РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.12.03 Дифференциальные уравнения

Направление подготовки 03.03.02 Физика
Профиль: Фундаментальная физика
Форма обучения очная
Квалификация бакалавр

Рабочая программа дисциплины «Дифференциальные уравнения» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки / специальности 03.03.02 Физика.

код и наименование направления подготовки

Программу составила:	Money .
В.В. Василенко, канд. физмат. наук	Magree
И.О. Фамилия, должность, ученая степень, ученое звание	подпись

Рабочая программа дисциплины «Дифференциальные уравнения» утверждена на заседании кафедры Функционального анализа и алгебры протокол № 11 от «13» мая 2025 г.

Заведующий кафедрой

Барсукова В.Ю. фамилия, инициалы подпись

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук

протокол № 4 от «14» мая 2025 г.

Председатель УМК факультета

<u>Шмалько С.П.</u> фамилия, инициалы

подпись

Рецензенты:

Савин В.Н., кандидат технических наук, доцент, и.о. заведующего кафедрой высшей математики ФГБОУ ВО «Кубанский государственный технологический университет»;

Иванисова О.В., доцент кафедры вычислительной математики и информатики КубГУ, кандидат физ.-мат. наук.

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целями освоения дисциплины «Дифференциальные уравнения» являются освоение методов решения дифференциальных уравнений и приложение этих методов к решению задач из курса физики, а также задач комплексного и вещественного анализа, овладение классическим математическим аппаратом для дальнейшего использования в приложениях.

1.2 Задачи дисциплины

При освоении дисциплины ставятся следующие задачи:

- овладение аналитическими, приближенными и численными методами интегрирования дифференциальных уравнений;
- формирование основных понятий теории обыкновенных дифференциальных уравнений;
- формирование знаний о свойствах решений дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных и приводящихся к ним, уравнений в полных дифференциалах; овладение точными методами интегрирования;
- формирование знаний о линейном дифференциальном уравнении первого порядка, овладение методами решения Лагранжа и Бернулли;
- формирование знаний в вопросах существования и единственности решения дифференциального уравнения первого порядка;
- формирование умений и навыков решения дифференциальных уравнений высших порядков путем понижения порядка уравнения.
- формирование знаний о структуре общего решения дифференциальных уравнений высших порядков: овладение методом Лагранжа;
- формирование умений и навыков построения общего решения линейного однородного дифференциального уравнения *n*-го порядка с постоянными коэффициентами в зависимости от значений характеристических чисел;
- формирование умений и навыков в поиске частного решения линейных неоднородных дифференциальных уравнений высших порядков по правой части специального вида (методом неопределенных коэффициентов)
- формирование знаний о свойствах решений однородной линейной системы дифференциальных уравнений с постоянными коэффициентами (методом Эйлера);
- формирование знаний о структуре решения неоднородной линейной системы дифференциальных уравнений с постоянными коэффициентами: овладение методами нахождения частного решения.

Во время изучения дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для решения задач, связанных с физическими приложениями геометрических и алгебраических методов. Получаемые знания лежат в основе математическогообразования и необходимы для понимания и применения в физике.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Дифференциальные уравнения» относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 1 курсе (2 семестр) по очной форме обучения. Вид промежуточной аттестации: зачет с оценкой.

От изучающего настоящий курс требуется знание университетского курса «Математический анализ» в достаточно строгом и углубленном изложении, основные сведения из теории определителей, высшей алгебры по дисциплине «Аналитическая

геометрия и линейная алгебра». Знания, полученные в этом курсе, используются в дисциплине «Уравнения математической физики».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
в сфере своей профессиональной деятельности	области физико-математических и (или) естественных наук
ОПК – 1.1 Понимает теоретические и методологические основания избранной области физико-математических и (или) естественных наук	Знает способы решения типовых задач с учетом основных понятий и общих закономерностей составления и решения дифференциальных уравнений Умеет решать задачи в области дифференциальных
	уравнений Владеет навыками решения задач дифференциальных уравнений
ОПК – 1.2 Понимает актуальные проблемы и тенденции развития соответствующей научной области и области профессиональной деятельности	Знает классические задачи физики, приводящие к дифференциальным уравнениям Умеет строить математические модели физических процессов, описываемых дифференциальными уравнениями
	Владеет методами решения классических дифференциальных уравнений и систем уравнений

