ИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики Кафедра математического моделирования

«30» мая 2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

2.3.1.3 МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО

ТЕЛА

(наименование дисциплины в соответствии с учебным планом)

Научная специальность: 1.1.8 Механика деформируемого твердого тела (шифр и наименование научной специальности)

Форма обучения очная

Рабочая программа дисциплины «Механика деформируемого твердого тела» составлена в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов, утвержденными приказом Министерства образования и науки Российской Федерации от 20 октября 2021 г. № 951.

Рабоча	я прогр	аммы	и дисципли	ны сост	авлена	a			
	РАН, ко В.А.	д-р	физмат.	наук,	зав.	кафедрой	математ	гического	моделирования подпись
Д-р Павлог	физм ва А.В.,	ат.	наук,	проф.	ка	федры	математич	неского	моделирования
«22» м	•	(про	цена на засс гокол № 11 рой		кафедј	ры матема:	Бабе	моделиров <u>шко В.А.</u> ия, инициалы	подпись
			и обсужден Хотокон Мо		седані	ии кафедрі	ы приклад	(ной матем	иатики протокол

Л «06» мая 2025 г. (протокол № 9)

И.о. заведующего кафедрой канд. физ.-мат. наук Письменский А.В.

Программа обсуждена и одобрена учебно-методической комиссией факультета компьютерных технологий и прикладной математики «23» мая 2025 г. (протокол № 4)

Председатель УМК ФКТиПМ, д-р. техн. наук Коваленко А.В. _

1. Цель изучения дисциплины

Рабочая программа дисциплины «Механика деформируемого твердого тела» составлена в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре и соотнесены с общими образовательной программы высшего образования — программа подготовки научных и научно-педагогических кадров в аспирантуре по данному направлению подготовки, профиль 1.1.8 Механика деформируемого твердого тела, в рамках которого преподается дисциплина Целеполагание должно учитывать ожидаемые результаты

Целью освоения дисциплины является изучение основных математического моделирования процессов деформирования твердых тел, а также формирование у аспирантов запаса знаний, достаточного для квалифицированной переработки фундаментальных теоретических исследований и получения новых результатов в процессе научно-практической работы над теми или иными проблемами современной механики деформируемого твердого тела, умений и навыков, позволяющих строить математические модели деформирования упругих, упруго-пластических, вязкоразрабатывать методы аналитического И численного анализа соответствующих краевых задач, интерпретировать полученные результаты.

2. Задачи дисциплины

В задачи изучения дисциплины входит:

- формирование представления о гипотезах, результатах, методах механики деформируемого твердого тела;
- углубление знаний по ряду теоретических проблем, связанных с изучением закономерностей процессов деформирования, повреждения и разрушения материалов различной природы, а также исследованием напряженно-деформированное состояния твердых тел из этих материалов при воздействиях различной природы;
- получение навыков обоснованного выбора моделей, описывающих напряженно деформированное состояния исследуемого объекта, аналитических и численных методов анализа этих моделей для конкретных взаимодействий и способов нагружения;
- выработка умений решать сложные задачи в области механики деформируемого твердого тела с единых методологических позиций на основе общесистемной проработки всего комплекса вопросов с использованием методов моделирования.

Процесс освоения данной дисциплины направлен на получения необходимого объема знаний, умений и навыков, и обеспечивающих успешное проведение аспирантом профессиональной деятельности, владение методологией формулирования, исследования и решения теоретических и прикладных задач.

3. Место дисциплины в структуре программы аспирантуры

Дисциплина Механика деформируемого твердого тела относится к Образовательному компоненту «Дисциплины (модули)» программы аспирантуры.

4. Требования к результатам освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся специальных компетенций (**СК**)

No॒	Код и наименование	Индикаторы достижения компетенции		
п.п.	компетенции	•		
1.	СК-1 Способность к	Проводит научные исследования в области		
	применению в ходе	механики деформируемого твердого тела с		
	собственных научных	применением методологии, понятийно-		
	исследований	категориального и терминологического аппарата		
	методологических основ,	механики деформируемого твердого тела.		
	понятийно-категориального и	Учитывает в исследованиях особенности		
	терминологического аппарата	современных тенденций механики		
	механики деформируемого	деформируемого твердого тела		
	твердого тела			
2	СК-3 Способность	Использует результаты исследований для решения		
	использовать результаты	проблем механики деформируемого твердого тела.		
	современных исследований			
	для целей решения задач	для решения задач механики деформируемого		
	механики деформируемого	твердого тела		
	твердого тела.	***		
3	СК-4 Способность	Использует результаты современных		
	использовать результаты	исследований для совершенствования методов		
	современных исследований в	механики деформируемого твердого тела.		
	области механики	Демонстрирует знание особенностей методов в		
	деформируемого твердого тела	области механики деформируемого твердого тела.		
	для совершенствования			
	методов механики			
	деформируемого твердого			
	тела.			

5. Структура дисциплины по очной форме обучения.

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице:

Вид учебной работы	Всего	Курс 2
		(часы)
	(часов)	
Контактная работа, в том числе:		
аудиторная по видам учебных занятий (всего)	36	36
в том числе:		
– лекции	18	18
– практические	18	18
Иная контактная работа:		
Промежуточная аттестация		
Самостоятельная работа, в том числе:		
Проработка учебного (теоретического) материала	100	100

Выполнение индивидуальных заданий (подготовка сообщений, презентаций)			30
Подготовка к текущему контролю (14
Общая трудоемкость час.		180	180
	зач. ед	5	5

6. Содержание дисциплины по очной форме обучения

По итогам изучаемой дисциплины аспиранты (обучающиеся) сдают кандидатский экзамен. Дисциплина изучается на 2 курсе (3 семестр), по учебному плану очной формы обучения.

