министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.01.01 ИНТЕГРАЛЬНАЯ ОПТИКА И НАНОФОТОНИКА

(код и наименование дисциплины в соответствии с учебным планом)

Направление под	готовки
11.03.02 Инфокс	ммуникационные технологии и системы связи
•	(код и наименование направления подготовки)
Направленность (профиль)
Оптические систе	емы и сети связи
	(наименование направленности (профиля))
Форма обучения	заочная
	(очная, очно-заочная, заочная)
Квалификация	бакалавр

Рабочая программа дисциплины "Б1.В.ДВ.01.01 Интегральная оптика" государственным федеральным соответствии В составлена (ФГОС ВО) образования стандартом высшего образовательным направлению подготовки "11.03.02 зфо Инфокоммуникационные технологии и системы связи".

Программу составил:

Никитин Валерий Александрович, доцент кафедры оптоэлектроники,

кандидат технических наук Blues.

Рабочая программа дисциплины "Интегральная оптика и нанофотоника" утверждена на заседании кафедры оптоэлектроники КубГУ протокол № 10 «22» апреля 2025 г.

И. о. заведующего кафедрой оптоэлектроники Векшин М.М.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета КубГУ протокол № 11 «29» апреля 2025 г. Председатель УМК факультета Богатов Н.М.

Галуцкий Валерий Викторович, профессор кафедры теоретической физики и компьютерных технологий, д.ф.-м.н.

Шевченко Александр Владимирович, ведущий специалист ООО «Южная аналитическая компания», к.ф.-м.н.

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины:

Изучение физико-технических и технологических принципов построения и фундаментальных физических основ функционирования устройств и элементов интегральной оптики и нанофотоники, выполняющих функции обработки оптических сигналов в оптических системах связи и системах обработки информации, а также обзор современных тенденций развития научных исследований в области нанофотоники.

1.2 Задачи дисциплины

Изучение фундаментальных основ функционирования и базовых приемов разработки интегрально-оптических функциональных схем и исследования их основных характеристик

- 2. Изучение основных технологий построения и материалов элементов и схем интегральной оптики
- 3. Фундаментальные основы нанофотоники.
- 4. Обзор мировых тенденций развития фундаментальных научных исследований и научно-конструкторских разработок в области нанофотоники.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Интегральная оптика и нанофотоника» относится к части дисциплин по выбору блока 1 учебного плана.

Данный курс опирается на знания, полученные при изучении дисциплин «Физика». Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Оптоэлектронные и квантовые приборы», "Системы и сети оптической связи".

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-1	
Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований	В результате освоения дисциплины студент должен: Знать: Физические принципы работы элементов и устройств планарной фотоники и нанофотоники, основные технологии формирования интегрально-оптических схем.
ИПК-1.1 Использует основы сетевых технологий, нормативно-техническую документацию, требования технических регламентов, международные и национальные стандарты в области качественных показателей работы инфокоммуникационного оборудования; ИПК-1.2 Работает с программным обеспечением, используемым при обработке информации инфокоммуникационных систем и их	Современный уровень, основные тенденции и перспективы развития оптической элементной базы инфокоммуникационных технологий. Основы работы с источниками научнотехнической информации. Уметь: Проводить расчеты и проектировать базовые элементы интегрально-оптических схем. Изучать научно-техническую информацию, отечественный и зарубежный опыт при проектировании сетей и систем связи
составляющих; ИПК-1.3 Владеет навыками анализа	Владеть: Методиками проектирования и измерения параметров схем планарной

Код и наименование индикатора*	Результаты обучения по дисциплине
оперативной информации о запланированных и аварийных работах, связанных с прерыванием предоставления услуг, контроля качества предоставляемых услуг.	фотоники. Первичными навыками изучения научно-технической информации, отечественного и зарубежного опыта при проектировании оптических элементов и схем для сетей и систем связи.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их