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии сутвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зачетных единицы (144 часа), их распределение по видам работ представлено в таблице

Виды работ	Всего	3 семестр
	часов	(часы)
Контактная работа, в том числе:	68,2	68,2
Аудиторные занятия (всего):	64	64
занятия лекционного типа	32	32
лабораторные занятия	_	_
практические занятия	32	32
семинарские занятия	_	_
Иная контактная работа:		
Контроль самостоятельной работы (КСР)	4	4
Промежуточная аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:	75,8	75,8
Проработка и повторение лекционного материала и материала учебников и учебных пособий	25	25
подготовка к лабораторным и практическим занятиям	30	30
Выполнение домашних заданий (подготовка сообщений, презентаций)	16	16
Подготовка к текущему контролю	4,8	4,8

Контроль:	4	4	
Подготовка к зачет	у с оценкой	35,7	35,7
Общая	час.	144	144
трудоемкость	в том числе контактная работа	72,3	72,3
	зач. ед	4	4

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые во 2 семестре (очная форма обучения)

	Наименование разделов (тем)	Количество часов				
№		Всего	Аудиторная работа		Внеауди- торная работа	
			Л	П3	ЛР	CPC
1.	Основные понятия и определения	8	2	2		5
2.	Уравнения первого порядка. Интегрируемые типы уравнений	28	8 8			10
3.	Системы дифференциальных уравнений	24	8 8			18
4.	Линейные уравнения <i>n</i> -го порядка	16	4 6			12
5.	Краевые задачи	10	4	4		12
6.	Основы теории устойчивости	14	6 4			14
10	ИТОГО по разделам дисциплины		32	32		75,8
	Контроль самостоятельной работы (КСР)	4				
	Промежуточная аттестация (ИКР)					
	Подготовка к текущему контролю					
	Общая трудоемкость по дисциплине	144				

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Основные понятия и определения	Введение. Естествознание и математические модели. Уравнение как основной объект изучения в математической модели. Модели, содержащие дифференциальные уравнения. Примеры задач, приводящих к дифференциальным уравнениям. Основные задачи теории дифференциальных уравнений. Задача Коши	ПК УО К
2.	Уравнения первого порядка. Интегрируемые типы уравнений	Основные интегрируемые типы уравнений I-го порядка: уравнения с разделяющимися переменными, линейные уравнения. Однородные дифференциальные уравнения и приводящимися к ним. Линейные дифференциальные уравнения первого порядка. Метод Бернулли и Лагранжа. Уравнение Бернулли. Уравнение в полных дифференциалах. Интегрирующий множитель. Теорема существования и единственности решения задачи Коши для дифференциального уравнения первого порядка, разрешенного относительно производной	ПК УО К
3.		Нормальная система дифференциальных уравнений I-го порядка. Векторная запись. Фазовое пространство. Решение системы дифференциальных уравнений. Интегральная кривая. Задача Коши. Линейные системы дифференциальных уравнений (с комплексными коэффициентами и свободными членами).	ПК УО

