министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе,

проректор

Т.А. Хагуров

nednuch

« 30» эмая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.15.04

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

(код и наименование дисциплины в соответствии с учебным планом)

Направление п	подготовки	
11.03.02 Инф	окоммуникационные технологии и системы связи	
	(код и наименование направления подготовки)	
Направленнос	ть (профиль)	
Оптические си	истемы и сети связи	
	(наименование направленности (профиля))	
Форма обучен		
	(очная, очно-заочная, заочная)	
Квалификация	бакалавр	

Рабочая программа дисциплины "Б1.О.15.04 Системы автоматизированного проектирования" составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Hoyu

Рудоман Нелли Радиковна, старший преподаватель кафедры оптоэлектроники

Рабочая программа дисциплины "Системы автоматизированного проектирования" утверждена на заседании кафедры оптоэлектроники КубГУ протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М. Веше

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ протокол № 11 «29» апреля 2025 г.

Председатель УМК факультета Богатов Н.М.

Рецензенты:

Галуцкий Валерий Викторович, профессор кафедры теоретической физики и компьютерных технологий, д.ф.-м.н.

Шевченко Александр Владимирович, ведущий специалист ООО «Южная аналитическая компания», к.ф.-м.н.

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Учебная дисциплина «Системы автоматизированного проектирования» ставит своей целью изучение автоматизации написания программ при решении типовых задач взаимодействия с пользователем и операционной системой, формирование комплекса устойчивых знаний, умений и навыков, необходимых для самостоятельной работы на компьютере и в компьютерных сетях.

1.2 Задачи дисциплины

Основной задачей дисциплины является изучение универсальных пакетов прикладных компьютерных программ и сред программирования. В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие осуществлять компьютерное моделирование устройств, систем и процессов при разработке и эксплуатации средств связи.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.О.14.04 «Системы автоматизированного проектирования» для бакалавриата по направлению 11.03.02 Инфокоммуникационные технологии и системы связи (профиль: Оптические системы и сети связи) относится к дисциплинам обязательной части Блока 1 «Дисциплины (модули)» Б1 учебного плана. Дисциплина логически и содержательно-методически связана с дисциплинами базовой и вариативной частей модуля Б1 и является основой для дальнейшего изучения дисциплин: «Теория информации и кодирования», «Вычислительная техника и информационные технологии». Дисциплина базируется на успешном усвоении сопутствующих дисциплин: «Введение в информатику», «Инженерная и компьютерная графика», «Алгоритмизация и программирование». В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей модуля Б1, обеспечивая согласованность и преемственность с этими дисциплинами при переходе к оптическим и цифровым технологиям.

Программа дисциплины «Системы автоматизированного проектирования» согласуется со всеми учебными программами дисциплин базовой Б1.О и вариативной Б1.В частей модуля (дисциплин) Б1 учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся *общепрофессиональных* и *профессиональных* компетенций: ОПК-3, ОПК-4, ОПК-5.

No	Индекс	Содержание ком-	В результате	изучения учебной ди	спиплины
п.п.	компе-	петенции (или её		учающиеся должны	
	тенции	части)	знать	уметь	владеть
1	ОПК-3	Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности	основные алгоритмы и устройства цифровой обработки сигналов; принципы построения телекоммуникационных систем различных типов и способы распределения информации в сетях связи	строить вероят- ностные модели для конкретных про- цессов, проводить необходимые рас- четы в рамках по- строенной модели	методами и навыками обеспечения информационной безопасности
2	ОПК-4	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	современные интерактивные программные комплексы и основные приемы обработки экспериментальных данных, в том числе с использованием стандартного программного обеспечения, пакетов программ общего и специального назначения	использовать возможности вычислительной техники и программного обеспечения для решения задач управления и алгоритмизации процессов обработки информации	методами компьютерного моделирования физических процессов при передаче информации, техникой инженерной и компьютерной графики
3	ОПК-5	Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	методы и сред- ства алгоритми- зации и про- граммирования	применять основные языки программирования, операционные системы и оболочки, современные программные среды разработки информационных систем и технологий для решения прикладных задач различных классов	навыками разработки компьютерных программ

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет $_4$ зач.ед. ($_144$ часа), их распределение по видам работ представлено в таблице ($_0$ ля студентов $_0$ 0.