				Количество ча	асов
$N_{\underline{0}}$	Наименование разделов		Аудиторная работа		Внеудиторная
раздела		Всего	,/		работа
			Л	П3	CP
1	2	3	4	5	6
1	Механика и термодинамика	30	4	4	22
	сплошных сред				
2	Теория упругости	32	4	6	22
3	Теория пластичности	30	4	2	24
4	Теория вязкоупругости и	28	2	2	24
	ползучести				
5	Механика разрушения	28	2	2	24
6	Численные методы решения	32	2	2	28
	задач механики				
	деформируемого твердого				
	тела				
	Итого:	180	18	18	144

Содержание разделов дисциплины

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
1	Механика и термодина- мика сплош- ных сред	Понятие сплошного тела. Гипотеза сплошности. Физически и геометрически малый элемент. Деформация элемента сплошной среды. Два способа описания деформации сплошного тела. Координаты Эйлера и координаты Лагранжа. Переход от Эйлерова описания к Лагранжеву и обратно. Тензор деформации Коши-Грина. Геометрический смысл компонент тензора деформации Грина. Тензор деформации Грина. Тензора деформации Альманси. Геометрический смысл компонент тензора деформации Альманси. Условия совместности деформаций. Формулировка условий совместности	Собеседование по результатам самостоятель- ной работы	ЮНЦРАН

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3 деформаций в цилиндрической и сферической системе координат. Вычисление тензора малых деформаций по заданному полю	4	5
		перемещений. Формулы Чезаро. Классификация сил в механике сплошных сред: внешние и внутренние силы, массовые и поверхностные силы. Тензоры напряжений Коши, Пиолы и		
		Кирхгофа. Законы сохранения механики сплошных сред: уравнения баланса массы, импульса, момента импульса, кинетической, потенциальной и полной энергии.		
2	Теория упругости	Упругое деформирование твердых тел. Упругий потенциал и энергия деформации. Линейно упругое тело Гука. Понятие об анизотропии упругого тела. Тензор упругих модулей. Частные случаи анизотропии: трансверсально изотропное и ортотропное упругое тело. Упругие модули изотропного тела. Полная система уравнений теории упругости. Уравнения Ламе в перемещениях. Уравнения Бельтрами-Митчелла в напряжениях. Граничные условия. Постановка краевых задач математической теории упругости. Основные краевые задачи. Принцип Сен-Венана. Общие теоремы теории упругости: теорема Клапейрона, тождество взаимности, теорема единственности. Основные энергетические функционалы линейной теории упругости: Вариационные принципы теории упругости: принцип минимума полной потенциальной энергии, принцип Рейснера. Теоремы Кастильяно. Теорема Бетти. Примеры. Действие сосредоточенной силы в	Подготовка и представление реферата	ЮНЦ РАН

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
		неограниченной упругой среде.		
		Тензор Грина. Граничные интег-		
		ральные представления напряже-		
		ний и перемещений. Формула		
		Сомильяны. Общие представления		
		решений уравнений теории		
		упругости: представление Кельви-		
		на, представление Галеркина и		
		представление Папковича-Нейбера.		
		Нормальная нагрузка на границе		
		полупространства (задача		
		Буссинеска). Касательная нагрузка		
		на границе полупространства		
		(задача Черрути).		
		Плоское напряженное и плоское		
		деформированное состояние. Плос-		
		кая задача теории упругости. Метод комплексных потенциалов		
		комплексных потенциалов Колосова-Мусхелишвили.		
		Колосова-Мусхелишвили. Комплексное представление напря-		
		жений и перемещений. Уравнения		
		плоской задачи теории упругости в		
		полярных координатах. Смешанная		
		задача для полуплоскости. Задача		
		Гриффитса.		
		Антиплоская деформация. Трещина		
		антиплоского сдвига в упругом		
		теле. Кручение и изгиб призма-		
		тического тела (задача Сен-		
		Венана). Теоремы о циркуляции		
		касательного напряжения при		
		кручении и изгибе. Центр изгиба.		
		Задача о действии штампа с		
		плоским основанием на полу-		
		плоскость. Контактная задача		
		Герца.		
		Теория тонких упругих пластин и		
		оболочек. Основные гипотезы.		
		Полная система уравнений теории		
		пластин и оболочек. Граничные		
		условия. Постановка задач теории		
		пластин и оболочек. Безмоментная		
		теория. Краевые эффекты. Задача о		
		круглой симметрично загруженной		
		пластине.		
		Динамические задачи теории		
		упругости. Уравнения движения в		

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
		форме Ламе. Динамические, геометрические и кинематические условия совместности на волновом фронте. Свободные волны в неограниченной изотропной упругой среде. Общее решение в форме Ламе. Фундаментальное решение динамических уравнений теории упругости для пространства. Плоские гармонические волны. Коэффициенты отражения, прохождения и трансформации. Полное отражение. Поверхностные волны Релея. Волны Лява. Установившиеся колебания упругих тел. Частоты и формы собственных колебаний. Вариационный принцип	7	5
		Релея. Температурные задачи теории упругости. Уравнения термоупру- гости.		
3	Теория пластичности	Пластическое деформирование твердых тел. Предел текучести. Упрочнение. Остаточные деформации. Идеальная пластичность. Физические механизмы пластического течения. Понятие о дислокациях. Локализация пластических деформаций. Линии Людерса—Чернова. Идеальное упругопластическое тело. Идеальное жесткопластическое тело. Пространство напряжений. Критерий текучести и поверхность текучести. Критерии Треска и Мизеса. Пространство главных напряжений. Геометрическая интерпретация условий текучести. Условие полной пластичности. Влияние среднего напряжения. Упрочняющееся упругопластическое тело. Упрочняющееся жесткопластическое тело. Функция нагружения, поверхность нагружения. Параметры упрочнения. Законы связи между напряженным	Опрос по результатам лабораторной работы	

