и систем;	1	
	устройств с	2.Разрабатывает		
	использованием средств	структурные и		
	компьютерного	функциональные схемы		
	проектирования,	радиоэлектронных систем и		
	проведением проектных	комплексов,		
	расчетов и технико-	принципиальные схемы		
	экономическим	устройств с использованием		
	обоснованием	средств компьютерного		
	принимаемых решений	проектирования,		
		проведение проектных		
1	ПК-2	расчетов и технико-		
1	Способен проводить	экономических		
	анализ научно-технической	обоснований принимаемых		
	проблемы на основе подбора и изучения	решений; 3.Подготавливает		
	подоора и изучения литературных и патентных	конструкторскую и		
	источников в целях	техническую		
	совершенствования	документацию, включая		
	радиоэлектронных средств	инструкции по		
	и систем в области	эксплуатации, программы		
	инфокоммуникаций	испытаний и технические		
		условия.		
		1. Знает принципы		
		построения и работы сети		
		связи и протоколов		
		сигнализации,		
		используемых в сетях		
		связи; стандарты в области		
		качества услуг связи		

2. Умеет осуществлять	
<i>J</i> ,	
конфигурационное и	
параметрическое	
планирование	
транспортных сетей и сетей	
передачи данных,	
анализировать качество	
работы транспортных сетей	
и сетей передачи данных;	
разрабатывать технические	
требования, предъявляемые	
к используемому на сети	
оборудованию.	
3. Владеет навыками	
выработки решений по	
оперативному	
переконфигурированию	
сети, изменению	
параметров	
коммутационной	
подсистемы, сетевых	
платформ, оборудования и	
технологий	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Зачетно-экзаменационные материалы для аттестации (зачет)

Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Физический принцип действия твердотельных лазеров. Схемы накачки лазеров и типы их резонаторов.
- 2. Физический принцип действия эрбиевого волоконного лазера.

Резонатор эрбиевого лазера.

- 3. Эффект ВКР в нелинейной оптике и принцип действия волоконного ВКР-лазера.
- 4. Принцип действия эрбиевого волоконного усилителя. Схемы накачки усилителя.
- 4. Физический принцип действия волоконного ВКР-усилителя.
- 5. Принцип синхронизации мод в лазерах.
- 6.Основные характеристики промышленных волоконных лазеров различного назначения.
- 7. Основные характеристики промышленных волоконных эрбиевых и ВКР-усилителей.
- 8.Области применение волоконных лазеров
- 9.Области применение волоконных усилителей.
- 10. Лазерная динамика.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по разделам дисциплины, допускает незначительные ошибки; студент умеет правильно объяснять основной материал дисциплины, иллюстрируя его практическими примерам;

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести практические примеры, довольно ограниченный объем знаний материала программы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература Основная литература

- 1.Борейшо, А. С. Лазеры: устройство и действие: учебное пособие для вузов / А. С. Борейшо, С. В. Ивакин. 3-е изд., стер. Санкт-Петербург: Лань, 2022. 304 с. URL: https://e.lanbook.com/book/186213
- 2. Лазеры: применения и приложения : учебное пособие / А. С. Борейшо, В. А. Борейшо, И. М. Евдокимов, С. В. Ивакин. Санкт-Петербург : Лань, 2022. 520 с. URL: https://e.lanbook.com/book/212447
- 3. Салех, Бахаа Е. А. Оптика и фотоника. Принципы и применения: [учебное пособие: в 2 т.]. / Б. Салех, М. Тейх; пер. с англ. В. Л. Дербова. Долгопрудный: Интеллект, 2012. 759 с.
- 4. Тучин, Валерий Викторович. Лазеры и волоконная оптика в биомедицинских исследованиях / В. В. Тучин . Изд. 2-е, испр. и доп. М. : ФИЗМАТЛИТ : Изд-во Саратовского университета , 2010. 488 с.
- 5. Крюков, Петр Георгиевич. **Лазеры** ультракоротких импульсов и их применения : [учебное пособие] / П. Г. Крюков. Долгопрудный : Интеллект, 2012. 247 с. : ил.
- 6. Ларкин, А.И. Когерентная фотоника: [учебник] / А. И. Ларкин, Ф. Т. С. Юу. М.: БИНОМ. Лаборатория знаний, 2009. 317 с.
- 7. Тарасов, Лев Васильевич. Физика лазера / Л. В. Тарасов. Изд. 2-е, испр. и доп. М.: URSS: [ЛИБРОКОМ], 2010. 439 с.: ил.
- 8.Янг, Матт. Оптика и лазеры, включая волоконную оптику и оптические волноводы / М. Янг; пер. с англ. Н. А. Липуновой, О. К. Нания, В. В. Стратонович; под ред. В. В. Михайлина. М.: Мир, 2005. 541 с.: ил.