распределение по видам работ представлено в таблице

<u> </u>	о видам раоот пре пработ	Всего	Гаолице	Форма	бучения	
Б иды	paooi		очная		очно-заочная	
		часов				
			X	X	Зимняя	Летняя
			семестр	семестр	сессия	сессия
			(часы)	(часы)	(часы)	(часы)
Контактная работ	а, в том числе:					
Аудиторные занят	чя (всего):					
занятия лекционног	о типа	8			8	
лабораторные занят	RU	2			2	
практические занят	ия	6			6	
семинарские заняти	RI					
Иная контактная	работа:					
Контроль самостоят	гельной работы					
(KCP)						
Промежуточная атт	естация (ИКР)					
Самостоятельная		96			64	32
Контроль		4				4
Общая	час.	108				
трудоемкость	в том числе контактная работа	16				
	зач. ед	3				

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

			К	оличеств	о часов	
№	Наименование разделов (тем)	Всего	Аудиторная работа		Внеаудито рная работа	
1			<u>Л</u>	ПЗ	ЛР	CPC 7
1	Обзорная лекция по интегральной оптике и нанофотонике		1			/
2	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.		1			7
3	Волноводные устройства с применением электрооптического и акустооптического эффекта			1		7
4	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры и их применение		1			7
5	Методы измерения параметров волноводов интегральной оптики			1		7
6	Материалы и технологии формирования интегрально-оптических схем.			1		7
7	Интегрально-оптические датчики			1		7
8	Субмикронная интегральная оптика.		1			7
9	Фотонные кристаллы и оптические микрорезонаторы.		1			7
10	Поверхностные плазмоны в металлодиэлектрических слоистых средах и их применение. Гигантское усиление электромагнитного поля вблизи металлических наноструктур (SERS).		1			7
11	Оптические метаматериалы		1			7
12	Субмикронная микроскопия.			1		7
13	Нанофотоника в биофизике и медицине.			1		5
14	Нанофотоника и квантовые вычисления. Кубиты на основе оптических фотонов. Генерация и детектирование одиночных фотонов при помощи нанофотоэлектронных устройств.		1			7

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа и семинарские занятия

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Обзорная лекция по интегральной оптике и нанофотонике	Обзорная лекция по материалам дисциплины	КВ
2.	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.	Планарные оптические волноводы. Волноводные и излучательные моды. Интегрально-оптические канальные волноводы, сегментированные канальные волноводы. Волноводы с вытекающими волнами (leaky waveguides). Базовые волноводные структуры интегральной оптики. Гибридные и монолитные интегрально-оптические схемы. Нелинейно-оптические эффекты в оптических волноводах.	

3.	Волноводные устройства с применением электрооптического и акустооптического эффекта	Фазовые и амплитудные волноводные модуляторы. Спектральные электрооптические и акустооптические фильтры. Перестраиваемые оптические спектральные фильтры	КВ, реферат
4.	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры.и их применение	Интегрально-оптические направленные ответвители. переключатели и коммутаторы. Устройства на основе Y-разветвителей. AWG-мультиплексоры.	КВ, реферат
5.	Методы измерения параметров волноводов интегральной оптики	Методы измерения параметров волноводов: затухания, размеров поля моды и волноводных характеристик	КВ, реферат
6	Материалы и технологии формирования интегрально-оптических схем.	Методы формирования элементов и устройств интегральной оптики в стекле, сегнетоэлекрических кристаллах, полупроводниковых и полимерных материалах. Промышленные технологии производства элементов и устройств интегральной фотоники в стекле и полупроводниковых материалах	КВ, реферат
7	Интегрально-оптические датчики	Интегрально-оптические датчики физических величин (давления, температуры, скорости) и химико-биологических реагентов.	КВ, реферат
8	Субмикронная интегральная оптика.	Технология формирования волноводных схем "кремний на изоляторе".	КВ, реферат
9	Фотонные кристаллы и оптические микрорезонаторы.	Фотонные кристаллы и устройства на их основе	КВ, реферат
10	Поверхностные плазмоны в металлодиэлектрических слоистых средах и их применение.	Эффект плазмонного резонанса. Промыщленные биосенсоры на основе поверхностных плазмонов. Интегральная оптика на основе плазмонных оптических щелевых волноводов. Гигантское усиление сигналов рамановского	КВ, реферат
	Гигантское усиление электромагнитного поля вблизи металлических наноструктур (SERS).	рассеяния света и люминесценции на наноструктурированных металлических поверхностях. Биосенсоры на основе эффекта SERS. Поверхностно-усиленная рамановская спектроскопия для распознавания биологических соединений.	
11	Оптические метаматериалы	Оптические метаматериалы с отрицательным показателем преломления в ближней инфракрасной и видимой областях спектра	КВ, реферат
12	Субмикронная микроскопия.	Оптическая микроскопия в ближнем и дальнем поле. Малые апертуры. Оптический предел Аббе. Субволновое пространственное разрешение. Различные виды субмикронной микроскопии.	КВ, реферат
13	Нанофотоника в биофизике и медицине.	Оптическая биомедицинская субмикронная диагностика. Фотодинамическая терапия с наночастицами.	КВ, реферат
14	Нанофотоника и квантовые вычисления	Введение в квантовые вычисления. Кубиты на основе оптических фотонов. Оптические логические элементы. Генерация и детектирование одиночных фотонов при помощи нанофотоэлектронных устройств	КВ, реферат