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
		и деформированным состояниями в		
		теории течения. Принцип Мизеса.		
		Постулат Друккера. Ассоциирован-		
		ный закон пластического течения.		
		Теория скольжения. Краевые		
		задачи теории течения. Теоремы		
		единственности. Вариационные		
		принципы теории течения.		
		Теория предельного равновесия.		
		Статическая и кинематическая		
		теоремы теории предельного рав-		
		новесия. Верхние и нижние оценки. Примеры.		
		примеры. Кручение призматического тела за		
		пределом упругости. Предельное		
		равновесие при кручении. Харак-		
		теристики. Разрывы напряжений.		
		Песчано-мембранная аналогия		
		Прандтля-Надаи для кручения		
		идеально упругопластических тел.		
		Пластическое плоское деформиро-		
		ванное состояние. Уравнения для		
		напряжений и скоростей. Стати-		
		чески определимые и неопреде-		
		лимые задачи. Характеристики.		
		Свойства линий скольжения. Ме-		
		тоды решения основных краевых		
		задач теории плоской пластической		
		деформации. Задача Прандтля о		
		вдавливании штампа. Пластическое		
		плоское напряженное состояние.		
		Уравнения для напряжений и		
		скоростей при условии		
		пластичности Мизеса.		
		Характеристики.		
		Плоские упругопластические зада-		
		чи теории идеальной пластичности.		
		Двухосное растяжение толстой и		
		тонкой пластин с круговым		
		отверстием.		
		Деформационные теории пластич-		
		ности. Теория Генки. Теория малых		
		упруго пластических деформаций		
		А.А. Ильюшина. Теорема о		
		разгрузке. Метод упругих решений.		
		Упругопластические волны в стер-		
		жне. Ударное нагружение. Волна		

№ раздела Наименов ие раздел	а Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1 2	3	4	5
	разгрузки. Остаточные деформа-		
1 T			
4 Теория вязкоупругости и полчести	Понятие о ползучести и релаксации. Кривые ползучести и релаксации. Простейшие модели линейно вязкоупругих сред: модель Максвелла, модель Фохта, модель Томсона. Время релаксации. Время запаздывания. Определяющие соотношения теории вязкоупругости. Ядра ползучести и релаксации. Непрерывные ядра и ядра со слабой особенностью. Термодинамические ограничения на выбор ядер ползучести и релаксации. Формулировка краевых задач теории вязкоупругости. Методы решения краевых задач теории вязкоупругости: принцип соответствия Вольтерры, применение интегрального преобразования Лапласа, численные методы. Теорема единственности. Вариационные принципы в линейной вязкоупругости. Применение вариационного метода к задачам изгиба. Плоская задача о вдавливании жесткого штампа в вязкоупругую полуплоскость. Контакт вязкоупругих тел: аналог задачи Герца. Определяющие соотношения нелинейной теории вязкоупругости. Разложение Вольтерры—Фреше. Упрощенные одномерные модели. Теории старения, течения, упрочнения и наследственности. Ползучесть при сложном напряженном состоянии. Определяющие соотношения. Установившаяся ползучесть. Уравнения состояния деформируемых тел, находящихся в условиях установившейся ползучести. Постановка краевых задач. Вариационные принципы теории установившейся		

<u>№</u> раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
		ползучести: принцип минимума полной мощности, принцип минимума дополнительного рас-		
		сеяния. Установившаяся ползучесть и длительная прочность стержня. Неустановившаяся ползучесть. Опре-		
		деляющие уравнения теории неустановившейся ползучести. Вариаци-		
		онные принципы теории течения и теории упрочнения. Неустановив- шаяся ползучесть стержневой решетки. Устойчивость стержней и		
	3.5	пластин из реономных материалов.		
5	Механика разрушения	Понятие о разрушении и прочности тел. Общие закономерности и основ- ные типы разрушения. Концентра-		
		торы напряжений. Коэффициент концентрации напряжений: растяже-		
		ние упругой полуплоскости с круговым и эллиптическим отверстиями.		
		Феноменологические теории прочности. Критерии разрушения: деформа-		
		ционный, энергетический, энтропийный. Критерии длительной и уста-		
		лостной прочности. Расчет прочности по допускаемым напряжениям. Коэффициент запаса прочности.		
		Двумерные задачи о трещинах в упругом теле. Метод разложения по		
		собственным функциям в задаче о построении асимптотик полей на-	представление аналитического	
		пряжений и перемещений у вершины трещины в упругом теле. Коэффи-	обзора	
		циент интенсивности напряжений, методы его вычисления и оценки. Скорость высвобождения энергии		
		при продвижении трещины в упругом теле. Энергетический подход		
		Гриффитса в механике разрушения. Силовой подход в механике		
		разрушения: модели Баренблатта и Ирвина. Эквивалентность подходов в случае хрупкого разрушения.		
		Формула Ирвина. Ј-интеграл Эшелби – Черепанова –		
		Райса и его инвариантность. Вычис- ление потока энергии в вершину		