Вид учебной работы			Семестры
	1	Всего часов	(часы)
			3
Контактная работа, в том числе	:		
Аудиторные занятия (всего)		46	46
Занятия лекционного типа		16	16
Занятия семинарского типа (семи	нары, практические занятия)		
Лабораторные занятия		30	30
Иная контактная работа:			
Контроль самостоятельной работи	ы (КСР)	6	6
Промежуточная аттестация (ИКР)) в форме экзамена	0,3	0,3
Самостоятельная работа, в том числе:			
Курсовая работа			
Проработка учебного (теоретического) материала			56
Выполнение индивидуальных заданий (подготовка сообщений,			
презентаций)			
Подготовка к текущему контролк)		
Контроль:			
Подготовка к экзамену			35,7
Общая трудоемкость	час.	144	144
	в том числе контактная работа	46,3	46,3
	зач. ед.	4	4

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре (очная форма):

	Разделы (темы) дисциплины, изучаемые в <u>5</u> семестре (очная форма).						
	№ Наименование разделов (тем)		Количество часов				
№			Аудиторная Всего работа		Внеауди- торная работа		
			Л	П3	ЛР	CPC	
1	Архитектура современных процессоров	14	4			10	
2	Система команд процессора, язык ассемблера	12	2			10	
3	Основы работы в Mathcad		2		4	8	
4	Архитектура Windows и Windows-приложения		4		4	10	
5	Автоматизация создания приложения (WinForm или WPF)		2		4	8	
6	Использование сетевых протоколов TCP и UDP синхронно и асинхронно		2		18	10	
	Контроль самостоятельной работы (КСР)		_				
	Подготовка к экзамену		_				
	Промежуточная аттестация (ИКР) в форме экзамена	0,3					

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, КСР – контроль самостоятельной работы, СРС – самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

No	Наименование	Содержание раздела (темы)	Форма текущего
	раздела (темы)	содержиние раздела (темы)	контроля
1	Архитектура со-	Архитектуры процессоров универсальных	КВ
	временных процес-	компьютеров, сигнальных процессоров и	
	соров	микроконтроллеров. Способы повышения	
		производительности.	
2	Система команд	Системы команд CISC, RISC. Конвейер ко-	КВ
	процессора, язык	манд. Мнемоника, способы адресации, мак-	
	ассемблера	рорасширения.	
3	Основы работы в	Основные возможности Mathcad. Решение	ЛР
	Mathcad	уравнений.Построение различных видов	
		графиков.	
4	Архитектура	Основные компоненты Windows. Многоза-	КВ/ЛР
	Windows и	дачность, управление памятью, взаимодей-	
	Windows-	ствие с аппаратурой и пользователем.	
	приложения		
5	Автоматизация со-	Автоматизация написания программ. Со-	ЛР
	здания приложения	здание окон, элементов управления и отоб-	
	(WinForm или	ражения. Автоматическая генерация клас-	
	WPF)	сов, обработчиков событий, запросов.	
6	Использование се-	Рассылка широковещательных UDP-	ЛР
	тевых протоколов	датаграмми асинхронный приём UDP-	
	TCP и UDP син-	датаграмм. Подключение к удалённому	
	хронно и асин-	компьютеру по ТСР-протоколу. Асинхрон-	
	хронно	ный приём внешних ТСР-подключений.	

Примечание: KB — ответы на контрольные вопросы, $\Pi 3$ — выполнение практических заданий, ΠP — защита лабораторной работы.

2.3.2 Занятия семинарского типа

Согласно учебному плану в 3 семестре семинарские занятия по учебной дисциплине Б1.О.14.04 «Системы автоматизированного проектирования» не предусмотрены.