2.3.2 Лабораторные работы

No॒	Тема	Форма текущего
п/		контроля
П		
1	Расчеты волноводных характеристик и распределений полей планарных оптических волноводов различных типов.	Отчет по лабораторной работе

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с $\Phi\Gamma$ OC BO.

2.3.3 Примерная тематика курсовых работ (проектов)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Nº	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Изучение тем дисциплины, вынесенные на СРС	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»
2	Подготовка отчетов по лабораторным работам	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»
3	Подготовка к зачету	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

1. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электротехника и электроника».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме контрольных вопросов по темам дисциплины и по отчетам лабораторных работ и промежуточной аттестации в форме вопросов и заданий к зачету.

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет) Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Физический механизм каналирования оптического излучения в интегральнооптических волноводах.
- 2. Принцип работы интегрально-оптического направленного ответвителя.
- 3. Принцип работы AWG-мультиплексора.
- 4. Применение электрооптического эффекта для создания волноводного модулятора оптического излучения Маха-Цендера.
- 5. Технология формирования элементов интегральной оптики методом ионного обмена в стекле.
- 6. Оптические характеристики фотонных кристаллов.
- 7. Принцип действия интегрально-оптического датчика вращения на основе эффекта Саньяка.
- 8. Оптические свойства поверхностных плазмонов.
- 9. Оптические биосенсоры на основе призменного возбуждения поверхностных плазмонов
- 10. Физические принципы субмикронной мироскопии.
- 11. Гигантское усиление сигналов рамановского рассеяния света и люминесценции на наноструктурированных металлических поверхностях.

- 12. Оптические свойства метаматериалов с отрицательным показелем преломления.
- 13. Физические основы квантовых вычислений. Кубиты на основе оптических фотонов.
- 14. Субмикронная интегральная оптика на основе диэлектрических и металлодиэлектрических плазмонных волноводных структур.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по разделам дисциплины, допускает незначительные ошибки; студент умеет правильно объяснять основной материал дисциплины, иллюстрируя его практическими примерам;

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести практические примеры, довольно ограниченный объем знаний материала программы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература Основная литература

1.Игнатов, А. Н. Оптоэлектроника и нанофотоника: учебное пособие / Игнатов А. Н. - СПб.: Лань, 2017. - 596 с. - https://e.lanbook.com/book/95150#authors.

2.Кульчин, Ю. Н. Современная оптика и фотоника нано- и микросистем / Кульчин Ю. Н. - М. : ФИЗМАТЛИТ, 2016. - 440 с. - https://e.lanbook.com/book/91158#book_name.

3. Никитин, В.А. Электростимулированная миграция ионов в интегральной оптике / В. А. Никитин, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. унт. - [3-е изд., доп.]. - Краснодар: [Кубанский государственный университет], 2013. - 245 с.