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	трещины. JR—кривая. Динамическое распространение трещин. Динамический коэффициент интенсивности напряжений. Предельная скорость трещины хрупкого разрушения (теоретическая оценка и экспериментальные данные). Локализованное пластическое течение у вершины трещины. Оценка линейного размера пластической зоны у вершины трещины по Ирвину. Модель трещины Леонова — Панасюка — Дагдейла с узкой зоной локализации пластических деформаций. Кинетическая концепция прочности твердых тел. Кинетическая теория трещин. Рост трещин в условиях ползучести. Понятие об усталостном разрушении. Малоцикловая и многоцикловая усталость. Основные законы роста усталостных трещин. Понятие о поврежденности. Математическое представление поврежденности Качанова — Работнова. Кинетические уравнения накопления поврежденности. Принцип линейного суммирования повреждений.	4	5
	Численные методы решения задач механики деформируемого твердого тела	Метод конечных разностей. Типичные разностные схемы для параболических, эллиптических и гиперболических уравнений. Метод конечных разностей для дифференциальных уравнений теории упругости. Вариационный принцип минимума полной потенциальной энергии упругого тела. Методы Релея—Ритца, Бубнова—Галеркина и градиентного спуска в задачах минимизации функционала полной потенциальной энергии. Метод конечных элементов в теории упругости. Пределы применимости метода конечных элементов.	Опрос по результатам лабораторной работы	ЮНЦ РАН

№ раздела	Наименован ие раздела	Содержание раздела	Форма текущего контроля	Разработано с участием представителей работодателей
1	2	3	4	5
		Применение сплайн-аппроксимаций. Метод интегральных преобразований. Формула Сомильяны и метод граничных интегральных уравнений (метод граничных элементов). Метод характеристик в двумерных задачах теории пластичности. Область определенности и область зависимости решения гиперболической краевой задачи. Метод лучевых разложений для решения гиперболических задач теории пластичности и волновой динамики. Понятие о вычислительном эксперименте. Использование вычислительного эксперимента для решения задач механики деформируемого твердого тела.		

7. Образовательные технологии

С целью формирования и развития профессиональных навыков используются инновационные образовательные технологии при сочетании аудиторной работы с внеаудиторной. Такими технологиями являются:

- лекционная система обучения (проблемная лекция, лекция диалог с элементами группового взаимодействия);
- информационно-коммуникационные технологии (постановка и выполнение компьютерных экспериментов);
 - проектные методы обучения (презентации, командная работа);
 - исследовательские методы в обучении (аналитический семинар)
 - проблемное обучение (круглый стол, дискуссия).

Используемые образовательные технологии и методы должны быть направлены на повышение качества подготовки путем развития у обучающихся способностей к самообразованию и нацелены на активацию и реализацию личностного потенциала. Необходимо предусмотреть использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой.

При реализации программы дисциплины «Механика деформируемого твердого тела», с целью формирования и развития профессиональных навыков обучающихся, предусмотрено широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерные симуляции, разбор конкретных ситуаций, работа над проектами) в сочетании с внеаудиторной работой.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

8. Перечень основной и дополнительной учебной литературы Основная учебная литература

- 1. Иванов Н.Б. Теория деформируемого твердого тела: тексты лекций. Казань: Издательство КНИТУ, 2013. 124 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=258827.
- 2. Колесников Ю.В. Механика контактного разрушения. Москва: URSS: [Изд-во ЛКИ], 2012. 222 с.
- 3. Ломакин В.А. Теория упругости неоднородных тел. М.: URSS: ЛЕНАНД, 2014. 367 с.
- 4. Аналитические решения смешанных осесимметричных задач для функциональноградиентных сред / С.М. Айзикович, В.М. Александров, А.С. Васильев, Л. И. Кренев, И. С. Трубчик. М.: ФИЗМАТЛИТ, 2011. 192 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Дополнительная учебная литература

- 1. Александров В.М., Чебаков М.И. Аналитические методы в контактных задачах теории упругости М.: Физматлит, 2004. 299 с. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/48233.
- 2. Баженов В. Г., Игумнов Л.А. Методы граничных интегральных уравнений и граничных элементов в решении задач трехмерной динамической теории упругости с сопряженными полями. М.: Физматлит, 2008. + [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/48194.
- 3. Васильева А.Б., Тихонов Н.А. Интегральные уравнения. М.: Физматлит, 2009. 160 с. + [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/42.
 - 4. Ишлинский А.Ю. Математическая теория пластичности. М: Физматлит, 2001.
- 5. Капитонов, А. М. Физико-механические свойства композиционных материалов. Красноярск: Сиб. федер. ун-т, 2013. 532 с [Электронный ресурс] Режим доступа: http://znanium.com/bookread2.php?book=492077
- 6. Капустин С.А. Моделирование процессов деформирования и разрушения материалов с периодически повторяющейся структурой / С.А. Капустин, С.Ю. Лихачева. Нижний Новгород: ННГАСУ, 2012. 97 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=427467
- 7. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учебное пособие в 10 т. Т.7: Теория упругости. М: URSS, 2003. + [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/2233.
- 8. Левин В.А., Морозов Е.М., Матвиенко Ю.Г. Избранные нелинейные задачи механики разрушения. М: Физматлит, 2004.
- 9. Молотников В.Я., Молотникова А.А. Теория упругости и пластичности. СПб: Лань, 2017. 532 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/94741
- 10. Степанова Л.В. Математические методы механики разрушения. М.: Физматлит, 2009. 336 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/59534.
- 11. Темам Р. Математическое моделирование в механике сплошных сред: М.: "Лаборатория знаний", 2014. 319 с. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/50538.
- 12. Учайкин В.В. Механика. Основы механики сплошных сред. Санкт-Петербург: Лань, 2016. 860 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/87596
- 13. Хлуднев А. М. Задачи теории упругости в негладких областях. М.: Физматлит, 2010.
- 14. Черепанов Г.П. Механика разрушени. Мю; Ижевск: [Ижевский институт компьютерных исследований], 2012. 872 с.

15. Шляхин Д.А. Нестационарная механика электроупругих полей в элементах конструкций. Самара: Самарский государственный архитектурно-строительный университет, 2012. 190 с. [Электронный ресурс]. - Режим доступа: http://biblioclub.ru/index.php?page=book&id=143522.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

9. Методические указания для обучающихся по освоению дисциплины

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине позволяют:

- обеспечить взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети "Интернет";
- фиксировать ход образовательного процесса, результатов промежуточной аттестации по дисциплине и результатов освоения образовательной программы;
- организовать процесс образования путем визуализации изучаемой информации посредством использования презентаций, учебных фильмов;
 - контролировать результаты обучения на основе компьютерного тестирования.

