МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет химии и высоких технологий

УТВЕРЖДАЮ:
Проректор по учебной работе,
реству образования — первый
реструктор

Также пример по учебной работе,
реству образования — первый

Также пример по учебной работе,
реструктор

Также пример по учебной работе,
реструктор по учебной работе

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.14 ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ

Направление подготовки	04.03.01 Химия
Направленность (профиль)	неорганическая химия и химия координационных соединений
Программа подготовки	академическая
Форма обучения	очная
Квалификация выпускника	бакалавр

Рабочая программа дисциплины ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования, утверждённым приказом Минобрнауки России от 17.07.2017 N 671 по направлению подготовки 04.03.01 Химия (уровень бакалавриата) и учебным планом основной образовательной программы по направлению подготовки 04.03.01 Химия, профиль Физическая химия.

Рабочую программу составил:

С.С. Мельников, доцент кафедры физической химии, канд. хим. наук

___lly

Рабочая программа дисциплины ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ утверждена на заседании кафедры физической химии «03» апреля 2025 г., протокол № 10.

Заведующий кафедрой

Фалина И.В.

Danun

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 7 от «24» апреля 2025 г. Председатель УМК факультета Беспалов А.В.

Рецензенты:

Коншина Д.Н., доцент кафедры аналитической химии, канд. хим. наук, доцент

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

«Введение в термодинамику» состоит в формировании у студента системы представлений о качественных и количественных закономерностях протекания термодинамических процессов, в том числе, химических процессов на основе термодинамического подхода.

1.2 Задачи дисциплины

Изучение основных законов термодинамики и применение этих законов при решении конкретных химических проблем. Умение применять основные законы термодинамики, других естественно-научных дисциплин для расчетов тепловых эффектов химических реакций, умение пользоваться современными справочниками термодинамических данных для вычисления констант равновесия и других термодинамических величин. Овладение навыками обработки результатов научных экспериментов с помощью современных компьютерных технологий.

При практическом проведении термодинамических расчетов большую помощь оказывает применение в учебном процессе компьютеров, использование компьютерных программ для типичных физико-химических расчетов. Перечисленные задачи должны способствовать формированию современного специалиста химика.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Введение в термодинамику» относится к обязательной части Блока 1 "Дисциплины (модули)" рабочего учебного плана программы специалитета профиль «Физическая химия» по направлению подготовки 04.05.01 Фундаментальная и прикладная химия. В рамках данной дисциплины у студентов формируют знания, умения и навыки, которые будут закреплены в ходе прохождения ознакомительной практики, что обеспечит формирование компетенций, необходимых для успешной научно-исследовательской деятельности выпускников.

1.4 Требования к результатам освоения содержания дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции	
ОПК-1. Способен	
анализировать, интерпретировать и	обобщать результаты экспериментальных и
расчетнотеоретических работ химическо	ой направленности
С-ОПК-1.1. Систематизирует и	Знает основы современных теорий в области
анализирует результаты химических	общей химии, термохимии, молекулярно-
экспериментов, наблюдений,	кинетической теории газов, начал
измерений, а также результаты	термодинамики
расчетов свойств веществ и материалов	Умеет количественно описывать явления и
	закономерности в химических системах на
	основе базовых начал термодинамики
	Владеет методами анализа результатов
	химических измерений на основе системы
	фундаментальных химических понятий,
	базовых знаний фундаментальных разделов
	химии
С-ОПК-1.2. Предлагает	Знает методы изучения и анализа свойств