- 4.Салех, Бахаа Е. А. Оптика и фотоника. Принципы и применения : [учебное пособие : в 2 т.]. / Б. Салех, М. Тейх ; пер. с англ. В. Л. Дербова. Долгопрудный : Интеллект, 2012. 759 с.,
- 5. Ларкин, А.И. Когерентная фотоника: [учебник] / А. И. Ларкин, Ф. Т. С. Юу. М. : БИНОМ. Лаборатория знаний, 2009. 317 с.
- 6.Панов, М.Ф. Физические основы интегральной оптики: учебное пособие для студентов вузов / М. Ф. Панов, А. В. Соломонов, Ю. В. Филатов. М.: Академия, 2010. 427 с.
- 7.Янг, Матт. Оптика и лазеры, включая волоконную оптику и оптические волноводы / М. Янг; пер. с англ. Н. А. Липуновой, О. К. Нания, В. В. Стратонович; под ред. В. В. Михайлина. М.: Мир, 2005. 541 с.: ил. ISBN 5030034579. ISBN 354065741X: 586 р. 8.Барыбин, А.А. Электродинамика волноведущих структур. Теория возбуждения и связи волн / А. А. Барыбин. М.: ФИЗМАТЛИТ, 2007. 510 с.
- 9. Гончаренко А.М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко. Изд. 2-е, испр. М.: [Едиториал УРСС], 2004. 237 с.

Дополнительная литература

- 1.Волноводная оптоэлектроника / под ред. Т. Тамира; пер. с англ. А. П. Горобца, Г. В. Корнюшенко, Т. К. Чехловой под ред. В. И. Аникина. М.: Мир, 1991. 574 с.
- 2.Прохоров В.П. Моделирование физико-технологических параметров оптических ионообменных волноводов: монография / В. П. Прохоров, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2014. 197 с.
- 3.Желтиков, А.М. Микроструктурированные световоды в оптических технологиях / А. М. Желтиков. М. : Φ ИЗМАТЛИТ , 2009. 191 с.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action

- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/"Лекториум ТВ" http://www.lektorium.tv/
 - 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Электротехника и электроника».

Контроль осуществляется посредством тестирования студентов по окончании изучения тем учебной дисциплины и выполнения письменных контрольных работ.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- выполнение семестровой контрольной работы по индивидуальным вариантам;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «Электротехника и электроника» также относятся электронные варианты дополнительных учебных, научно-популярных и научных изданий по данной дисциплине.

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

Типовые задания для самостоятельной работы студентов

№ темы	Тема или задание текущей работы	Форма пред- ставления результатов	Сроки выпол- нения (недели)
1.	Метод эффективного показателя преломления расчета волноводных характеристик канальных оптических волноводов	Устный ответ, текстовый документ	1
2.	Формирование волноводного режима распространения оптического излучения в волноводах с утечкой (leaky waveguides)	Устный ответ, текстовый документ	1
3.	Измерение эффективного показателя преломления волноводной моды методом ее призменного возбуждения	Устный ответ, текстовый документ	1
4.	Принцип работы электрооптического волноводного оптического модулятора Маха-Цендера в различных режимах работы	Устный ответ, текстовый документ	1

5.	Формирование волноводного режима распространения оптического излучения в фотонных кристаллах	Устный ответ, текстовый документ	1
6	Интегрально-оптические датчики концентрации химических веществ: принцип действия	Устный ответ, текстовый документ	
7	Технология формирования элементов субмикронной интегральной оптики "кремний на изоляторе"	Устный ответ, текстовый документ	
8.	Оптические свойства поверхностных электромагнитных волн на основе поверхностных плазмонов	Устный ответ, текстовый документ	1
9.	Принцип работы ближнепольного микроскопа	Устный ответ, текстовый документ	1
10.	Оптические свойства фотонных кристаллов	Устный ответ, текстовый документ	1
11	Метаматериалы с отрицательным показателем преломления	Устный ответ, текстовый документ	
12	Субмикронная интегральная оптика	Устный ответ, текстовый документ	

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебная аудитория для	Мебель: учебная мебель	Операционная система MS
проведения занятий лекционного	Технические средства обучения:	Windows 10; интегрированное
типа	экран, проектор, компьютер	офисное приложение MS Office
Учебная аудитории N137с для	Мебель: учебная мебель	
проведения лабораторных работ.	Оборудование:	
	специализированные учебно-	
	исследовательские стенды для	
	проведению лабораторных работ	
	по интегральной оптике и	
	нанофотонике	
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS

проведения лабораторных работ	Технические средства обучения:	Windows 10; приложение Matlab	
	экран, проектор, компьютерный		
	класс		
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS	
проведения текущего контроля и	Технические средства обучения:	Windows 10; интегрированное	
промежуточной аттестации	экран, проектор, компьютерный	офисное приложение MS Office,	
	класс	приложение Matlab.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	Операционная система MS
работы обучающихся (читальный	Комплект специализированной	Windows 10; интегрированное
зал Научной библиотеки)	мебели: компьютерные столы	офисное приложение MS Office.
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины:

Изучение физико-технических и технологических принципов построения и фундаментальных физических основ функционирования устройств и элементов интегральной оптики и нанофотоники, выполняющих функции обработки оптических сигналов в оптических системах связи и системах обработки информации, а также обзор современных тенденций развития научных исследований в области нанофотоники.

1.2 Задачи дисциплины

Изучение фундаментальных основ функционирования и базовых приемов разработки интегрально-оптических функциональных схем и исследования их основных характеристик

- 2. Изучение основных технологий построения и материалов элементов и схем интегральной оптики
- 3. Фундаментальные основы нанофотоники.
- 4. Обзор мировых тенденций развития фундаментальных научных исследований и научно-конструкторских разработок в области нанофотоники.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Интегральная оптика и нанофотоника» относится к части дисциплин по выбору блока 1 учебного плана.

Данный курс опирается на знания, полученные при изучении дисциплин «Физика». Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Оптоэлектронные и квантовые приборы», "Системы и сети оптической связи".

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

обучающихся следующих компетенции.			
Код и наименование индикатора*	Результаты обучения по дисциплине		
ПК-1			
Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований	В результате освоения дисциплины студент должен: Знать: Физические принципы работы элементов и устройств планарной фотоники и нанофотоники, основные технологии формирования интегрально-оптических схем.		
ИПК-1.1 Использует основы сетевых технологий, нормативно-техническую документацию, требования технических регламентов, международные и национальные стандарты в области качественных показателей работы инфокоммуникационного оборудования;	Современный уровень, основные тенденции и перспективы развития оптической элементной базы инфокоммуникационных технологий. Основы работы с источниками научнотехнической информации. Уметь: Проводить расчеты и проектировать базовые элементы интегрально-оптических		
ИПК-1.2 Работает с программным обеспечением, используемым при	схем. Изучать научно-техническую информацию, отечественный и зарубежный		
обработке информации			
инфокоммуникационных систем и их составляющих;	опыт при проектировании сетей и систем связи		
ИПК-1.3 Владеет навыками анализа	Владеть: Методиками проектирования и		
парыками апализа	измерения параметров схем планарной		

Код и наименование индикатора*	Результаты обучения по дисциплине
оперативной информации о запланированных и аварийных работах, связанных с прерыванием предоставления услуг, контроля качества предоставляемых услуг.	фотоники. Первичными навыками изучения научно-технической информации, отечественного и зарубежного опыта при проектировании оптических элементов и схем для сетей и систем связи.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их

распределение по видам работ представлено в таблице

Видь	л работ	Всего	Форма обучения			
	-	часов	очная		очно-заочная	
			X	X	Зимняя	Летняя
			семестр	семестр	сессия	сессия
			(часы)	(часы)	(часы)	(часы)
Контактная работ	га, в том числе:					
Аудиторные занят	гия (всего):					
занятия лекционно	го типа	8			8	
лабораторные заня	гия	2			2	
практические занят	RN	6			6	
семинарские заняти	RI					
Иная контактная	работа:					
Контроль самостоя	тельной работы					
(KCP)						
Промежуточная атт	гестация (ИКР)					
Самостоятельная	работа	96			64	32
L'avena es						
Контроль		4				4
Общая	час.	108				
трудоемкость	в том числе					
	контактная	16				
	работа					
	зач. ед	3				

