Аннотация к рабочей программы дисциплины

Б1.В.04 «Направленный синтез неорганических и координационных соединений»

Объем трудоемкости: 4 зачетных единицы

Цель дисциплины: освоение студентами теоретических представлений различных методов синтеза неорганических соединений, в частности электрохимического синтеза как современного перспективного метода, методы разделения и очистки веществ, освоение методологии осуществления целенаправленного синтеза.

Задачи дисциплины: раскрыть роль синтетической неорганической химии в решении проблемы создания материалов с необходимыми свойствами для современного производства, науки и техники;

- показать возможности электрохимического метода синтеза, как метода получения соединений с заданными свойствами;
- закрепить умение и навыки правильного обращения с лабораторным оборудованием, специальной химической посудой, реактивами и т. д.;
- познакомить студентов с основными методами получения и очистки неорганических соединений и важнейшими лабораторными и промышленными операциями и приемами, которые используются в синтезе неорганических материалов;
 - закрепить навыки соблюдения норм охраны труда и правил безопасной работы при работе в химической лаборатории.

Место дисциплины в структуре образовательной программы:

Дисциплина «Направленный синтез неорганических и координационных соединений» относится к части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" учебного плана направления подготовки 04.03.01 «Химия». В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе. Вид промежуточной аттестации: экзамен.

Данный курс опирается на знания, полученные при изучении дисциплин: «Неорганическая химия», «Кристаллография», «Химия координационных соединений».

Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Перспективные неорганические материалы со специальными функциями», «Химия твердого тела», а также при выполнении выпускной квалификационной работы.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине					
достижения компетенции						
ПК-1. Способен осуществлять стандартные операции по предлагаемым методикам, направленные на						
получение и исследование различных соединений и материалов						
ИПК-1.1. Осуществляет стандартные	знает базовые и специальные экспериментальные					
операции по предлагаемым методикам,	методы синтеза и исследования неорганических и					
направленные на получение и исследование	координационных соединений					
химических соединений различной природы и	умеет осуществлять синтез и исследование					
материалов на их основе	ве неорганических и координационных соединений,					
	работая как самостоятельно, так и в составе группы					
	владеет навыками выполнения базовых операций по					
	синтезу и исследованию неорганических и					
	координационных соединений					
ИПК-1.2. Выбирает оптимальные	знает теоретические аспекты прямого синтеза и основы					
лабораторные методы получения и	физико-химических методов анализа неорганических и					
исследования химических соединений	координационных соединений					
различной природы и материалов на их основе	умеет планировать химический эксперимент,					
	формировать научный подход к выбору методов					
	синтеза соединений с заданными свойствами и их					

Результаты обучения по дисциплине						
идентификацию совокупностью физико-химических методов						
владеет приемами выбора оптимальных условий и параметров для получения и выделения целевого						
продукта и его исследования ПК-4. Способен прогнозировать свойства веществ и материалов в зависимости от химического строения попределять области их возможного применения						
знает теории фундаментальных разделов теоретической неорганической химии, химии элементов, электрохимии						
и физической химии умеет применять на практике теоретические знания, для планирования и проведения эксперимента						
владеет практическими приемами применения междисциплинарных знаний для решения поставленной задачи						
знает области возможного применения неорганических и координационных соединений с заданными свойствами						
умеет использовать на практике теоретические знания для определения области применения неорганических и координационных соединений с заданными свойствами						
владеет практическими приемами использования междисциплинарных знаний для определения области применения неорганических и координационных соединений с заданными свойствами						

Содержание дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

	Наименование разделов (тем)	Количество часов					
No		Всего	Аудиторная работа			Внеаудиторная работа	
			Л	ПЗ	ЛР	CPC	
1	2	3	4	5	6	7	
	Теоретические основы синтеза						
1.	неорганических и	19	8	-	8	3	
	координационных соединений						
	Методы направленного синтеза	25	10	-	10	5	
2.	неорганических и						
	координационных соединений						
	Введение. История и	11			4	3	
3.	становление электрохимического		4	-			
3.	синтеза. Основные понятия и						
	законы электрохимии.						
	Первичные и вторичные	11				3	
	процессы при		4	-	4		
4.	электрохимическом синтезе.						
''	Основные преимущества и						
	недостатки электрохимического						
	синтеза.						
	Аппаратное оформление	10	4	-	4	2	
_	анодного синтеза. Растворители						
5.	применяемы в						
	электрохимическом синтезе и их						
	выбор.						
6.	Нестандартные методики	10	4	-	4	2	
	электрохимического синтеза.	9.6	2.4	_	2.4	10	
	Итого по дисциплине:	86	34		34	18	
	Контроль самостоятельной	22					
	работы (КСР)						
	Промежуточная аттестация	0,3					
	(ИКР)						
	Подготовка к текущему	35,7					
	контролю						
	Общая трудоемкость по дисци-	144					
	плине	144					

Примерная тематика курсовых работ (проектов)

- 1. Синтез и изучение строения и свойств координационных соединений d- и f- элементов современными физическими методами исследования.
- 2. Использование методов квантовой химии для расчета свойств координационных соединений и материалов на их основе.
- 3. Синтез и физико-химическое изучение координационных соединений включения, в том числе потенциальных фарм. препаратов.
- 4. Синтез, строение и свойства координационных соединений и соединений включения по данным ЯМР спектроскопии.
- 5. Получение новых материалов с включением наночастиц d- и f-элементов, изучение их оптических и магнитных свойств.

- 6. Синтез, строение и спектральные свойства комплексных соединений лантаноидов с функционализированными органическими лигандами.
- 7. Получение и изучение свойств тонкопленочных материалов на основе комплексов лантаноидов.
- 8. Использование методов молекулярной спектроскопии при исследовании свойств композиционных материалов.
- 9. Влияние структуры и состава гибридных органо-неорганических твердофазных систем на их функциональные свойства.
- 10. Анодный синтез люминесцирующих координационных соединений РЗЭ в координирующих растворителях.
- 11. Электрохимический синтез координационных соединений лантаноидов эффективных люминофоров.

Форма проведения аттестации по дисциплине: экзамен

Автор Назаренко М.А.