2.3.3 Лабораторные занятия

№	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
2	Основы работы в Mathcad Apхитектура Windows и	Основы Mathcad: работа с массивами и матрицами, решение уравнений. Создание Windows-приложения.	Защита лабораторной работы Защита лабора-
3	Windows-приложения Автоматизация создания приложения (WinForm или WPF)	Элементы управления Windows. Обра- ботка событий. Отображение результа- тов.	торной работы Защита лабора- торной работы
4567	Использование сетевых протоколов ТСР и UDP синхронно и асинхронно. Написание программы обмена сообщениями.	Рассылка широковещательных UDP-датаграмм Асинхронный приём широковещательных UDP-датаграмм Использование ТСР-протокола для подключения к удалённой машине. Асинхронный приём ТСР-подключений. Приём, передача, ретрансляция сообщений.	Защита лабора- торной работы

Проведение занятий лабораторного практикума предусмотрено в «компьютерном классе» (аудитории 205с или 207с).

В результате выполнения лабораторных работ у студентов формируются и оцениваются все требуемые Φ ГОС и ООП для направления 11.03.02 Инфокоммуникационные технологии и системы связи (профиль: Оптические системы и сети связи) компетенции: ОПК-3, ОПК-4, ОПК-5.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисци- плины по выполнению самостоятельной работы
1	Проработка учебного	Методические рекомендации по организации и выпол-
	(теоретического материа-	нению самостоятельной работы студентов для бакалав-
	ла), подготовка к текущей	ров направления подготовки 11.03.02 «Инфокоммуни-
	и промежуточной аттеста-	кационные технологии и системы связи» и магистров
	ции (зачёту и вопросам)	направления подготовки 11.04.02 «Инфокоммуникаци-
2	Подготовка к выполнению	онные технологии и системы связи»
	лабораторных работ	

Перечень учебно-методического обеспечения дисциплины по темам программы для проработки теоретического материала

№	Наименование раздела	Перечень учебно-методического обеспечения дисци- плины по выполнению самостоятельной работы
1	Архитектура современных процессоров	Хартов В.Я. Микропроцессорные системы: учебное пособие для студентов вузов / В. Я. Хартов М.: Академия, 2010 351 с.: ил (Высшее профессиональное образование. Информатика и вычислительная техника) Библиогр.: с. 347-348 ISBN 9785769570285
2	Система команд процессора, язык ассемблера	Кольцов Ю.В. Программирование на языке Ассемблера [Текст]: учебное пособие / Ю. В. Кольцов, О. В. Гаркуша, Н. Ю. Добровольская; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Фак. компьютерных технологий и прикладной математики Краснодар: [Кубанский государственный университет], 2011. — 160 с Библиогр.: с. 157.
3	Основы работы в Mathcad	Далингер В.А. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple : учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков 2-е изд., испр. и доп М. : Юрайт, 2018 161 с https://biblioonline.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1
4	Архитектура Windows и Windows-приложения	Гостев И. М. Операционные системы: учебник и практикум для вузов / И. М. Гостев. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2022. — 164 с.
5	Автоматизация создания приложения (WinForm или WPF)	Гостев И. М. Операционные системы: учебник и практикум для вузов / И. М. Гостев. – 2-е изд., испр. и доп. – Москва: Издательство Юрайт, 2022. – 164 с.
6	Использование сетевых протоколов TCP и UDP синхронно и асинхронно	Чекмарев Ю. В. Вычислительные системы, сети и телекоммуникации: учебное пособие / Ю. В. Чекмарев. — 2-е изд., испр. и доп. — Москва: ДМК Пресс, 2009. — 184 с. — ISBN 978-5-94074-459-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/1146

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются вформах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

При изучении дисциплины проводятся следующие виды учебных занятий и работ: лекции, лабораторные работы, домашние задания, консультации с преподавателем, контроль самостоятельной работы студентов (по изучению теоретического материала, подготовке к практическим и лабораторным занятиям, выполнению домашних заданий, подготовке к тестированию, зачёту и экзамену).

