ИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики Кафедра прикладной математики

«30» мая 2025 г.

РАБОЧАЯ ПРОГРАММА ФАКУЛЬТАТИВНОЙ ДИСЦИПЛИНЫ

2.1.3.1(Ф) МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ВОЛНОВЫХ ПРОЦЕССОВ

Научная специальность: <u>1.1.8 Механика деформируемого твердого тела</u> (шифр и наименование научной специальности)

Форма обучения очная

Рабочая программа дисциплины «Математическое и компьютерное моделирование волновых процессов» составлена в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов, утвержденными приказом Министерства образования и науки Российской Федерации от 20 октября 2021 г. № 951.

Рабочая программы дисциплины составлена Д-р физ.-мат. наук, профессор, профессор кафедры прикладной математики Глушков Е.В.

Программа утвержденаа на заседании кафедры прикладной математики протокол № 10 от 06 мая 2025 г. (протокол № 9)

И.о. заведующего кафедрой канд. физ.-мат. наук Письменский А.В.

Программа обсуждена и одобрена учебно-методической комиссией факультета компьютерных технологий и прикладной математики 23 мая 2025 г. (протокол № 4)

Председатель УМК ФКТиПМ, д-р. техн. наук КоваленкоА.В.

полнись

1. Цель изучения дисциплины

Рабочая программа дисциплины «Математическое и компьютерное моделирование волновых процессов» составлена в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре и соотнесены с общими целями образовательной программы высшего образования — программа подготовки научных и научно-педагогических кадров в аспирантуре по данному направлению подготовки, профиль 1.1.8 Механика деформируемого твердого тела, в рамках которого преподается дисциплина.

Целью «Математическое и компьютерное моделирование волновых процессов» является освоение полуаналитических методов моделирования волновых полей и приемов создания на этой основе компьютерных моделей, овладение современными технологиями математического и компьютерного моделирования волновых процессов и явлений с применением пакетов и средств компьютерного анализа и автоматизированного расчетного проектирования.

2. Задачи дисциплины

В задачи изучения дисциплины входит:

- изучение теории и методов анализа волновой динамики упругих слоистых материалов;
- освоение и совершенствование навыков применения полуаналитических численных методов и прикладного программного обеспечения для расчета характеристик волновых процессов на базе прикладных пакетов, языков и сред программирования.

Дисциплина «Математическое и компьютерное моделирование волновых процессов» имеет логическую и содержательно — методическую взаимосвязь с дисциплинами образовательной программы «Механика деформируемого твердого тела» и «Динамические задачи теории упругости и методы их исследования». Дисциплина базируется на компетенциях, сформированных на предыдущем уровне образования. Для изучения математического и компьютерного моделирования волновых процессов требуется качественное знание основных разделов высшей математики и современных физических концепций, также знание основных математических моделей механики сплошных сред.

3. Место дисциплины в структуре программы аспирантуры

Дисциплина «Математическое и компьютерное моделирование волновых процессов» тела относится к Образовательному компоненту «Дисциплины (модули)» программы аспирантуры и является факультативной дисциплиной.

4. Требования к результатам освоения дисциплины Изучение данной учебной дисциплины направлено на формирование у обучающихся специальных компетенций (СК)

No	Код и наименование	Индикаторы достижения компетенции	
п.п.	компетенции		
1.	СК-1 Способность к применению в ходе собственных научных исследований методологических основ, понятийнокатегориального и терминологического аппарата	1. Проводит научные исследования в области механики деформируемого твердого тела с применением методологии, понятийнокатегориального и терминологического аппарата механики деформируемого твердого тела. 2. Учитывает в исследованиях особенности современных тенденций механики деформируемого твердого тела.	