Перечень современных профессиональных баз данных и информационных справочных систем

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

11. Материально-техническое оснащение.

Наименование помещений для проведения всех видов учебной деятельности,	Перечень основного оборудования	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
Лекционная аудитория, для лекционных занятий, текущего контроля и промежуточной аттестации, № 100С	Учебная аудитория; посадочных мест: 26; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория, для проведения лекционных занятий, аудитория текущего контроля и промежуточной аттестации, № 133	Учебная аудитория; посадочных мест: 32; Интеркативная доска (интерактивный проектор)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус

Наименование помещений для проведения всех видов учебной деятельности,	Перечень основного оборудования	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
Компьютерный класс для проведения лабораторных занятий, № 101	Компьютерный класс; посадочных мест: 15; Интеркативная доска (интерактивный проектор); проводной интернет; 15 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № 106	Компьютерный класс, учебная аудитория для проведения курсового проектирования (выполнения курсовых работ); посадочных мест: 10; проводной интернет; 14 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № 106а	Компьютерный класс; посадочных мест: 16; Система видеоконференцсвязи; Интеркативная доска (интерактивный проектор); проводной интернет; 15 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Компьютерный класс для проведения лабораторных занятий, № А301	Компьютерный класс; посадочных мест: 9; проводной интернет; 9 персональных компьютеров (терминалов)	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № 131	Учебная аудитория; посадочных мест: 80; Камера РТZ с микрофоном для трансляций; проектор; проводной интернет	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № A305	Учебная аудитория; посадочных мест: 64; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Лекционная аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № А307	Учебная аудитория; посадочных мест: 60; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория, для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, помещение ИММИ КубГУ № А508	Мебель (столы, стулья), переносной проектор (1 шт), экран (1шт), переносной ноутбук	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, корпус А
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 147	Учебная аудитория; посадочных мест: 24; проводной интернет	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 148	Учебная аудитория ; посадочных мест: 22	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус

Наименование помещений для проведения всех видов учебной деятельности,	Перечень основного оборудования	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № 100С	Учебная аудитория для проведения занятий семинарского типа, аудитория текущего контроля и промежуточной аттестации; посадочных мест: 26; Интеркативная доска (интерактивный проектор); сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, главный корпус
Аудитория для семинарских занятий, для текущего контроля и промежуточной аттестации, № А512	Учебная аудитория; посадочных мест: 20; сеть Wi-Fi	Российская Федерация, 350040, Краснодарский край, г. Краснодар, ул. Ставропольская, 149, корпус А

12. Оценочные средства по дисциплине Для проведения промежуточной аттестации (представляется отдельным документом в формате приложения к РПД)

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО, ПРОМЕЖУТОЧНОГО И ИТОГОВОГО КОНТРОЛЯ ЗНАНИЙ

1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности в процессе освоения программы аспирантуры

1.1. Перечень вопросов для самоподготовки

- 1. Что представляют собой условия на поверхности тела?
- 2. Почему коэффициенты кубического уравнения относительно главных напряжений являются инвариантами напряженного состояния?
- 3. Каким деформациям соответствуют шаровой тензор напряжений и девиатор напряжений?
- 4. Сформулируйте и обоснуйте правила знаков для линейных и угловых деформаций.
- Напишите выражения для инвариантов тензора деформаций. Каков геометрический смысл первого инварианта тензора деформаций?
 - 6. В чем заключается энергетический смысл уравнений неразрывности деформаций?
- 7. Какие тела называются однородными, изотропными, анизотропными, ортотропными?
- 8. Сколько независимых упругих постоянных имеется в случаях изотропного и анизотропного тел?
- 9. Напишите выражения закона Гука, связывающие объемную деформацию и среднее нормальное напряжение.
- 10. Каким комплексом уравнений мы располагаем для определения неизвестных компонентов напряжений, деформаций и перемещений в точке тела?
- 11. Какие задачи теории упругости называются простейшими? Приведите примеры простейших задач.
 - 12. Сформулируйте принцип Сен-Венана и приведите примеры его применения.
 - 13. Укажите три типа граничных условий на поверхности тела.
- 14. Какая разница между плоской деформацией и обобщенным плоским напряженным состоянием? Приведите основные уравнения для обоих видов плоской задачи.
 - 15. Какая функция называется бигармонической?
- 16. Чему равна наивыешая степень полинома, при которой тождественно удовлетворяется бигармоническое уравнение плоской задачи?
 - 17. Полиному какой степени соответствует однородное напряженное состояние?
 - 18. Чем отличаются друг от друга простое и сложное нагружения?
 - 19. Что представляют собой активная и пассивная деформации?
- 20. Сформулируйте простейшие задачи о напряженном состоянии упругого тела с трещиной.
 - 21. Коэффициент интенсивности как основная характеристика тела с трещиной.
 - 22. В чем заключается концепция Гриффтса Орована Ирвина?
 - 23. Дайте определение понятиям устойчивого и неустойчивого развития трещины.
- 24. Назовите экспериментальные методы определения вязкости разрушения материала.
- 25. Как оценивается поле напряжений у вершины растущей трещины в условиях ползучести?
 - 26. Сформулируйте двухпараметрические критерии разрушения.