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции интерпретацию результатов собственных экспериментов и расчетно-теоретических работ с	химических веществ и материалов, механизмы и закономерности протекания химических процессов
использованием теоретических основ традиционных и новых разделов химии	Умеет проводить качественный и количественный анализ химического состава веществ с использованием расчетных методов определения физико-химических величин и понимания базовых закономерностей их изменения
	Владеет расчетными методами определения физико-химических величин при решении прикладных химических задач
С-ОПК-1.3. Формулирует заключения и выводы по результатам анализа	Знает этапы планирования, проведения и описания химического эксперимента
литературных данных, собственных экспериментальных и расчетно- теоретических работ химической направленности	Умеет проводить поиск литературных данных и сравнительный анализ результатов собственных экспериментов и расчетно-теоретических работ
	Владеет методами комплексного системного подхода к рассмотрению химических процессов и свойств химических веществ и материалов
	нотеоретические методы для изучения свойств ользуя современное программное обеспечение и
С-ОПК-3.1. Применяет теоретические и полуэмпирические модели при решении задач химической	Знает теоретические основы термодинамического описания химических систем и процессов
направленности	Умеет составлять термохимические уравнения и находить теплоту реакции на основании справочных данных, использовать полученные результаты для предсказания осуществимости протекания химической реакции Владеет методами термодинамического расчёта
С-ОПК-3.2. Использует стандартное программное обеспечение и специализированные базы данных при	Знает стандартное программное обеспечение и специализированные базы данных для решении задач профессиональной деятельности
решении задач профессиональной деятельности	Умеет использовать стандартное программное обеспечение и специализированные базы данных для решении задач профессиональной деятельности
	Владеет навками интерпретации полученных результатов

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебной работы		Всего	Семестры
		часов	(часы)
		2	
Контактная работа, в том числе:		104,3	104,3
Аудиторные занятия (все	Аудиторные занятия (всего):		102
Занятия лекционного типа		34	34
Лабораторные занятия		34	34
Занятия семинарского тип	а (семинары,	34	34
практические занятия)		34	34
Иная контактная работа:			
Контролируемая самостоятельная работа (КСР)		2	2
Промежуточная аттестаци	0,3	0,3	
Самостоятельная работа, в том числе:		4	4
Подготовка к текущему ко	нтролю	4	4
Контроль:		35,7	35,7
Общая трудоемкость	час.	144	144
	в том числе контактная работа	104,3	104,3
	зач. ед	4	4

2.2 Структура дисциплины

		Количество часов				
№	Наименование разделов	Всего	Аудиторная работа		Внеаудит орная работа	
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Введение. Основные понятия термодинамики. Уравнение состояния идеального газа.	17.7	4	4	4	5,7
2.	Первое начало термодинамики.	28	8	8	6	6
3.	Термохимия.	20	4	4	6	6
4.	Второе начало термодинамики.	28	8	8	6	6
5.	Термодинамические потенциалы		4	4	6	6
6.	Основы химического равновесия.	24	6	6	6	6
	Итого по разделам дисциплинам:	113	34	34	34	34
	Контроль самостоятельной работы (КСР)	2				
	Промежуточная аттестация (ИКР)	0,3				
	Подготовка к текущему контролю	4				
	Общая трудоемкость по дисциплине	144				

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела	Форма текущего
- 1	(темы)	содержиние раздела	контроля

1	2	3	4
1.	Введение. Основные понятия термодинамики. Уравнение состояния идеального газа.	Цель и задачи дисциплины. Место дисциплины в структуре образовательной программы. Планируемые результаты освоения дисциплины. Энергетический баланс химических систем. Тепловая, механическая и электрическая энергия. Уравнение состояния идеального газа. Уравнение состояния реального газа.	KP
2.	Первое начало термодинамики.	Работа и теплота. Термодинамическая система. Термодинамические параметры. Термическое уравнение состояния. Термодинамические процессы. Определение работы процесса. Определение теплоты процесса. Определение обратимости процесса. Закон сохранения энергии. Аналитические уравнения первого закона термодинамики. Энтальпия. Связь энтальпии и внутренней энергии. Эксперимент Джоуля. Свойства энтальпии как функция состояния.	KP
3.	Термохимия	Термохимия. Закон Гесса и его следствия. Уравнения Кирхгофа. Тепловой закон Нернста.	KP
4.	Второе начало термодинамики.	Основные положения. Прямые и обратные циклы. Прямой и обратный обратимые циклы Карно. Определение состояния равновесия и равновесного процесса. Постулат Планка. Доказательство недостижимости абсолютного нуля.	KP
5.	Термодинамические потенциалы	Объединённое первое и второе начало термодинамики. Дифференциальные уравнения в частных производных. Соотношения Максвелла.	KP
6.	Основы химического равновесия.	Химическое равновесие и второй закон термодинамики. Константа равновесия и степень диссоциации.	KP

2.3.2 Занятия семинарского типа

№	Наименование раздела (темы)	Тематика практических занятий (семинаров)	Форма текущего контроля
1	3		4
	Введение. Основные понятия	Расчёты по состояния газа.	Решение задач
1.	термодинамики. Уравнение		
	состояния идеального газа.		