№	Код и наименование	Индикаторы достижения компетенции
п.п.	компетенции	
	механики деформируемого	
	твердого тела	
2	СК-3 Способность	Использует результаты исследований для решения
	использовать результаты	проблем механики деформируемого твердого тела.
	современных исследований	Применяет результаты современных исследований
	для целей решения задач	для решения задач механики деформируемого
	механики деформируемого	твердого тела
	твердого тела.	
3	СК-4 Способность	Использует результаты современных
	использовать результаты	исследований для совершенствования методов
	современных исследований в	механики деформируемого твердого тела.
	области механики	Демонстрирует знание особенностей методов в
	деформируемого твердого тела	области механики деформируемого твердого тела.
	для совершенствования	
	методов механики	
	деформируемого твердого	
	тела.	

5. Структура дисциплины по очной форме обучения.

Общая трудоёмкость дисциплины составляет 2 зач.ед. (72 часа), их распределение по видам работ представлено в таблице:

Вид учебной работы		Всего	Курс
			(часы)
	(часов)	2	
Контактная работа, в то	м числе:		
аудиторная по видам уче	бных занятий (всего)	18	18
в том числе:			
– лекции		_	_
практические		18	18
Иная контактная работа:			
Промежуточная аттестаци			
Самостоятельная работа	54	54	
Проработка учебного (теоретического) материала		30	30
Выполнение индивидуальных заданий (подготовка		15	15
сообщений, презентаций)	13	13	
Подготовка к текущему контролю (9	9
Общая трудоемкость час.		72	72
	зач. ед	2	2

Промежуточный контроль по дисциплине – зачет (4 семестр).

6. Содержание дисциплины по очной форме обучения

По итогам изучаемой дисциплины аспиранты (обучающиеся) сдают зачет. Дисциплина изучается на 2 курсе (4 семестр), по учебному плану очной формы обучения.

	Наименование разделов	Количество часов			
№		Всего	Аудиторная		Внеаудиторная
				ота	работа
			Л	ПР	CP
1	2	3		5	6
1.	Краевые задачи динамической теории упругости для стратифицированных сред	8	-	2	6
2.	Вопросы единственности и разрешимости динамических задач для упругом стратифицированного волновода	10	-	2	8
3.	Методы решения интегральных уравнений динамических смешанных задач	10	_	2	8
4.	Анализ волновых полей, возбуждаемых гармоническими поверхностными источниками в упругом стратифицированном волноводе	10	-	2	8
5.	Нестационарные волны	10	_	2	8
6.	Энергия упругих волн, возбуждаемых в стратифицированном упругом волноводе поверхностными источниками	12	_	4	8
7.	Внутренние источники	12	_	4	8
	Итого по дисциплине:	72	_	18	54

Содержание разделов дисциплины

$N_{\underline{0}}$	Наименование	Наименование лабораторных работ	Форма текущего
раздела	раздела	паименование лаоораторных раоот	контроля
1	2	3	4
		IV семестр	
1.	Краевые задачи	Разработка численного алгоритма	доклад-
	динамической	построения Фурье-символа матрицы	сообщение
	теории упругости	Грина для многослойного упругого	
	для	волновода.	
	стратифицированных		
	сред		
3.	Методы решения	Численная реализация метода	Задание для
	интегральных	Галеркина для упругого волновода со	самостоятельной
	уравнений	смешанными граничными условиями	работы
	динамических	Разработка численного алгоритма	Задание для
	смешанных задач	решения интегральных уравнений	самостоятельной
		типа Винера-Хопфа методом	работы
		бесконечных систем с последующей	
		регуляризацией.	

№	Наименование	Наименование лабораторных работ	Форма текущего
раздела	-	2	контроля
1	2	3	4
		IV семестр	I
4.		Построение асимптотического	устный опрос
	полей,	представления волновых полей в	
	возбуждаемых	дальней зоне в случае упругого	
	гармоническими	полупространства	
	поверхностными источниками в упругом стратифицированном волноводе	Построение асимптотического представления волновых полей в дальней зоне в виде суммы бегущих волн в случае упругого слоя	устный опрос
5.	Нестационарные волны	Разработка и реализация алгоритма для решения нестационарной волновой задачи	доклад- сообщение
6.	Энергия упругих	Численный расчет потока энергии	доклад-
	волн, возбуждаемых	через плоскость параллельную	сообщение
	в стратифицированном	поверхности среды для упругого волновода	
	упругом волноводе	Проверка энергетического баланса	доклад-
	поверхностными	упругого полупространства	сообщение
	источниками	Построение линий тока для упругого	доклад-
		слоя конечной толщины	сообщение
7.	Внутренние	Метод фундаментальных решений для	Задание для
	источники	слоистого упругого волновода. Метод	самостоятельной
		слоистых элементов.	работы