- 27. Сформулируйте критерий Новожилова осреднения напряжений у вершины трещины?
 - 28. Как определяется предел трещиностойкости материала?
 - 29. Опишите диффузионную модель коррозионного роста трещин.
 - 30. Опишите феноменологическая модель коррозионного роста трещин.
 - 2.4.3 Примерные задачи для самостоятельной работы
- 1. Пусть движение задано в Лагранжевом представлении на временном интервале в виде

1.2 Примерные задачи для самостоятельной работы

1. Пусть движение задано в Лагранжевом представлении на временном интервале (0,t) в виде

$$x_1 = a_1 \cos \omega t - a_2 \sin \omega t$$
, $x_2 = a_1 \sin \omega t + a_2 \cos \omega t$, $x_3 = a_3$.

- а) Выписать Эйлерово представление движения, б) Выписать траектории линий тока.
- 2. Определить деформацию полого шара (внутренний радиус а, наружный b), находящегося под действием равномерного внутреннего давления p_0 и равномерного внешнего давления p_1 .
- 3. Определить деформацию сплошной сферы радиуса a под влиянием собственного гравитационного поля. Найти области сжатия и растяжения.
- 4. Пусть тензор напряжений σ задан в произвольном базисе. Выписать соотношения для компонент σ_{ij} , такие, что σ станет тензором одноосных напряжений.
- 5. Пусть \overline{u}_0 вектор перемещений, удовлетворяющий однородным уравнениям Ламе с коэффициентом Пуассона ν_0 . Показать, что вектор

$$\overline{u} = \frac{1 - v_0}{1 - v} \frac{7 - 8v}{7 - 8v_0} \overline{u}_0 - \frac{v - v_0}{1 - v} \frac{1}{7 - 8v_0} \left[2 \frac{1 - v_0}{1 - 2v_0} div \overline{u}_0 + \overline{r} \times rot \overline{u}_0 \right]$$

удовлетворяет также однородным уравнениям Ламе, но с коэффициентом Пуассона ν .

- 6. Получить выражения для объемного расширения и вращения в цилиндрических координатах r, z, если деформация симметрична относительно оси z. Выписать для этого случая систему уравнений, которым должны удовлетворять объемное расширение и вращение, предполагая материал линейно-упругим, однородным и изотропным.
- 7. Рассмотрим тело, имеющее форму цилиндра с осью $(0,\vec{e}_3)$ и с радиусом a, ограниченное плоскостями $x_3=0,\,x_3=h$. Тело находится в равновесии под действием сил $S_0,\,S_1$, приложенных соответственно к основаниям $x_3=0,\,x_3=h$. Пусть в каждой точке цилиндра тензор напряжений имеет вид

$$\sigma_{11}^{(2)} = \sigma_{12}^{(2)} = \sigma_{22}^{(2)} = 0, \ \sigma_{13}^{(2)} = \sigma_{13}^{(1)} + c_3 x_2, \ \sigma_{23}^{(2)} = \sigma_{23}^{(1)} + c_4 x_1, \ \sigma_{33}^{(2)} = \sigma_{33}^{(1)}, \ c_3, c_4 = \text{const.}$$

Описать объемные силы, действующие на цилиндр.

- 8. Пусть два твердых тела соприкасаются друг с другом в точке, не являющейся особой точкой их поверхностей. Определить контур, ограничивающий поверхность контакта, и распределение давления по поверхности контакта, если результирующая сила давления между телами равна F. Трением на поверхности контакта пренебречь. Рассмотреть случай соприкосновения двух шаров.
- 9. Показать, что интеграл однородных уравнений Ламе можно написать в виде:

$$\mu \overline{u} = \frac{\partial \overline{H}}{\partial z} - \frac{1}{3 - 4v} z \ grad \ div \overline{H}$$

где $ar{H}$ — гармонический вектор. Найти выражения для напряжений $au_{xz}, au_{zy}, au_{zz}$.

- 10. Показать, что напряженное состояние, возникающее в неограниченном пространстве от действия сосредоточенной силы, приложенной в начале координат и направленной вдоль оси O_Z , является чисто радиальным для несжимаемого материала.
- 11. Вывести дифференциальные уравнения равновесия для плоской задачи теории упругости в полярной системе координат.
- 12. Решить задачу кручения для призматического бруса, эллиптического сечения.

1.2 Перечень вопросов, для устных опросов (собеседований)

- 1. Напряженное состояние линейно-упругого тела. Дифференциальные уравнения равновесия.
- 2. Напряжения на площадках, наклоненных к координатным плоскостям. Условия на поверхности.
- 3. Главные площадки и главные напряжения.
- 4. Инварианты тензора напряжений.
- 5. Компоненты перемещения и компоненты деформации. Зависимость между ними.
- 6. Уравнения неразрывности деформаций (уравнения Сен-Венана).
- 7. Закон Гука для изотропного и анизотропного тела.
- 8. Закон Гука для изотропного тела, выражение деформаций через напряжения.
- 9. Закон Гука для изотропного тела, выражение напряжений через деформации.
- 10. Форма зависимостей между напряжениями и деформациями; гипотеза о естественном состоянии тела.
- 11. Основные уравнения теории упругости.
- 12. Уравнения Ламе.
- 13. Продольные и поперечные колебания в неограниченной упругой среде.
- 14. Общее решение уравнения колебаний.
- 15. Три рода задач теории упругости. Единственность решения первой задачи теории упругости.
- 16. Постановки смешанных краевых задач теории упругости. Сведение смешанных задач теории упругости к интегральным уравнениям.
- 17. Методы решения интегральных уравнений смешанных задач теории упругости.
- 18. Теоретическая и реальная прочность твердых тел. Первая модель тела с трещиной (трещина Гриффитса).
- 19. Напряженное состояние у вершины полубесконечной трещины. Метод комплексных потенциалов. Коэффициенты интенсивности напряжений.
- 20. Методы расчетов коэффициентов интенсивности напряжений в упругих телах при различных условиях нагружения. Примеры.
- 21. Динамические задачи механики хрупкого разрушения. Локальное стационарное поле.
- 22. Динамические задачи механики хрупкого разрушения. Установившиеся колебания у вершины неподвижной трещины.
- 23. Силовой и энергетический критерии хрупкого разрушения. Их эквивалентность.
- 24. Устойчивость и неустойчивость роста трещин. Поток энергии в вершину трещины.
- 25. Концепция квазихрупкого разрушения. Поправка Ирвина на пластическую деформацию.
- 26. Распределение напряжений у вершины трещины в упругопластическом материале со степенным упрочнением.
- 27. Влияние физической нелинейности. Пластическая область в вершине трещины.
- 28. Накопление повреждений при разрушении. Параметр поврежденности (сплошности). Модель Качанова Работнова.
- 29. Напряжения в окрестности вершины трещины нормального отрыва в условиях плоского напряженного и плоского деформированного состояния в идеально пластическом материале.