2.	Первое начало термодинамики.	Расчёт теплоты, работы, энергии.	Решение задач
3.	Термохимия	Расчёт теплового эффекта	Решение задач
٥.		химической реакции.	
1	Второе начало термодинамики.	Расчёт изменения энтальпии в	Решение задач
т.	Второе пачало термодинамики.	различных процессах.	
5.	Термодинамические	Расчёт термодинамических	Решение задач
٥.	потенциалы	потенциалов.	
	Основы химического	Расчёт состава реакционной смеси	Решение задач
6.		на основании константы	
	равновесия.	равновесия.	

2.3.3 Лабораторные занятия

No	Наименование лабораторных работ	Форма текущего
712	ттаимснование лаоораторных раоот	контроля
1	3	4
1	Определение отношения Ср/Су методом стоячей звуковой	Отчет по
	волны	лабораторной работе
2	Измерение изменений термодинамических параметров	Отчет по
	эластомера при его растяжении	лабораторной работе
3	Определение изменений термодинамических параметров	Отчет по
	гальванического элемента при нагревании	лабораторной работе
4	Исследование реакции диссоциации молекул воды, в условиях	Отчет по
	внешнего воздействия на термодинамическую систему	лабораторной работе.
5	Определение рн образования гидроксидов металлов	Отчет по
		лабораторной работе
6	Исследование колебательной реакции	Отчет по
		лабораторной работе

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы (проекты) учебным планом не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоретического) материала	Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
2	Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	Методические указания по организации самостоятельной работы студента, утвержденные кафедрой физической химии, протокол № 1 от 30.08.2017 г.
3	Подготовка к текущему	Методические рекомендации к организации аудиторной и

контролю	внеаудиторной (самостоятельной) работы студентов:
	методические указания / сост. Т.П. Стороженко, Т.Б.
	Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский
	гос. ун-т, 2018. 89 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Для формирования компетенций в процессе освоения курса используется технология профессионально-развивающего обучения, предусматривающая не только передачу теоретического материала, но и стимулирование познавательных действий студентов.

Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности обучающихся по их разрешению приводит к творческому овладению знаниями, умениями, навыками, развитию мыслительных способностей. Работа с электронными базами данных, подготовка рефератов и защита в форме доклада на семинаре, включающая ответы на вопросы и/или дискуссию, индивидуальных заданий, дискуссии по обсуждаемым вопросам.

Мультимедийные презентации по теме занятия. Доклады студентов с мультимедийной презентацией по рефератам. Дискуссии по теме занятия. Устный опрос.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Семестр	Вид занятия (Л, ПР, ЛР)	Используемые интерактивные образовательные технологии	Количество часов
1	Л	Мультимедиа-проектор, ноутбук, интерактивная доска	34
	ПР	Мультимедиа-проектор, ноутбук, интерактивная доска	34
	ЛР	УЛК «Химия» с ПК и программным обеспечением	34
Итого:	104		

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль знаний осуществляется на каждом практическом занятии в виде

устного опроса, обсуждения дискуссионных вопросов. Письменный контроль осуществляется в виде контрольных работ. Предусмотрено проведение двух контрольных работ в течение семестра.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

№	Контролируемые разделы (темы) дисциплины*	Код контролируемой	Наименование оценочного средства	
п/п		контролируемой компетенции (или ее части)	Текущий контроль	Промежуточная аттестация
1	Введение. Основные понятия термодинамики. Уравнение состояния идеального газа. Уравнение состояния реального газа.	ОПК-1, ОПК-3	Контрольная работа №1	Вопросы для подготовки к зачету/экзамену № 1-11
2	Первое начало термодинамики.	ОПК-1, ОПК-3	Контрольная работа №1; Выполнение и защита лабораторной работы №1	Вопросы для подготовки к зачету/экзамену № 9-12
3	Термохимия.	ОПК-1, ОПК-3	Контрольная работа №1	Вопросы для подготовки к зачету/экзамену № 12-15
4	Второе начало термодинамики.	ОПК-1, ОПК-3	Контрольная работа №2; Выполнение и защита лабораторной работы №2,3	Вопросы для подготовки к зачету/экзамену № 16-24
5	Термодинамические потенциалы	ОПК-1, ОПК-3	Контрольная работа №2; Выполнение и защита лабораторной работы №4-6	Вопросы для подготовки к зачету/экзамену № 25-26
6	Основы химического равновесия.	ОПК-1, ОПК-3	Контрольная работа №2	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

ВАРИАНТ КОНТРОЛЬНОЙ РАБОТЫ № 1.