Лекционные занятия проводятся в аудитории, оснащённой мультимедийными средствами воспроизведения активного содержимого (занятия в интерактивной форме), позволяющие студенту воспринимать особенности изучаемой дисциплины, играющие решающую роль в понимании и восприятии, а также в формировании профессиональных компетенций.

При проведении лабораторных работ преподаватель контролирует ход выполнения работы каждого студента, уточняя ход работы, и если студенты что-то выполняют неправильно, преподаватель помогает им преодолеть сложные моменты, проверяет достоверность полученных экспериментальных результатов. После выполнения контрольных заданий приведенных в конце описания каждой лабораторной работы студенты отвечают на теоретические контрольные и дополнительные вопросы, таким образом, защищая лабораторную работу.

По изучаемой дисциплине студентам предоставляется возможность пользоваться учебно-методическими материалами и рекомендациями, размещенными в электронной информационно-образовательной среде «Модульного Динамического Обучения КубГУ» http://moodle.kubsu.ru/enrol/index.php?id=462.

Консультации проводятся раз в две недели для разъяснения проблемных моментов при самостоятельном изучении вопросов изучаемой дисциплины.

Таким образом, основными образовательными технологиями, используемыми в учебном процессе являются: интерактивная лекция с мультимедийной системой и активным вовлечением студентов в учебный процесс; обсуждение сложных и дискуссионных вопросов и проблем и с последующим разбором этих вопросов на практических занятиях; лабораторные занятия — работа студентов в малых группах в режимах взаимодействия «преподаватель — студент», «студент — преподаватель», «студент — студент». При проведении практических и лабораторных учебных занятий предусмотрено развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Занятия, проводимые с использованием интерактивных технологий

Sammin, in obodinable e nemonboobamien init epaktiibiibii temicitetiini				
Семестр	Вид занятия	Используемые интерактивные образователь-	Количество	
	(Л, ПЗ)	ные технологи	часов	
3	Л	Интерактивная лекция с мультимедийной системой	16	
3	П3	Индивидуальное выполнение лабораторных заданий	30	
Итого:			46	

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля

Контрольные вопросы по учебной программе

Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Из каких частей состоит микропроцессора?
- 2. Какие арифметические команды может выполнять микропроцессор?
- 3. Какие арифметические команды может выполнятьматематический сопроцессор?
- 4. Какие существуют аппаратныеспособыувеличенияпроизводительности ЭВМ?
- 5. Как происходит вызов подпрограмм и возврат из них?
- 6. Как происходят программные прерывания?
- 7. Какие существуют способы обмена данными с внешним устройством?
- 8. Как происходятаппаратные прерывания?
- 9. Как формируется физический адрес в защищённом режиме микропроцессора?
- 10. Что такое «Страничное преобразование адреса»?
- 11. Как организована защита по привилегиям?
- 12. Какие существуют виды мультизадачности?
- 13. Как происходятпрерывания в защищённом режиме?
- 14. Как используется табулирование функций?
- 15. Как используетсявекторизация массивов?
- 16. Что такое «Хеширование»?
- 17. Какие существуют методы оптимизации программ?
- 18. Из каких частей состоит операционная система?
- 19. Из каких частей состоит приложение?
- 20. Как используются сообщения / события в Windows?
- 21. Что такое «виртуальная память»?
- 22. Как используются динамически подключаемые библиотеки?
- 23. Как передаётся информация между приложениями?
- 24. Как передаётся информация между компьютерами?

Перечень компетенций (части компетенций), проверяемых оценочным средством:

- ПК-8. Умением собирать и анализировать информацию для формирования исходных данных для проектирования средств и сетей связи и их элементов;
- ПК-9. Умением проводить расчёты по проекту сетей, сооружений и средств инфокоммуникаций в соответствии с техническим заданием с использованием как стандартных методов, приёмов и средств автоматизированного проектирования, так и самостоятельно создаваемых программ.