		Матрично-векторная запись. Принцип суперпозиции. Эквивалентность задачи Коши для линейной системы и интегрального уравнения. Теорема существования и единственности решения задачи Коши для линейных систем. Линейные однородные системы. Пространство решений. Фундаментальная система решений. Вронскиан. Критерий линейной независимости решений. Формула Остроградского – Лиувилля. Представление общего решения при помощи фундаментальной матрицы. Множество фундаментальных матриц. Метод вариации постоянных, формула Коши. Матрица Коши, её свойства. Линейные системы с постоянными коэффициентами. Нахождение фундаментальной системы решений методом неопределенных коэффициентов.	
4.	Линейные уравнения <i>п</i> -го порядка	Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Построение общего решения в случае: а) различных характеристических чисел; б) кратных характеристических чисел; в) в случае комплексно-сопряженных корней характеристического уравнения. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида. Линейные уравнения п-го порядка. Сведение к линейным системам. Принцип суперпозиции решений. Пространство решений однородного уравнения. Вронскиан. Критерий линейной независимости решений. Линейные неоднородные уравнения п-го порядка, метод вариации. Функция и формула Коши. Уравнения с постоянными коэффициентами. Функция и формула Коши для уравнения с постоянными коэффициентами.	ПК
5.	Основные понятия	Введение. Естествознание и математические модели. Уравнение как основной объект изучения в математической модели. Модели, содержащие дифференциальные уравнения. Примеры задач, приводящих к дифференциальным уравнениям. Основные задачи теории дифференциальных уравнений. Задача Коши	ПК УО
6.	Основы теории устойчивости	Устойчивость решений по Ляпунову. Асимптотическая устойчивость. Исследование устойчивости автономных систем дифференциальных уравнений с постоянными коэффициентами.	ПК УО
	L	1	ı

ПК – проверка конспекта, УО – устный опрос, К – коллоквиум

2.3.2 Занятия семинарского типа (практические занятия)

	2.3.2 занятия семинарского типа (практические занятия)					
№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля			
1.	Основные понятия и определения	Основные понятия теории дифференциальных уравнений (решение, задача Коши, порядок уравнения)	P3			
2.	Уравнения первого порядка. Интегрируемые типы уравнений	Основные интегрируемые типы уравнений I-го порядка: уравнения с разделяющимися переменными, линейные уравнения.	TP KP P3			
3.	Линейные системы дифференциальных уравнений	Нормальная система дифференциальных уравнений І-го порядка. Векторная запись. Задача Коши. Линейные системы с постоянными коэффициентами. Нахождение фундаментальной системы решений методом неопределенных коэффициентов. Метод вариации постоянных, формула Коши.	TP KP P3			
4.	Линейные уравнения <i>n</i> -го порядка	Линейные уравнения 2-го порядка. Линейные уравнения <i>n</i> -го порядка. Уравнения с постоянными коэффициентами. Фундаментальная система решений уравнения с постоянными коэффициентами. Функция и формула Коши для уравнения с постоянными коэффициентами. Метод вариации постоянных.	TP KP P3			
5.	Краевые задачи	Краевые задачи Штурма – Лиувилля. Основные понятия.	Р3			
6.	Основы теории устойчивости	Устойчивость решений по Ляпунову. Асимптотическая устойчивость. Исследование устойчивости автономных	KP P3			

	систем дифференциальных уравнений с постоянными	
	коэффициентами. Критерий Гурвица	

Типовой расчёт (TP), контрольная работа (KP), решение задач (P3). При изучении дисциплины могут применяться электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

Не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Подготовка к текущему контролю	1. Методические указания для подготовки к занятиям лекционного и семинарского типа. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. 2. Методические указания по выполнению самостоятельной работы обучающихся. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. 3. Методические указания по использованию интерактивных методов обучения. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г. Методические указания по подготовке эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета математики икомпьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.
2	Выполнение лабораторных работ и расчетно- графических заданий	1. Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. Методические указания по выполнению расчетно-графических заданий. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, типовой расчет (индивидуальное домашнее задание), самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, мозгового штурма, разбора конкретных ситуаций, анализа педагогических задач, иных форм) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Самостоятельная работа студентов является неотъемлемой частью процесса подготовки. Под самостоятельной работой понимается часть учебной планируемой работы, которая выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Виды самостоятельной работы по курсу:

- а) по целям: подготовка к лекциям, к практическим занятиям, к контрольной работе, к экзамену, выполнение типового расчета, подготовка проектного семестрового задания в виде презентации.
- б) по характеру работы: изучение литературы, конспекта лекций; поиск литературы в библиотеке; конспектирование рекомендуемой для самостоятельного изучения научной литературы; решение задач, подготовка проекта.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Дифференциальные уравнения».