по курсу «Введение в термодинамику» по теме «Первый закон термодинамики. Термохимия»

- 1. Вычислите конечную температуру обратимого адиабатического расширения $100~\rm r$ аргона от $10~\rm до~50~\rm n$; начальная температура $25~\rm ^0C$.
- 2. Стандартная энтальпия сгорания ΔH^0_{298} твердого нафталина ($C_{10}H_8$) равна 1231, 6 ккал·моль⁻¹. Продукты сгорания CO_2 и жидкая вода. Найдите стандартную энтальпию образования нафталина при 25 0 C.
- 3. Рассчитайте тепловой эффект реакции при температуре 250 0 C для реакции C (графит) + CO₂ (газ) \rightarrow 2CO (газ), используя справочные данные.

ВАРИАНТ КОНТРОЛЬНОЙ РАБОТЫ № 2.

по курсу «Введение в термодинамику»

по теме «Второй закон термодинамики. Фундаментальные уравнения Гиббса. Химический потенциал»

- 1. Определите ΔS для изобарического нагревания 5 молей азота от 200 до 1000 0 K, $C_p = 6.4492 + 1.4125 \cdot 10^{-3} T 0.807 \cdot 10^{-7} T^2$.
- 2. Процесс A: 1 моль одноатомного идеального газа расширяется изотермически в вакуум при $300~^{0}$ К от начального объема $10~\pi$ до конечного объема $20~\pi$.

Процесс Б: 1 моль этого газа расширяется изотермически и обратимо при $300~^{0}{\rm K}$ от объема $10~{\rm n}$ до объема $20~{\rm n}$.

- a) Для каждого процесса рассчитайте q, w, ΔU , ΔH , ΔF , ΔG .
- б) Опишите процесс, благодаря которому газ мог бы возвратиться в исходное состояние после каждого из процессов A и E. Покажите, как окружающая среда может быть возвращена в исходное состояние после одного из процессов и почему она не может быть возвращена в исходное состояние после другого процесса.
- 3. Для реакции $CO(\Gamma) + SO_3(\Gamma) \leftrightarrow CO_2(\Gamma) + SO_2(\Gamma)$

 $\Delta H^0_{298} = -44,14$ ккал и $\Delta G^0_{298} = -44,72$ ккал. Определите: *а)* ΔG^0_{398} и *б*) $K_{p,398}$. Предположите, что в интервале 298-398 ${}^{0}K$ $\Delta C^0_{p} = 0$.

Зачтено-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Вопросы для подготовки к экзамену/зачету

Вопросы к экзамену:

- 1. Основные понятия и определения. Термодинамическая система. Изолированная, открытая и закрытая системы.
- 2. Процесс и состояние. Функция состояния.
- 3. Уравнение состояния. Интенсивные и экстенсивные свойства.
- 4. Работа расширения в равновесных и неравновесных процессах.
- 5. Теплота и теплоёмкость.
- 6. Среднее и истинное значение изохорной и изобарной теплоёмкостей.
- 7. Уравнение адиабаты.
- 8. Внутренняя энергия. Определение. Расчёт изменения внутренней энергии для различных процессов.

- 9. Первое начало термодинамики. Формулировки и математическое выражение.
- 10. Эксперимент Джоуля.
- 11. Эксперимент Джоуля-Томпсона.
- 12.Закон Гесса и следствия из него.
- 13. Расчёт теплового эффекта реакций на основании энергий связи.
- 14. Зависимость теплоёмкости вещества от температуры.
- 15. Уравнение Кирхгофа, его вывод.
- 16.Цикл Карно.
- 17.Второе начало термодинамики. Формулировки и математическое выражение.
- 18. Неравенство Клаузиуса.
- 19. Обобщенное уравнение первого и второго начала термодинамики.
- 20.Вычисление энтропии для обратимых процессов.
- 21. Энтропия смешения идеальных газов.
- 22. Уравнение Гиббса Гельмгольца.
- 23. Третье начало термодинамики. Постулат Планка.
- 24. Доказательство недостижимости абсолютного нуля.
- 25. Критерии самопроизвольного протекания процесса.
- 26. Энергия Гиббса.