7. Образовательные технологии

В процессе освоения данной учебной дисциплины используются следующие образовательные технологии: проблемная лекция, лекция-диалог с элементами группового взаимодействия, структурированная дискуссия, аналитический семинар, компьютерное моделирование на лабораторных занятиях, презентации и командная работа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

8. Перечень основной и дополнительной учебной литературы

Основная учебная литература

- **1.** Алдошин Г.Т. Теория линейных и нелинейных колебаний. СПб.: Лань, 2013. 320 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/4640.
- **2.** Гурбатов С.Н., Руденко О.В., Саичев А.И. Волны и структуры в нелинейных средах без диперсии. Приложения к нелинейной акустике. М.: Физматлит, 2011. 496 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/2171.
- **3.** Карлов, Н.В. Колебания, волны, структуры / Н.В. Карлов, Н.А. Кириченко. М.: Физматлит, 2008. 498 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/2192.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Дополнительная учебная литература

- **1.** Александров В.М. Аналитические методы в контактных задачах теории упругости/ В.М. Александров, М.И. Чебаков. М.: Физматлит, 2004. 299 с. + [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/48233.
- **2.** Бабешко В.А. Динамика неоднородных линейно-упругих сред./ В.А. Бабешко, Е.В. Глушков, Ж.Ф. Зинченко. М.: Наука, 1989. 343 с.
- **3.** Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости / В.А. Бабешко. М.: Наука, 1984. 254 с.
- **4.** Глушков Е.В. Интегральные преобразования в задачах теории упругости / Е.В. Глушков, Н.В. Глушкова. Краснодар: КубГУ, 1990. 72 с.
 - **5.** Князев П.Н. Интегральные преобразования. М.: URSS, 2014. 197 с.
- **6.** Горшков А.Г. Волны в сплошных средах / А.Г. Горшков, А. Л. Медведовский, Л. Н. Рабинский, Д. В. Тарлаковский. М.: ФИЗМАТЛИТ, 2004. 467 с.
- **7.** Моделирование ударно-волновых процессов в упругопластических материалах на различных (атомный, мезо и термодинамический) структурных уровнях. М.; Ижевск: издво Институтат компьютерных исследований, 2014. 295 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=468342

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

9. Методические указания для обучающихся по освоению дисциплины

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине позволяют:

- обеспечить взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети "Интернет";
- фиксировать ход образовательного процесса, результатов промежуточной аттестации по дисциплине и результатов освоения образовательной программы;
- организовать процесс образования путем визуализации изучаемой информации посредством использования презентаций, учебных фильмов;
 - контролировать результаты обучения на основе компьютерного тестирования.

Перечень современных профессиональных баз данных и информационных справочных систем

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

11. Материально-техническое оснащение.

Наименование помещений для проведения всех видов учебной деятельности,	Перечень основного оборудования	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
Лекционная аудитория, для лекционных занятий, текущего контроля и промежуточной аттестации, № 100С	Учебная аудитория; посадочных мест: 26; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория, для проведения лекционных занятий, аудитория текущего контроля и промежуточной аттестации, № 133	Учебная аудитория; посадочных мест: 32; Интеркативная доска (интерактивный проектор)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № 101	Компьютерный класс; посадочных мест: 15; Интеркативная доска (интерактивный проектор); проводной интернет; 15 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № 106	Компьютерный класс, учебная аудитория для проведения курсового проектирования (выполнения курсовых работ); посадочных мест: 10; проводной интернет; 14 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № 106а	Компьютерный класс; посадочных мест: 16; Система видеоконференцсвязи; Интеркативная доска (интерактивный проектор); проводной интернет; 15 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № А301	Компьютерный класс; посадочных мест: 9; проводной интернет; 9 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № 131	Учебная аудитория; посадочных мест: 80; Камера РТС с микрофоном для трансляций; проектор; проводной интернет	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № A305	Учебная аудитория; посадочных мест: 64; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № A307	Учебная аудитория; посадочных мест: 60; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус

Наименование помещений для проведения всех видов учебной деятельности,	Перечень основного оборудования	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
Аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, помещение ИММИ КубГУ № А508	Мебель (столы, стулья), переносной проектор (1 шт), экран (1шт), переносной ноутбук	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, корпус А
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 147	Учебная аудитория; посадочных мест: 24; проводной интернет	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 148	Учебная аудитория; посадочных мест: 22	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 100С	Учебная аудитория для проведения занятий семинарского типа, аудитория текущего контроля и промежуточной аттестации; посадочных мест: 26; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № А512	Учебная аудитория; посадочных мест: 20; сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, корпус А

12. Оценочные средства по дисциплине Для проведения промежуточной аттестации (представляется отдельным документом в формате приложения к РПД)

к рабочей программе дисциплины «Динамические задачи теории упругости и методы их исследования»

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО, ПРОМЕЖУТОЧНОГО И ИТОГОВОГО КОНТРОЛЯ ЗНАНИЙ

1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности в процессе освоения программы аспирантуры

1.1. Перечень вопросов для устного опроса Перечень вопросов для самоподготовки

Раздел 1.

- 1. Дайте постановку краевой задачи в случае колебаний упругого полупространства под действием гармонических поверхностных нагрузок.
- 2. Кратко опишите этапы решение системы уравнений Ляме для упругого свободного слоя, под действием гармонических поверхностных нагрузок, используя преобразование Фурье.
- 3. Сформулируйте условия излучения. Чем вызвана необходимость их использования?
- 4. Чем вызвана необходимость выбора специального вида для экспонент в представлении решения?
- 5. Каким образом и для чего необходимо деформировать контур интегрирования при вычислении обратного преобразования Фурье при решении модельной задачи?
- 6. Как правильно выбрать направление замыкания контура интегрирования?

Раздел 4.

- 1. Запишите интегральное представление волновых полей в ближней зоне.
- 2. Какие сложности возникают при численной реализации интегрального представления волновых полей в ближней зоне, как их можно преодолеть?
- 3. Асимптотика объемных волн в дальней зоне. Вклад стационарных функций.
- 4. Асимптотика поверхностных и каналовых волн в дальней зоне.
- 5. Выделение волн Лэмба и SH-волн.

Раздел 5.

- 1. Каким условиям должна удовлетворять функция, чтобы к ней было применимо преобразование Лапласа?
- 2. Постановка задачи для нестационарных колебаний с произвольной зависимостью от времени.
- 3. Интегральное преобразование Лапласа, основные свойства преобразования.
- 4. Принцип суперпозиции для линейных колебательных систем: разложение нестационарного решения на гармонические составляющие.
- 5. Физическая интерпретация картин волновых фронтов, получающихся при анализе нестационарных волн в дальней зоне.

Раздел 6.

- 1. Что определяет вектор Умова?
- 2. Энергия поверхностного источника.
- 3. Особенности выбора контура интегрирования при расчете потока энергии через плоскость, параллельную поверхности среды.
- 4. Поток энергии через боковую поверхность цилиндра радиуса r.

- 5. Поток энергии через нижнюю полусферу радиуса *R*.
- 6. Диаграммы направленности энергии объемных волн

1.2. Примерные темы для докладов-сообщений

Раздел 1

- 1. Алгоритм построения Фурье-символа матрицы Грина для трансверсально-изотропного полупространства (двумерный случай)
- 2. Алгоритм построения Фурье-символа матрицы Грина для трансверсально-изотропного полупространства (трехмерный случай)
- 3. Алгоритм построения Фурье-символа матрицы Грина для трансверсально-изотропного слоя (двумерный случай)
- 4. Алгоритм построения Фурье-символа матрицы Грина для трансверсально-изотропного слоя (трехмерный случай)

Раздел 5

- 1. Методы расчета и визуализации нестационарных волновых полей
- 2. Особенности решения нестационарной задачи в случае резонансной локализации колебаний возле препятствия в слоистом упругом волноводе.