Критерии оценивания ответов студентов:

С целью контроля и подготовки студентов к изучению новой темы вначале занятия преподавателем проводится индивидуальный или фронтальный устный (письменный) опрос по изученным ранее темам. Критерии оценки: - правильность ответа по содержанию задания (учитывается количество и характер ошибок при ответе):

- полнота и глубина ответа (учитывается количество усвоенных фактов, понятий и т.п);
 - сознательность ответа (учитывается понимание излагаемого материала);
- логика изложения материала (учитывается умение строить целостный последовательный рассказ, грамотно пользоваться специальной терминологией);
- своевременность и эффективность использования наглядных пособий и технических средств при ответе (учитывается грамотно и с пользой применять наглядность и демонстрационный опыт при устном ответе);
 - использование дополнительного материала;
- рациональность использования времени, определенного на задание (не одобряетсязатянутость выполнениях задания, устного ответа во времени, с учетом индивидуальных особенностей студентов).

Примеры лабораторных работ по учебному плану

Лабораторная работа № 1. Основы работы в Mathcad

Цель работы:

- ознакомиться с основными возможностями, освоить работу с массивами и матрицами;
- изучить численное и символьное решение уравнений;
- ознакомится с возможностями отображения результатов вычислений.

Лабораторная работа № 2. Создание Windows-приложения

Цель работы:

- изучение автоматических методов генерации программ создание окон, полей ввода, кнопок; автоматическое создание обработчиков тех или иных событий;
- изучение автоматизации в отладке приложений.

Лабораторная работа № 3. Использование UDP-протокола

Цель работы:

- получения навыка рассылки широковещательных UDP-датаграмм;
- получения навыка асинхронного приёма широковещательных UDP-датаграмм.

Лабораторная работа № 4. Использование TCP-протокола

Цель работы:

- изучение процедуры ТСР-подключения к удалённой машине;
- освоение асинхронного приёма ТСР-подключений, приём, передача, ретрансляция сообщений.

Перечень компетенций (части компетенций), проверяемых оценочным средством:

ОПК-4. Способностью иметь навыки самостоятельной работы на компьютере и в компьютерных сетях; осуществлять компьютерное моделирование устройств, систем и процессов с использованием универсальных пакетов прикладных компьютерных программ: знать принципы построения компьютерных сетей, назначение языков программирования высокого уровня, а также численные методы решения различных задач и уравнений; уметь работать в различных средах обработки, выбирать подходящий инструмент для решения задач.

Критерии оценивания:

Лабораторная работа считается выполненной, если студент предоставил в требуемом в описании лабораторной работы виде выполненные задачи. Из всех запланированных лабораторных работ студент обязан выполнить не менее 80%.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Фонд оценочных средств для проведения промежуточной аттестации содержит контрольные вопросы и практические задания выносимые для оценивания окончательных результатов обучения по дисциплине, по каждому семестру в отдельности.

4.2.1 Вопросы, выносимые на экзамен 3-м семестре по дисциплине «Системы автоматизированного проектирования» для направления подготовки: 11.03.02 Инфокоммуникационные технологии и системы связи, профиль "Оптические системы и сети связи"

(промежуточная аттестация может быть выставлена по результатам выполнения тестирования и активности студента на занятиях с учетом посещения лекций).

- 1. Структура микропроцессора, назначение каждой из частей.
- 2. Инструкции микропроцессора. Рассмотреть этапы выполнения какой-нибудь команды.
- 3. Аппаратные способы увеличения производительности.
- 4. Вызовы подпрограмм и возврат из них. Соглашения о связях в языках высокого уровня.
- 5. Программные прерывания.
- 6. Способы обмена данными с внешним устройством.
- 7. Аппаратные прерывания.
- 8. Формирование физического адреса в защищённом режиме. Дескрипторы сегментов.
- 9. Страничное преобразование адреса.
- 10. Защита по привилегиям. Шлюзы.
- 11. Мультизадачность. Сегменты состояния задач.
- 12. Прерывания в защищённом режиме.
- 13. Методы оптимизации программ.

Табулирование функций. Векторизация массивов.

14. Методы оптимизации программ.

Хеширование. Выравнивание адресов.

15. Методы оптимизации программ.

Использование конвейера микропроцессора и опережающей выборки команд. Деление на константы.

16. Методы оптимизации программ.