- 30. Асимптотическое исследование полей напряжений у вершины растущей трещины в условиях установившейся и неустановившейся ползучести.
- 31. Модель роста трещины в несвязанной постановке теории ползучести с поврежденностью.
- 32. Модели коррозионного растрескивания (диффузионная модель, феноменологическая модель).
- 33. Математическая модель коррозионного роста трещин. Пороговый коэффициент интенсивности напряжений
- 34. Многоцикловая и малоцикловая усталость. Рост трещин при циклическом нагружении.
- 35. Двухпараметрические критерии разрушения. Предел трещиностойкости материала.
- 36. Автомодельная задача о трещине антиплоского сдвига в среде с поврежденностью (связанная постановка задачи ползучести с поврежденностью).
- 37. Теоретические зависимости роста усталостных трещин. Усталостная долговечность.

1.3. Примерные темы обзоров

- 1. Современные достижения в области моделирования процессов пластического разрушения.
 - 2. Успехи в области изучения физической усталости трещин.
 - 3. Современные проблемы механики разрушения.
 - 4. Современные методы и результаты нелинейной механики разрушения.
 - 5. Достижения в области решения обратных задач механики разрушения.
 - 6. Механика трещин в средах со структурой.
 - 7. Проблемы контактного разрушения.
 - 8. Проблемы прочности в биомеханике.
- 9. Асимптотическое исследование полей напряжений и скоростей деформаций у вершины растущей трещины в условиях ползучести.
 - 10. Математическая модели коррозионного роста трещин.

1.4. Примерные темы рефератов

- 1. Методы построения фундаментального решения теории упругости для стратифицированных упругих полуограниченных сред.
- 2. Методы решения интегральных уравнений смешанных задач теории упругости.
- 3. Применение преобразования Фурье-Лапласа для решения нестационарных задач теории упругости.
- 4. Применение численных методов в решении краевых задач теории упругости.
- 5. Плоские гармонические волны. Коэффициенты отражения, прохождения и трансформации. Полное отражение.
- 6. Применение поверхностных волн в технике.
- 7. Вопросы разрешимости и свойства ядер интегральных уравнений динамических смешанных задач теории упругости.
- 8. Распространение гармонических термоупругих волн в бесконечном упругом пространстве.
- 9. Методы интегрирования уравнений термоупругости, вытекающие из теоремы взаимности.
- 10. Динамическое взаимодействие массивных тел с полуограниченными средами, обладающими сложными свойствами.

2. Промежуточная аттестация

Кандидатский экзамен.

2.1. Вопросы к кандидатскому экзамену

- 1. Дифференциальные уравнения движения твердого тела вокруг неподвижной точки. Динамические уравнения Эйлера. Первые интегралы.
- 2. Малые деформации и малые вращения. Обоснование линеаризации тензоров деформаций.
- 3. Закон Гука для изотропного и анизотропного тела. Тензор упругих постоянных. Частные случаи анизотропии. Полная система уравнений теории упругости в напряжениях. Уравнения Бельтрами–Митчелла.
- 4. Теория напряженного и деформируемого состояний. Тензоры деформаций Грина и Альманси, тензоры напряжений Коши, Пиолы и Кирхгофа.
- 5. Вариационные принципы теории упругости. Принцип Лагранжа. Теорема Клайперона. Теорема Бетти. Принцип Кастильяно.
- 6. Распространение волн в неограниченной упругой среде. Продольные и поперечные волны. Поверхностные волны Релея. Волны Лява. Сферические волны. Собственные частоты упругих тел. Формула Релея.
- 7. Методы решения плоских задач. Применение теории функций комплексного переменного. Формулы Колосова–Мусхелишвили. Применение интегралов типа Коши.
- 8. Случай плоской деформации и плоского напряженного состояния. Задача о штампе и полосе с выточками.
- 9. Уравнения теории упругости в перемещениях. Постановка основных задач теории упругости. Теоремы о существовании и единственности.
- 10. Пространственные и осесимметричные задачи. Представления Галеркина, Папковича, Нейбера. Решение Кельвина, тензор Грина.
- 11. Плоская деформация и плоское напряженное состояние. Функция напряжений. Дифференциальные уравнения и краевые условия для функций напряжений. Теорема Мориса–Леви.
- 12. Методы решения краевых задач для комплексных потенциалов. Действие штампа на полуплоскость, плоскость с отверстием и разрезом.
- 13. Температурные задачи теории упругости. Основные уравнения термоупругости. Методы решения задач термоупругости.
- 14. Применение преобразования Лапласа. Понятие о нелинейных моделях наследственных сред.
- 15. Допущения классической теории тонких упругих оболочек. Деформация срединной поверхности. Внутренние усилия и моменты. Соотношения упругости.
- 16. Полная система уравнений теории оболочек. Граничные условия. Постановка задач теории оболочек. Безмоментная теория. Краевые эффекты в оболочках.
- 17. Плоская задача теории пластичности. Уравнения плоской задачи. Характеристики и линии скольжения. Простейшие примеры полей скольжения.
- 18. Условия на границе упругой и пластической областей. Задача о кручении, о нагружении внутренним давлением цилиндра и полой сферы.
- 19. Теория линейной вязкоупругости. Использование механических моделей. Спектры времен релаксации и последействия. Дифференциальная и интегральная формы соотношений между напряжениями и деформациями.
- 20. Принцип температурно-временного соответствия. Постановка и методы решения задач теории вязкоупругости. Принцип Вольтерры.
- 21. Модель жестко-пластического тела. Вариационные принципы для предельного состояния. Определение верхней и нижней границ для предельной нагрузки. Постулаты теории пластичности. Деформационная теория.
- 22. Модели упруго-пластического тела. Постулаты теории пластичности. Деформационная теория. Теория пластического течения.
- 23. Теория пластического течения. Методы решения задач теории пластичности с упрочнением и идеальная пластичность. Разгрузка. Остаточные напряжения.