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

			К	оличеств	о часов	
№	Наименование разделов (тем)	Всего		Аудиторная работа		Внеаудито рная работа
1			<u>Л</u>	ПЗ	ЛР	CPC 7
1	Обзорная лекция по интегральной оптике и нанофотонике		1			/
2	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.		1			7
3	Волноводные устройства с применением электрооптического и акустооптического эффекта			1		7
4	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры.и их применение		1			7
5	Методы измерения параметров волноводов интегральной оптики			1		7
6	Материалы и технологии формирования интегрально-оптических схем.			1		7
7	Интегрально-оптические датчики			1		7
8	Субмикронная интегральная оптика.		1			7
9	Фотонные кристаллы и оптические микрорезонаторы.		1			7
10	Поверхностные плазмоны в металлодиэлектрических слоистых средах и их применение. Гигантское усиление электромагнитного поля вблизи металлических наноструктур (SERS).		1			7
11	Оптические метаматериалы		1			7
12	Субмикронная микроскопия.			1		7
13	Нанофотоника в биофизике и медицине.			1		5
14	Нанофотоника и квантовые вычисления. Кубиты на основе оптических фотонов. Генерация и детектирование одиночных фотонов при помощи нанофотоэлектронных устройств.		1			7

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа и семинарские занятия

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Обзорная лекция по интегральной оптике и нанофотонике	Обзорная лекция по материалам дисциплины	КВ
2.	Базовые волноводные элементы интегральной оптики. Физические основы распространения излучения в волноводных структурах.	Планарные оптические волноводы. Волноводные и излучательные моды. Интегрально-оптические канальные волноводы, сегментированные канальные волноводы. Волноводы с вытекающими волнами (leaky waveguides). Базовые волноводные структуры интегральной оптики. Гибридные и монолитные интегрально-оптические схемы. Нелинейно-оптические эффекты в оптических волноводах.	КВ, реферат

3.	Волноводные устройства с применением электрооптического и акустооптического эффекта	Фазовые и амплитудные волноводные модуляторы. Спектральные электрооптические и акустооптические фильтры. Перестраиваемые оптические спектральные фильтры	КВ, реферат
4.	Интегрально-оптические разветвители, направленные ответвители, мультиплексоры.и их применение	Интегрально-оптические направленные ответвители. переключатели и коммутаторы. Устройства на основе Y-разветвителей. AWG-мультиплексоры.	КВ, реферат
5.	Методы измерения параметров волноводов интегральной оптики	Методы измерения параметров волноводов: затухания, размеров поля моды и волноводных характеристик	КВ, реферат
6	Материалы и технологии формирования интегрально-оптических схем.	Методы формирования элементов и устройств интегральной оптики в стекле, сегнетоэлекрических кристаллах, полупроводниковых и полимерных материалах. Промышленные технологии производства элементов и устройств интегральной фотоники в стекле и полупроводниковых материалах	КВ, реферат
7	Интегрально-оптические датчики	Интегрально-оптические датчики физических величин (давления, температуры, скорости) и химико-биологических реагентов.	КВ, реферат
8	Субмикронная интегральная оптика.	Технология формирования волноводных схем "кремний на изоляторе".	КВ, реферат
9	Фотонные кристаллы и оптические микрорезонаторы.	Фотонные кристаллы и устройства на их основе	КВ, реферат
10	Поверхностные плазмоны в металлодиэлектрических слоистых средах и их применение.	Эффект плазмонного резонанса. Промыщленные биосенсоры на основе поверхностных плазмонов. Интегральная оптика на основе плазмонных оптических щелевых волноводов. Гигантское усиление сигналов рамановского	КВ, реферат
	Гигантское усиление электромагнитного поля вблизи металлических наноструктур (SERS).	рассеяния света и люминесценции на наноструктурированных металлических поверхностях. Биосенсоры на основе эффекта SERS. Поверхностно-усиленная рамановская спектроскопия для распознавания биологических соединений.	
11	Оптические метаматериалы	Оптические метаматериалы с отрицательным показателем преломления в ближней инфракрасной и видимой областях спектра	КВ, реферат
12	Субмикронная микроскопия.	Оптическая микроскопия в ближнем и дальнем поле. Малые апертуры. Оптический предел Аббе. Субволновое пространственное разрешение. Различные виды субмикронной микроскопии.	КВ, реферат
13	Нанофотоника в биофизике и медицине.	Оптическая биомедицинская субмикронная диагностика. Фотодинамическая терапия с наночастицами.	КВ, реферат
14	Нанофотоника и квантовые вычисления	Введение в квантовые вычисления. Кубиты на основе оптических фотонов. Оптические логические элементы. Генерация и детектирование одиночных фотонов при помощи нанофотоэлектронных устройств	КВ, реферат