Дополнительная литература

- 1.Волноводная оптоэлектроника / под ред. Т. Тамира ; пер. с англ. А. П. Горобца, Г. В. Корнюшенко, Т. К. Чехловой под ред. В. И. Аникина. М. : Мир, 1991. 574 с.
- 2. Гончаренко А.М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко. Изд. 2-е, испр. М. : [Едиториал УРСС], 2004. 237 с.
- 3. Айхлер, Юрген. Лазеры. Исполнение, управление, применение : пособие / Ю. Айхлер, Г.-И. Айхлер ; пер. с нем. Л. Н. Казанцевой. М. : Техносфера, 2008. 438 с. : ил

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 10. Springer Journals https://link.springer.com/
 - 11. Nature Journals https://www.nature.com/siteindex/index.html
 - 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/"Лекториум ТВ" http://www.lektorium.tv/
 - 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

1. Американская патентная база данных http://www.uspto.gov/patft/

- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Электротехника и электроника».

Контроль осуществляется посредством тестирования студентов по окончании изучения тем учебной дисциплины и выполнения письменных контрольных работ.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- выполнение семестровой контрольной работы по индивидуальным вариантам;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «Электротехника и электроника» также относятся электронные варианты дополнительных учебных, научно-популярных и научных изданий по данной дисциплине.

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

Типовые задания для самостоятельной работы студентов

	типовые задания для самостоятельной	Part of the second	
№ темы	Тема или задание текущей работы	Форма пред- ставления результатов	Сроки выпол- нения (недели)
1.	Формирование волноводного режима распространения оптического излучения. Одномодовые волоконные световоды.	Устный ответ, текстовый документ	1
2.	Формирование волноводного режима распространения оптического излучения. Многомодовые волоконные световоды.	Устный ответ, текстовый документ	1
3.	Расчет поля моды волоконного световода.	Устный ответ, текстовый документ	1
4.	Волоконные световоды для эрбиевого усилителя оптического излучения, эрбиевых широкополосных источников излучения и лазеров.	Устный ответ, текстовый документ	1
5.	Применение EDFA волоконного усилителя оптического излучения в подводных линиях света.	Устный ответ, текстовый документ	1
6.	Промышленное применение волоконных лазеров (обзор).	Устный ответ, текстовый документ	2
7.	Применение ВКР (Рамановского) волоконного усилителя оптического излучения в подводных линиях света.	Устный ответ, текстовый документ	1
8.	Принцип работы многочастотного лазера	Устный ответ, текстовый документ	1

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных	Оснащенность специальных	Перечень лицензионного	
помещений	помещений	программного обеспечения	
Учебная аудитория для	Мебель: учебная мебель	Операционная система MS	
проведения занятий лекционного	Технические средства обучения:	Windows 10; интегрированное	
типа	экран, проектор, компьютер	офисное приложение MS Office	
Учебная аудитории N137с для	Мебель: учебная мебель		
проведения лабораторных работ.	Оборудование:		
	специализированные учебно-		
	исследовательские стенды для		
	проведению лабораторных работ		
	по интегральной фотонике		
Учебная аудитории N133c для	Мебель: учебная мебель	Операционная система MS	
проведения лабораторных работ	Технические средства обучения:	Windows 10; приложение Matlab.	
	экран, проектор, компьютерный		
	класс		
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS	
проведения текущего контроля и	Технические средства обучения:	Windows 10; интегрированное	
промежуточной аттестации	экран, проектор, компьютерный	офисное приложение MS Office,	
	класс	приложение Matlab.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного	
самостоятельной работы	самостоятельной работы	программного обеспечения	
обучающихся	обучающихся		
Помещение для самостоятельной	Мебель: учебная мебель	Операционная система MS	
работы обучающихся (читальный	Комплект специализированной	Windows 10; интегрированное	
зал Научной библиотеки)	мебели: компьютерные столы	офисное приложение MS Office,	
	Оборудование: компьютерная	приложение Matlab.	
	техника с подключением к		
	информационно-		
	коммуникационной сети		
	«Интернет» и доступом в		
	электронную информационно-		
	образовательную среду		
	образовательной организации,		
	веб-камеры, коммуникационное		
	оборудование, обеспечивающее		
	доступ к сети интернет		
	(проводное соединение и		
	беспроводное соединение по		
	технологии Wi-Fi)		