Пример билетов к экзамену.

Кубанский государственный университет Факультет химии и высоких технологий Кафедра физической химии

Экзамен по курсу «Введение в термодинамику» Билет № 1

- 1. Термодинамическая система. Основные понятия и определения. Изолированная, открытая и закрытая системы.
- 2. Химический потенциал. Закон действующих масс, его вывод.

Заведующий кафедрой Физической химии

В.И.Заболоцкий

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Работа с конспектом лекций

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои

знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

На занятии получите у преподавателя график выполнения лабораторных работ. Обзаведитесь всем необходимым методическим обеспечением.

Перед посещением лаборатории изучите теорию вопроса, предполагаемого к исследованию, ознакомьтесь с руководством по соответствующей работе и подготовьте протокол проведения работы, в который занесите:

- название работы;
- заготовки таблиц для заполнения экспериментальными данными наблюдений;
- уравнения химических реакций превращений, которые будут осуществлены при выполнении эксперимента;
- расчетные формулы.
 - Оформление отчетов должно проводиться после окончания работы в лаборатории.

Для подготовки к защите отчета следует проанализировать экспериментальные результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы, приводимые в методических указаниях к выполнению лабораторных работ.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 5.1 Основная литература:
- 1. Буданов, В. В. Химическая термодинамика [Электронный ресурс]: учеб. пособие / В. В. Буданов, А. И. Максимов. 3-е изд., стер. Санкт-Петербург: Лань, 2017. 320 с. https://e.lanbook.com/book/89932.
- 2. Бажин, Николай Михайлович. Термодинамика для химиков [Текст]: учебник для студентов вузов / Н. М. Бажин, В. А. Иванченко, В. Н. Пармон. 2-е изд., перераб. и доп. М. : Химия : КолосС, 2004. 416 с. (Учебники и учебные пособия для студентов вузов). Библиогр. : с. 416-417.

5.2 Дополнительная литература:

- 1. Белов, Глеб Витальевич. Термодинамика [Электронный ресурс]: в 2-х ч.: учебник и практикум для академического бакалавриата. Ч. 1 / Г. В. Белов. 3-е изд., испр. и доп. Москва: Юрайт, 2017. 264 с. https://biblio-online.ru/book/2E7231EE-A291-461D-876C-02EF3A8CCEBC
- 2. Белов, Глеб Витальевич. Термодинамика [Электронный ресурс]: в 2-х ч.: учебник и практикум для академического бакалавриата. Ч. 2 / Г. В. Белов. 3-е изд., испр. и доп. Москва: Юрайт, 2017. 248 с. https://biblio-online.ru/book/60B89B1A-294F-438C-A343-07469F39205F
- 3. Практикум по физической химии. Термодинамика. [Текст]: учебное пособие для студентов вузов / [Е. П. Агеев и др.]; под ред. Е. П. Агеева, В. В. Лунина. М.: Академия, 2010. 220 с.: ил.

5.3. Периодические издания:

1. Журнал физической химии

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Электронная библиотечная система издательства "Лань"
- 2. eLIBRARY Научная электронная библиотека (Mockba) http://www.elibrary.ru/
- 3. Nature Publishing Group
- 4. Научная электронная библиотека (НЭБ)
- 5. Scopus мультидисциплинарная реферативная база данных
- 6. Электронная библиотечная система ВООК.ru
- 7. Коллекция журналов издательства Elsevier на портале ScienceDirect

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Работа с конспектом лекций

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

На занятии получите у преподавателя график выполнения лабораторных работ. Обзаведитесь всем необходимым методическим обеспечением.

Перед посещением лаборатории изучите теорию вопроса, предполагаемого к исследованию, ознакомьтесь с руководством по соответствующей работе и подготовьте протокол проведения работы, в который занесите:

- название работы;
- заготовки таблиц для заполнения экспериментальными данными наблюдений;
- уравнения химических реакций превращений, которые будут осуществлены при выполнении эксперимента;
- расчетные формулы.
 - Оформление отчетов должно проводиться после окончания работы в лаборатории.