Минимизация вероятностей ветвлений. Умножение на константы.

- 17. Windows. Состав, назначение каждой из частей.
- 18. Структура Windows-приложения.
- 19. Ввод/вывод в *Windows*.
- 20. Управление памятью в Windows.
- 21. Динамически подключаемые библиотеки.
- 22. CLR-среда выполнения программ. Сборки .Net.
- 4.2.2 Примеры экзаменационных билетов по дисциплине «Системы автоматизированного проектирования» для направления подготовки: 11.03.02 Инфокоммуникационные технологии и системы связи.

Экзаменационный билет № 1

- 1. Структура микропроцессора, назначение каждой из частей.
- 2. Прерывания в защищённом режиме.

Экзаменационный билет № 2

1. Инструкции микропроцессора.

Рассмотреть этапы выполнения какой-нибудь команды.

2. Методы оптимизации программ.

Табулирование функций. Векторизация массивов.

Перечень компетенций (части компетенций), проверяемых оценочным средством:

ОПК-4. Способностью иметь навыки самостоятельной работы на компьютере и в компьютерных сетях; осуществлять компьютерное моделирование устройств, систем и процессов с использованием универсальных пакетов прикладных компьютерных программ: знать принципы построения компьютерных сетей, назначение языков программирования высокого уровня; уметь работать в различных средах обработки, выбирать подходящий инструмент для решения задач.

ОПК-5. Умением разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.

Критерии оценивания:

Оценку «отлично» заслуживает студент, показавший:

- всесторонние и глубокие знания программного материала учебной дисциплины; изложение материала в определенной логической последовательности, с использованием современных научных терминов;
- освоившему основную и часть дополнительной литературы, рекомендованную программой, проявившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний;
- полные, четкие, логически последовательные, правильные ответы на поставленные вопросы, способность делать обоснованные выводы;
- умение самостоятельно анализировать факты, события, явления, процессы в их взаимосвязи и развитии; сформированность необходимых практических навыков работы с изученным материалом.

Оценку «хорошо» заслуживает студент, показавший:

- систематический характер знаний и умений, способность к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности;
- достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);
- последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы; уверенность при ответе на дополнительные вопросы;
- знание основной рекомендованной литературы; умение достаточно полно анализировать факты, события, явления и процессы, применять теоретические знания при решении практических задач.

Оценку «удовлетворительно» заслуживает студент, показавший:

- знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности;
- знакомому с основной рекомендованной литературой;
- допустившему неточности и нарушения логической последовательности в изложении программного материала в ответе на экзамене, но в основном обладающему необходимыми знаниями и умениями для их устранения при корректировке со стороны экзаменатора.
- продемонстрировавшему правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки;
- проявившему умение применять теоретические знания к решению основных практических задач, ограниченные навыки в обосновании выдвигаемых предложений и принимаемых решений; затруднения при выполнении практических работ; недостаточное использование научной терминологии; несоблюдение норм литературной речи.

Оценка «неудовлетворительно» ставится студенту, обнаружившему:

- существенные пробелы в знании основного программного материала по дисциплине;
- отсутствие знаний значительной части программного материала; непонимание основного содержания теоретического материала; неспособность ответить на уточняющие вопросы; отсутствие умения научного обоснования проблем; неточности в использовании научной терминологии;
- неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений;
- допустившему принципиальные ошибки, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1. Основная литература:

- 1. Хартов В.Я. Микропроцессорные системы: учебное пособие для студентов вузов / В. Я. Хартов. М.: Академия, 2010. 351 с.: ил. (Высшее профессиональное образование. Информатика и вычислительная техника). Библиогр.: с. 347-348. ISBN 9785769570285
- 2. Далингер В.А. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple: учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. М.: Юрайт, 2018. 161 с. https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1.
- 3. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. ЛАБОРАТОРНЫЙ ПРАКТИКУМ. Учебное пособие для прикладного бакалавриата / Т. Е. Мамонова. М.: Издательство Юрайт, 2018. 176 с. (Серия: Университеты России). ISBN 978-5-9916-7060-9.https://biblio-online.ru/book/78273C7D-1F38-402A-8065-31B181C91613
- 4. Чекмарев Ю. В. Вычислительные системы, сети и телекоммуникации : учебное пособие / Ю. В. Чекмарев. 2-е изд., испр. и доп. Москва : ДМК Пресс, 2009. 184 с. ISBN 978-5-94074-459-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/1146