- 24. Понятие о ползучести и релаксации. Определяющие соотношения теории ползучести. Ползучесть в случае сложного напряженного состояния изотропного тела.
- 25. Теория старения, теория течения и теория упрочнения. Постановка задач теории ползучести.
- 26. Постановка задач теории ползучести. Вариационные принципы. Установившаяся ползучесть при чистом изгибе. Ползучесть вращающихся дисков.
- 27. Условия разрушения тел с трещинами. Устойчивая и неустойчивая трещина. Критический коэффициент интенсивности напряжений.
- 28. Напряжения вблизи трещин в упругом теле. Энергетический и силовой подходы к механике разрушения.
- 29. Условия разрушения тел с трещинами. Устойчивая и неустойчивая трещина. Критический коэффициент интенсивности напряжений.
- 30. Характеристики раскрытия трещины. Применение механики разрушения к задачам усталостного разрушения. Теория накопления повреждений.
- 31. Квазихрупкое и вязкое разрушение. Феноменологические теории прочности. Линейная механика квазихрупкого разрушения.
- 32. Критический коэффициент интенсивности напряжений. Инвариантные интегралы. Учет пластических деформаций в конце трещины. Характеристики раскрытия трещины.
- 33. Применение механики разрушения к задачам усталостного разрушения. Теория накопления повреждений. Разрушение в условиях ползучести.
- 34. Численные методы решения задач механики деформируемого твердого тела. Разностные методы.
- 35. Численные методы решения задач механики деформируемого твердого тела. Применение сплайн-аппроксимаций.
- 36. Метод граничных интегральных уравнений. Первая и вторая краевые задачи для полупространства. Задача Герца. Задача Буссинеска.
- 37. Использование интегральных преобразований Фурье, Ханкеля и Лапласа. Метод граничных интегральных уравнений.
- 38. Численные методы решения задач механики деформируемого твердого тела. Метод конечных элементов.
- 39. Вариационные методы решения задач теории упругости. Метод Ритца. Метод Бубнова–Галеркина.
- 40. Численная реализация метода характеристик в двумерных задачах теории пластичности и волновой динамики.

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности в процессе освоения образовательной программы

В рамках самостоятельной работы аспиранты готовят реферат (раздел 2) и обзор (раздел 5) по выбранным темам. Каждый обучающийся выполняет работу по одной теме.

Для написания обзора необходимо подобрать литературу. Общее количество литературных источников, включая тексты из Интернета, (публикации в журналах), должно составлять не менее 10 наименований. Учебники в литературные источники не входят.

Рефераты и обзоры выполняют на листах формата А4. Страницы текста, рисунки, формулы нумеруют, рисунки снабжают подрисуночными надписями. Текст следует печатать шрифтом №14 с интервалом между строками в 1,5 интервала, без недопустимых сокращений. В конце работы приводят список использованных источников. При оформлении обзоров и рефератов рекомендуется использовать следующие источники:

1. ГОСТ 7.1 – 2003 «Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Библиографическое описание. Общие требования и правила составления».

- 2. ГОСТ Р 7.0.5 2008 «Система стандартов по информации, библиотечному и издательскому делу. Библиографическая ссылка. Общие требования и правила составления».
- 3. ГОСТ Р 7.0.12 2011 «Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Сокращение слов и словосочетаний на русском языке. Общие требования и правила».
- 4. ГОСТ 7.9 95 (ИСО 214 76) «Система стандартов по информации, библиотечному и издательскому делу. Реферат и аннотация. Общие требования».
- 5. ГОСТ 8.417 2002 «Государственная система обеспечения единства измерений. Единицы величин».

Обзор и реферат должны быть подписан аспирантом с указанием даты ее оформления.

При подготовке обзоров и рефератов аспирант может использовать научные статьи соответствующей тематики из электронной библиотечной системы eLIBRARY.RU (http://www.elibrary.ru).

Работы, выполненные без соблюдения перечисленных требований, возвращаются на доработку.

Выполненные аспирантом работы определяется на проверку преподавателю в установленные сроки.

Для приобщения обучаемых к поиску и исследовательской работе, для развития их творческого потенциала следует по возможности избегать прямого руководства работой обучающихся при выполнении ими тех или иных заданий, чаще выступать в роли консультанта, эксперта. Предпочтительным является представление обзоров в форме конференции или аналитического семинара.

Контроль освоения дисциплины «Механика деформируемого твердого тела» на этапах текущей промежуточной аттестации проводится в соответствии с действующим Положением о текущем контроле успеваемости и промежуточной аттестации обучающихся по программам подготовки научных и научно-педагогических кадров в аспирантуре.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.