Для подготовки к защите отчета следует проанализировать экспериментальные результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы, приводимые в методических указаниях к выполнению лабораторных работ.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

7.1 Перечень информационно-телекоммуникационных технологий

Проверка домашних заданий и консультирование посредством электронной почты; Использование электронных презентаций при проведении практических занятий.

7.2 Перечень лицензионного и свободно распространяемого программного обеспечения

Microsoft Windows 8, 10.

Пакет Microsoft Office Professional Plus (программа для демонстрации и создания презентаций «Microsoft Power Point»; электронные таблицы «Microsoft Excel».).

Программное обеспечение для слабовидящих.

Программа для расчёта характеристик обратноосмотических модулей ROSA (freeware).

7.3 Перечень современных профессиональных баз данных и информационных справочных систем

<u>http://минобрнауки.рф</u> – Министерство образования и науки Российской Федерации

- 1. http://government.ru/ Правительство РФ
- 2. http://www.edukuban.ru/ Министерство образования, науки и молодежной политики Краснодарского края
- 3. http://fgosvo.ru/ Портал Федеральных государственных образовательных стандартов
- 4. http://www.edu.ru Федеральный портал «Российское образование»
- 5. http://obrnadzor.gov.ru/ Федеральная служба по надзору в сфере образования и науки Рособрнадзор
- 6. http://www.nica.ru/ Официальный сайт ФГБУ «Национальное аккредитационное агентство в сфере образования»
- 7. infoneeds.kubsu.ru/infoneeds/ база информационных потребностей КубГУ
- 8. Федеральный портал «Российское образование» http://www.edu.ru
- 9. http://elibrary.ru/ Научная электронная библиотека
- 10. <u>www.scopus.com</u> Scopus (SciVerse Scopus) мультидисциплинарная библиографическая и реферативная база данных, созданная издательской корпорацией Elsevier.
- 11. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 12. http://cyberleninka.ru/about Научная библиотека открытого доступа «КиберЛенинка»
- 13. http://www.sciencedirect.com полнотекстовая научная база данных международного издательства Elsevier.
- 14. http://apps.webofknowledge.com/ мультидисциплинарная реферативнобиблиографическая база данных Института научной информации США (Institute for Scientific Information, ISI), представленная на платформе Web of Knowledge компании Thompson Reuters.

8. Материально-техническое обеспечение по дисциплине (модулю)

No	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения
1.	Семинарские занятия	Аудитория (ауд. 322с, 416с, 332с), оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением.
2.	Групповые (индивидуальные) консультации	Учебная аудитория (ауд. 322с, 416с, 332с, 345с).
3.	Текущий контроль, промежуточная аттестация	Учебная аудитория (ауд. 322с, 416с, 332с, 126с, 334с).
4.	Самостоятельная работа	Кабинет для самостоятельной работы (140с), оснащенный компьютерной техникой с возможностью подключения к

5.	Лекционные занятия	сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета. Лекционная аудитория, оснащённая презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО).
6.	Лабораторные занятия	Лаборатория, укомплектованная специализированной мебелью и техническими средствами обучения: Сканирующий спектрофотометр Leki SS2109UV Спектрофотометр Leki SS2107 Микроскоп оптический Altami Кондуктометр «Эксперт-002» - 1 шт; Весы аналитические «Adventures Pro» - 1 шт; Турбидиметр Наппа — 1шт; Вискозиметр Brookfield — 1 шт; Вискозиметр капиллярный ВПЖ-2 — 3шт; Весы лабораторные — 1 шт; Весы торсионные — 1 шт; Мешалка с подогревом «Іка С-МАВ НS7» Шейкер лабораторный LS110 — 1 шт; рН-метр Наппа Hi2211 — 3 шт; Мультиметр — 1 шт; Источник пистания постоянного тока стабилизированный Б5-49; Кондуктометр портативный Наппа HI 9033 — 2 шт; Насос перистальтический многоканальный — 1 шт; Насос перистальтический одноканальный LS 301 — 2 шт; Мультитест ИПП-101-1 — 2 шт; ПК-2шт