2.3.2 Лабораторные работы

No	Тема	Форма текущего
п/ п		контроля
1	Расчеты волноводных характеристик и распределений полей планарных оптических волноводов различных типов.	Отчет по лабораторной работе

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Nº	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Изучение тем дисциплины, вынесенные на СРС	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»
2	Подготовка отчетов по лабораторным работам	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»
3	Подготовка к зачету	Методические указания по организации самостоятельной работы по дисциплине «Интегральная оптика и нанофотоника»

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

1. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электротехника и электроника».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме контрольных вопросов по темам дисциплины и по отчетам лабораторных работ и промежуточной аттестации в форме вопросов и заданий к зачету.

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет) Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Физический механизм каналирования оптического излучения в интегрально-оптических волноводах.
- 2. Принцип работы интегрально-оптического направленного ответвителя.
- 3. Принцип работы AWG-мультиплексора.
- 4. Применение электрооптического эффекта для создания волноводного модулятора оптического излучения Маха-Цендера.
- 5. Технология формирования элементов интегральной оптики методом ионного обмена в стекле.
- 6. Оптические характеристики фотонных кристаллов.
- 7. Принцип действия интегрально-оптического датчика вращения на основе эффекта Саньяка.
- 8. Оптические свойства поверхностных плазмонов.
- 9. Оптические биосенсоры на основе призменного возбуждения поверхностных плазмонов
- 10. Физические принципы субмикронной мироскопии.
- 11. Гигантское усиление сигналов рамановского рассеяния света и люминесценции на наноструктурированных металлических поверхностях.

- 12. Оптические свойства метаматериалов с отрицательным показелем преломления.
- 13. Физические основы квантовых вычислений. Кубиты на основе оптических фотонов.
- 14. Субмикронная интегральная оптика на основе диэлектрических и металлодиэлектрических плазмонных волноводных структур.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по разделам дисциплины, допускает незначительные ошибки; студент умеет правильно объяснять основной материал дисциплины, иллюстрируя его практическими примерам;

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести практические примеры, довольно ограниченный объем знаний материала программы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература Основная литература

1.Игнатов, А. Н. Оптоэлектроника и нанофотоника: учебное пособие / Игнатов А. Н. - СПб.: Лань, 2017. - 596 с. - https://e.lanbook.com/book/95150#authors.

2.Кульчин, Ю. Н. Современная оптика и фотоника нано- и микросистем / Кульчин Ю. Н. - М. : ФИЗМАТЛИТ, 2016. - 440 с. - https://e.lanbook.com/book/91158#book_name.

3. Никитин, В.А. Электростимулированная миграция ионов в интегральной оптике / В. А. Никитин, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. унт. - [3-е изд., доп.]. - Краснодар: [Кубанский государственный университет], 2013. - 245 с.

- 4.Салех, Бахаа Е. А. Оптика и фотоника. Принципы и применения : [учебное пособие : в 2 т.]. / Б. Салех, М. Тейх ; пер. с англ. В. Л. Дербова. Долгопрудный : Интеллект, 2012. 759 с.,
- 5.Ларкин, А.И. Когерентная фотоника: [учебник] / А. И. Ларкин, Ф. Т. С. Юу. М. : БИНОМ. Лаборатория знаний, 2009. 317 с.
- 6.Панов, М.Ф. Физические основы интегральной оптики: учебное пособие для студентов вузов / М. Ф. Панов, А. В. Соломонов, Ю. В. Филатов. М.: Академия, 2010. 427 с.
- 7.Янг, Матт. Оптика и лазеры, включая волоконную оптику и оптические волноводы / М. Янг; пер. с англ. Н. А. Липуновой, О. К. Нания, В. В. Стратонович; под ред. В. В. Михайлина. М.: Мир, 2005. 541 с.: ил. ISBN 5030034579. ISBN 354065741X: 586 р.
- 8.Барыбин, А.А. Электродинамика волноведущих структур. Теория возбуждения и связи волн / А. А. Барыбин. М. : ФИЗМАТЛИТ, 2007. 510 с.
- 9. Гончаренко А.М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко. Изд. 2-е, испр. М.: [Едиториал УРСС], 2004. 237 с.