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 5. Брэй, Барри. Микропроцессоры Intel: 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4. Архитектура, программирование и интерфейсы / Б. Брэй; [пер. с англ. А. Жукова, В. Козуба]. 6-е изд. СПб.: БХВ-Петербург, 2005. 1328 с.: ил. ISBN 0130607142. ISBN 5941574223
- 6. Кольцов Юрий Владимирович (КубГУ). Программирование на языке Ассемблера [Текст] : учебное пособие / Ю. В. Кольцов, О. В. Гаркуша, Н. Ю. Добровольская ; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Фак. компьютерных технологий и прикладной математики. Краснодар : [Кубанский государственный университет], 2011. 160 с. Библиогр.: с. 157.
- 7. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple : учебник и практикум для СПО / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. —М. : Издательство Юрайт, 2018. 161 с. (Серия : Профессиональное образование). ISBN 978-5-534-03458-5. https://biblio-online.ru/book/703874A3-4389-4F5F-8336-771E2C2000AD
- 8. Гостев, И. М. Операционные системы: учебник и практикум для вузов / И. М. Гостев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 164 с.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Электронная информационно-образовательная среда Модульного Динамического Обучения КубГУ: http://moodle.kubsu.ru/enrol/index.php?id=462

- 1. Электронная библиотека ЮРАЙТ: www.biblio-online.ru
- 2. Электронно-библиотечная система ЛАНЬ: https://e.lanbook.com

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению: 11.03.02 Инфокоммуникационные технологии и системы связи, отводится около 28.5 % времени (41 час. срс) от общей трудоемкости дисциплины (144 часа.). Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Системы автоматизированного проектирования».

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем конспекта;

 консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Рекомендуется следующий график самостоятельной работы студентов по учебным неделям каждого семестра:

Рекомендуемый график самостоятельной работы студентов в 3-м семестре по дисциплине «Системы автоматизированного проектирования»

No	Наимено-	Содержание самосто-	Примерный	Сроки вы-	Форма	Форма
Π/	вание раз-	ятельной работы	бюджет	полнения	отчёт-	кон-
П	дела		времени на	зада-	ности	троля
			выполнение	ния(номер	по за-	
			уч. час.	учебной не-	данию	
			(CPC)	дели семест-		
				pa)		
1	Архитек-	Проработка учебного				
	тура со-	(теоретического мате-				Уст-
	временных	риала) подготовка к	6	1, 2	КВ	ный
	процессо-	текущей и промежу-				опрос
	ров	точной аттестации				
		Подготовка к ЛР	_			
2	Система	Проработка учебного				
	команд	(теоретического мате-	_		***	Уст-
	процессо-	риала) подготовка к	6	3, 4	КВ, ЛР	ный
	ра, язык	текущей и промежу-				опрос
	ассемблера	точной аттестации				
		Подготовка к ЛР	2	3, 4	ЛР	Защи-
		П		,		та ЛР
3	Основы	Проработка учебного				3 .7
	работы в	(теоретического мате-		5 (тар пр	Уст-
	Mathcad	риала) подготовка к	6	5, 6	КВ, ЛР	ный
		текущей и промежу-				опрос
		точной аттестации Подготовка к ЛР				Защи-
		подготовка к лг	2	5, 6	ЛР	та ЛР
4	Архитек-	Проработка учебного				14 311
	тура	(теоретического мате-				Уст-
	Windows и	риала) подготовка к	6	7, 8	КВ, ЛР	ный
	Windows-	текущей и промежу-		., -	,	опрос
	приложе-	точной аттестации				1
	ния	Подготовка к ЛР	2	7.0	HD	Защи-
			2	7, 8	ЛР	та ЛР
5	Автомати-	Проработка учебного				
	зация со-	(теоретического мате-				Уст-
	здания	риала) подготовка к	6	9, 10	КВ, ЛР	ный
	приложе-	текущей и промежу-				опрос
	ния	точной аттестации				
	(WinFormи	Подготовка к ЛР	2	9, 10	ЛР	Защи-
	ли WPF)		<u></u>	7, 10	711	та ЛР
6	Использо-	Проработка учебного				
	вание сете-	(теоретического мате-				Уст-
	вых прото-	риала) подготовка к	16	11-16	КВ, ЛР	ный
	колов ТСР	текущей и промежу-				опрос
	и UDP	точной аттестации				
	синхронно	Подготовка к ЛР		44.1.	ш.	Защи-
	и асин-		2	11-16	ЛР	та ЛР
	хронно	TT	<i></i>			
		Итого:	56			