Оценочные средства включает контрольные материалы для проведения текущего контроля в форме разноуровневых заданий, ситуационных задач и промежуточной аттестации в форме вопросов и заданий к экзамену.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Danier mamie a ferrouse	Наименование оценочн	ого средства
п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ОПК – 1.1 Понимает теоретические и методологические основания избранной области физикоматематических и (или) естественных наук	Владеет навыками решения задач дифференциальных уравнений	Контрольная работа №1 Коллоквиум	Вопрос на зачете с оценкой 1-30

2	ОПК – 1.2 Понимает актуальные проблемы и тенденции развития соответствующей научной области и области профессиональной деятельности	Умеет строить математические модели физических процессов, описываемых дифференциальными уравнениями	Типовой расчет	Вопрос на зачете с оценкой 31-45
---	---	---	----------------	----------------------------------

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Варианты контрольных работ

Вариант 1

Найти решение уравнений

1)
$$2t\sqrt{1-x^2}dt + xdx = 0$$

2)
$$y' = e^{-\frac{y}{x}} + \frac{y}{x}$$
, $y(1) = 0$

3)
$$tx' - \frac{x}{t+1} = t$$

4)
$$x' - xtgt + x^2 \cos t = 0$$

5)
$$(x+3y)y'=1$$
.

Вариант 2

1. Найти ФСР, общее решение уравнений:

a)
$$x^{IV} + 2x^{II} + x = 0$$
;

6)
$$9x^{I} + x^{III} = 0$$
.

2. Решить задачу Коши:

$$x^{II} + 4x^{I} + 3x = 0;$$
 $x(0) = 0;$ $x^{I}(0) = 1.$

3. Выписать ФСР, если известны корни характеристического уравнения

a)
$$\lambda_{1,2} = 0$$
; $\lambda_{3,4} = -6$; $\lambda_{5,6} = 2 \pm 7i$;

б)
$$\lambda_{1,2} = 2$$
; $\lambda_{3,4} = -1 \pm 4i$; $\lambda_{5,6} = -1 \pm 4i$.

4. Являются ли функции $x_1(t) = e^{3t} - e^{-2t}$; $x_2(t) = 2e^{3t} + e^{-2t}$ ЛНЗ решениями уравнения $x^{II} - x^{I} - 6x = 0$?

Вариант 3

...

1. Решить, используя функцию Коши:

$$x^{II} - 8x^{I} + 17x = e^{4t}$$
; $x(0) = x^{I}(0) = 0$.

- 2. Решить методом вариации произвольных постоянных $x^{II} + x^I = t$
- 3. Решить уравнение $x^{III} 4x^I = 15t + \sin 2t$

Вариант 4

- 1. Решить краевую задачу: y'' + y = 1, y(0) = 0, $y'(\frac{\pi}{2}) = 0$
- 2. Существует ли функция Грина краевой задачи? Если да, то построить ее:

a)
$$y'' + y = f(x)$$
, $y(0) = 0$, $y'(\pi) = 0$:

6)
$$y'' = f(x), y'(0) = 0, y'(1) = 0$$
.