Раздел 6

- 1. Методики визуализации линий тока энергии с использованием современных пакетов прикладных программ.
- 2. Формирование вихрей энергии при взаимодействии упругих волн с препятствиями в слоистых упругих волноводах/

Содержание самостоятельной работы

$N_{\underline{0}}$	Наименование раздела
1	2
1	Краевые задачи динамической теории упругости для стратифицированных сред
2	Вопросы единственности и разрешимости динамических задач для упругого
	стратифицированного волновода
3	Методы решения интегральных уравнений динамических смешанных задач
4	Анализ волновых полей, возбуждаемых гармоническими поверхностными
	источниками в упругом стратифицированном волноводе
5	Нестационарные волны
6	Энергия упругих волн, возбуждаемых в стратифицированном упругом волноводе
	поверхностными источниками
7	Внутренние источники

1.2 Примерные задания для самостоятельной работы Раздел 3.

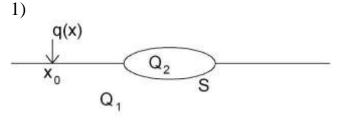
Задача 1. С использованием проекционного метода Галеркина (базисную и проекторную систему функций выбрать самостоятельно) или метода бесконечных систем решить смешанные краевые задачи для упругого волновода толщины H (1-5) (рассмотреть случай плоской деформации).

Граничные условия имеют следующий вид:

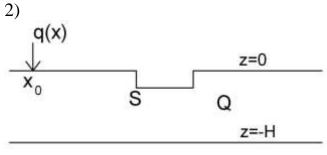
$$z = 0: a) \mid x \mid > a: \mathbf{\tau}(x, z) = 0, \mid x \mid \leq a: \mathbf{u}(x, z) = \mathbf{q}(x)$$

$$b) \mid x \mid > a: \mathbf{u}(x, z) = 0, \mid x \mid \leq a: \mathbf{\tau}(x, z) = \mathbf{q}(x)$$

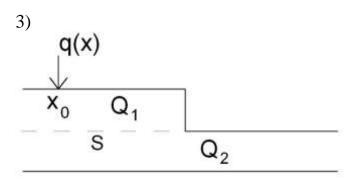
$$c) \mid x \mid > a: \mathbf{\tau}(x, z) = \delta(x - x_0), \text{ rge } x_0 \notin [-a, a] \mid x \mid \leq a: \mathbf{u}(x, z) = 0$$

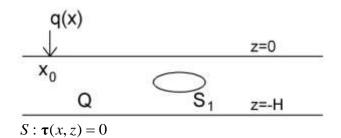

$$z = -H: d) \mathbf{u}(x, z) = 0; e) \mathbf{\tau}(x, z) = 0$$

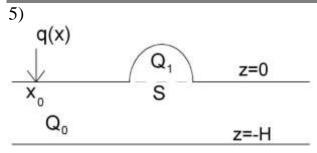
Возможные варианты: 1) a,d; 2) b,d; 3) c,e.


Раздел 7.

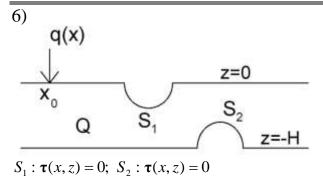
Задача 2. Решить гармонические и нестационарные краевые задачи для уравнения Ламе в случае плоской деформации, используя метод фундаментальных решений или метод слоистых элементов (по выбору обучающегося); геометрия задачи представлена на Рисунках 1-12. Верхняя и нижняя плоскопараллельные границы волновода свободны от напряжений. Каждой подобласти Q_i соответствует свои значения констант Ламе. В области контакта подобластей Q_i использовать условия указанные под рисунком. В качестве оконной функции для нестационарной задачи использовать функцию вида:


$$F(\omega) = \begin{cases} \cos^2 \pi \left(\frac{\omega - \omega_0}{2\Delta \omega} \right), & |\omega - \omega_0| \le \Delta \omega \\ 0, & |\omega - \omega_0| > \Delta \omega. \end{cases}$$


$$S: \mathbf{u}_1(x, z) = \mathbf{u}_2(x, z); \ \mathbf{\tau}_1(x, z) = \mathbf{\tau}_2(x, z)$$



$$S: \boldsymbol{\tau}(x,z) = 0$$



$$S: \mathbf{u}_1(x, z) = \mathbf{u}_2(x, z); \ \mathbf{\tau}_1(x, z) = \mathbf{\tau}_2(x, z)$$

$$S: \mathbf{u}_1(x, z) = \mathbf{u}_2(x, z); \ \mathbf{\tau}_1(x, z) = \mathbf{\tau}_2(x, z)$$

2. Промежуточная аттестация Зачет.

2.1 Примерный перечень вопросов к зачету

- 1. Основные определения и постановка задачи динамической теории упругости для полупространства и слоя.
- 2. Матрица Грина упругого полупространства.
- 3. Матрица Грина упругого слоя.
- 4. Основные свойства интегральных операторов динамических контактных задач.
- 5. Системы интегральных операторов для поверхностных источников колебаний.
- 6. Теоремы единственности. Доказательство.
- 7. Проекционный метод Галеркина.
- 8. Метод бесконечных систем.
- 9. Интегральное представление волновых полей в ближней зоне.
- 10. Метод стационарной фазы. Вклад невырожденной стационарной точки.
- 11. Асимптотическое представление объемных волн в дальней зоне.
- 12. Асимптотическое представление поверхностных и каналовых волн в дальней зоне.
- 13. Бегущие волны в упругом слое: волны Лэмба, SH-волны.

- 14. Нестационарные волны. Представление решения нестационарной задачи через решение гармонической задачи.
- 15. Представление нестационарных волн в дальней зоне.
- 16. Энергия упругих волн. Вектор Умова.
- 17. Мощность поверхностного источника.
- 18. Энергия объемных волн, проходящих через плоскость, параллельную поверхности среды.
- 19. Энергия поверхностных и каналовых волн, переносимых через плоскость, параллельную поверхности среды.
- 20. Энергия, переносимая волнами Лэмба.
- 21. Поток энергии в дальней зоне.
- 22. Баланс энергии стратифицированного полупространства и упругого слоя.
- 23. Перераспределение энергии в неоднородной среде.
- 24. Фундаментальное решение для внутреннего источника.
- 25. Внутренние источники в полупространстве.
- 26. Внутренние источники в упругом слое. Метод слоистых элементов.

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности в процессе освоения образовательной программы

В рамках освоения курса аспирант готовит доклад-сообщение, который представляет собой презентацию на заданную тематику, подготовленную средствами MS PowePoint (или open-source аналоги) или в системе верстки LaTex. В зависимости от выбранной тематики доклада презентация может содержать постановку задачи, краткое описание методики решения, а также основные результаты в графической форме.

По итогам выполнения заданий для самостоятельной работы необходимо представить текстовый отчет, содержащей постановку задачи, описание метода решения и особенностей его численной реализации. Кроме того, в графическом виде должны быть представлены результаты проверки граничных условий, а также результаты расчета волновых полей. Отчеты выполняются на листах формата А4. Страницы текста, рисунки, формулы нумеруют, рисунки снабжают подрисуночными надписями. Текст следует печатать шрифтом №14 с интервалом между строками в 1,5 интервала, без недопустимых сокращений. В конце отчета должны быть сделаны выводы. Отчет должен быть подписан студентом с указанием даты ее оформления. Отчеты, выполненные без соблюдения перечисленных требований, возвращаются на доработку. Для подготовки отчета допускается использование редактора MS Word (или его open-source аналогов) или системы верстки LaTex.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,

в форме электронного документа.
 Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.