Дополнительная литература

- 1.Волноводная оптоэлектроника / под ред. Т. Тамира; пер. с англ. А. П. Горобца, Г. В. Корнюшенко, Т. К. Чехловой под ред. В. И. Аникина. М.: Мир, 1991. 574 с.
- 2.Прохоров В.П. Моделирование физико-технологических параметров оптических ионообменных волноводов: монография / В. П. Прохоров, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2014. 197 с.
- 3.Желтиков, А.М. Микроструктурированные световоды в оптических технологиях / А. М. Желтиков. М. : Φ ИЗМАТЛИТ , 2009. 191 с.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action

- 10. Springer Journals https://link.springer.com/
- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/"Лекториум ТВ" http://www.lektorium.tv/
 - 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Электротехника и электроника».

Контроль осуществляется посредством тестирования студентов по окончании изучения тем учебной дисциплины и выполнения письменных контрольных работ.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- выполнение семестровой контрольной работы по индивидуальным вариантам;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «Электротехника и электроника» также относятся электронные варианты дополнительных учебных, научно-популярных и научных изданий по данной дисциплине.

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

Типовые задания для самостоятельной работы студентов

№ темы	Тема или задание текущей работы	Форма пред- ставления результатов	Сроки выпол- нения (недели)
1.	Метод эффективного показателя преломления расчета волноводных характеристик канальных оптических волноводов	Устный ответ, текстовый документ	1
2.	Формирование волноводного режима распространения оптического излучения в волноводах с утечкой (leaky waveguides)	Устный ответ, текстовый документ	1
3.	Измерение эффективного показателя преломления волноводной моды методом ее призменного возбуждения	Устный ответ, текстовый документ	1
4.	Принцип работы электрооптического волноводного оптического модулятора Маха-Цендера в различных режимах работы	Устный ответ, текстовый документ	1

5.	Формирование волноводного режима распространения оптического излучения в фотонных кристаллах	Устный ответ, текстовый документ	1
6	Интегрально-оптические датчики концентрации химических веществ: принцип действия	Устный ответ, текстовый документ	
7	Технология формирования элементов субмикронной интегральной оптики "кремний на изоляторе"	Устный ответ, текстовый документ	
8.	Оптические свойства поверхностных электромагнитных волн на основе поверхностных плазмонов	Устный ответ, текстовый документ	1
9.	Принцип работы ближнепольного микроскопа	Устный ответ, текстовый документ	1
10.	Оптические свойства фотонных кристаллов	Устный ответ, текстовый документ	1
11	Метаматериалы с отрицательным показателем преломления	Устный ответ, текстовый документ	
12	Субмикронная интегральная оптика	Устный ответ, текстовый документ	

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебная аудитория для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Операционная система MS Windows 10; интегрированное офисное приложение MS Office
Учебная аудитории N137с для проведения лабораторных работ.	Мебель: учебная мебель Оборудование: специализированные учебно- исследовательские стенды для проведению лабораторных работ по интегральной оптике и нанофотонике	
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS

проведения лабораторных работ	Технические средства обучения:	Windows 10; приложение Matlab.
	экран, проектор, компьютерный	
	класс	
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS
проведения текущего контроля и	Технические средства обучения:	Windows 10; интегрированное
промежуточной аттестации	экран, проектор, компьютерный	офисное приложение MS Office,
	класс	приложение Matlab.

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	Операционная система MS
работы обучающихся (читальный	Комплект специализированной	Windows 10; интегрированное
зал Научной библиотеки)	мебели: компьютерные столы	офисное приложение MS Office.
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	