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

8.1 Перечень информационных технологий

- 1. Консультирование посредством электронной почты.
- 2. Использование электронной презентации на сайте Moodle КубГУ.

8.2 Перечень необходимого программного обеспечения

- 1. Операционная система Microsoft семейства Windows (7/8/10), в рамках программы компании Microsoft "Enrollment for Education Solutions" для компьютеров и серверов Кубанского государственного университета и его филиалов.
 - 2. Интегрированное офисное приложение MS Office (© Microsoft Corporation).
 - 3. Программное средство Mathcad.

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU:

http://www.elibrary.ru

- 2. Информационная система «Единое окно доступа к образовательным ресурсам»: http://window.edu.ru/window
- 3. Большая научная библиотека:

http://www.sci-lib.com/

4. Естественно-научный образовательный портал:

http://www.en.edu.ru/catalogue/

5. Техническая библиотека:

http://techlibrary.ru/

- 6. Электронная библиотека ЮРАЙТ: www.biblio-online.ru
- 7. Электронно-библиотечная система ЛАНЬ: https://e.lanbook.com

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Каждый обучающийся в течение всего периода обучения должен быть обеспечен индивидуальным неограниченным доступом к одной или нескольким электронно-библиотечным системам (электронным библиотекам) и к электронной информационно-образовательной среде ФГБОУ ВПО «КубГУ». Электронно-библиотечная система (электронная библиотека) и электронная информационнообразовательная среда должны обеспечивать возможность доступа обучающегося из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети Интернет (далее - сеть Интернет).

Электронная информационно-образовательная среда ФГБОУ ВПО «КубГУ» должна обеспечивать:

доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочих программах;

фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения программы бакалавриата;

проведение всех видов занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;

формирование электронного портфолио обучающегося, в том числе сохранение работ обучающегося, рецензий и оценок на эти работы со стороны любых участников образовательного процесса;

взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие, посредством сети "Интернет".

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих. Функционирование электронной информационно-образовательной среды должно соответствовать законодательству Российской Федерации.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выходом в Интернет, в соответствии с объемом изучаемых дисциплин.

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1	Лекционные занятия	Учебные аудитории для проведения занятий лекционно-
		го типа, промежуточной аттестации и текущего кон-
		троля – ауд. 201, корп. С (ул. Ставропольская, 149)
2	Лабораторные занятия	Учебные аудитории для проведения лабораторных ра-
		бот – ауд. 207, корп. С (ул. Ставропольская, 149)
3	Курсовое проектирование	Учебной программой выполнение не предусмотрено
4	Групповые (индивидуаль-	Учебные аудитории для проведения лабораторных ра-
	ные) консультации	бот – ауд. 207, корп. С (ул. Ставропольская, 149)
5	Текущий контроль, про-	Учебные аудитории для проведения лабораторных ра-
	межуточная аттестация	бот – ауд. 207, корп. С (ул. Ставропольская, 149)
6	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный
		компьютерной техникой с возможностью подключения
		к сети «Интернет», программой экранного увеличения
		и обеспеченный доступом в электронную информаци-
		онно-образовательную среду университета № 208С