3. Найти собственные значения и собственные функции краевой задачи:

$$y'' + 4\mu y = 0$$
, $y'(0) = 0$, $y(\pi) = 0$

Вариант 5

1.Решить задачу Коши
$$\begin{cases} x' = y - 7x \\ y' = -5y - 2x \end{cases}$$
, $x(0) = 1$, $y(0) = 2$

1.Решить задачу Коши
$$\begin{cases} x' = y - 7x \\ y' = -5y - 2x \end{cases}, \quad x(0) = 1, \ y(0) = 2$$
 2. Решить систему
$$\begin{cases} x' = 2x + y + 2z \\ y' = 2z - x \\ z' = 3z - 2x \end{cases}, \ \lambda_1 = -1, \ \lambda_{2,3} = 1.$$

3. Решить
$$\begin{cases} x' = 2y - 5x \\ y' = x - 6y - 2e^x \end{cases}$$

Вариант 6

1. Оценить, насколько отличаются решения задач на отрезке [2, 3]

$$\begin{cases} y' = \sin y - \cos y + x \\ y(2) = 0.1 \end{cases} \begin{cases} z' = \sin z - \cos z \\ z(2) = 0.3 \end{cases}$$

2. Используя определение устойчивости по Ляпунову, исследовать устойчивость решения задачи

Коши:
$$y' + \frac{2y}{x} = 0, y(1) = 2.$$

3. Исследовать устойчивость тривиального решения системы дифференциальных уравнений:

$$\begin{cases} x' = \ln(1 - 3y) + xy \\ y' = 2e^x - 3\sin y - 2 - y^4 \end{cases}$$

Вопросы, выносимые на коллоквиум:

- 1. Дифференциальное Основные уравнение первого порядка. понятия. Геометрический смысл уравнения первого порядка.
- 2. Уравнения с разделяющимися переменными и приводящиеся к ним.
- 3. Линейные дифференциальные уравнения первого порядка и приводящиеся к ним.
- 4. Системы обыкновенных дифференциальных уравнений. Векторная запись. Задача Коши.
- 5. Системы линейных дифференциальных уравнений в нормальной форме, матричновекторная запись. Эквивалентность комплексной и вещественной систем.
- б. Теорема существования и единственности решения задачи Коши для линейной системы.
- 7. Линейные системы дифференциальных уравнений, принцип суперпозиции решений и следствия из него.
- 8. Линейная зависимость и независимость вектор-функций. Линейные однородные системы. Пространство решений.
- 9. Фундаментальная система решений Определитель Вронского. Критерий линейной независимости решений однородной системы.
- 10. Фундаментальная матрица, свойства. Общее решение линейной однородной системы.
- 11. Линейные неоднородные системы дифференциальных уравнений. Метод вариации.

Формула Коши.

- 12. Матрица Коши и ее свойства.
- 13. Линейные системы дифференциальных уравнений с постоянными коэффициентами. Теорема о фундаментальной системе решений.
- 14. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Построение общего решения в случае:
 - а) различных характеристических чисел;
 - б) кратных характеристических чисел;
 - в) в случае комплексно-сопряженных корней характеристического уравнения.
- 15. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида:
 - a) $f(x) = e^{\alpha x}$.
 - $6) f(x) = e^{\alpha x} P_m(x).$
 - B) $f(x) = e^{\alpha x} (a \cos \beta x + b \sin \beta x)$.
- 16. Линейные дифференциальные уравнения n-го порядка (основные определения, примеры). Эквивалентность линейной системе.
- 17. Теорема о пространстве решений линейного однородного дифференциального уравнения n-го порядка.
- 18. Линейная зависимость и независимость функций. Критерий линейной независимости решений однородного дифференциального уравнения *n*-го порядка.
- 19. Фундаментальная система решений, ее связь с общим решением уравнения.
- 20. Линейное неоднородное дифференциальное уравнение n-го порядка. Принцип суперпозиции решений и следствия из него.
- 21. Метод вариации для линейного неоднородного дифференциального уравнения n-го порядка.
- 22. Функция Коши. Формула Коши.
- 23. Теорема о фундаментальной системе решений линейного дифференциального уравнения n-го порядка с постоянными коэффициентами.
- 24. Нахождение частного решения линейного неоднородного дифференциального уравнения n-го порядка по виду свободного члена f(x).
- 25. Функция Коши для линейного дифференциального уравнения *n*-го порядка с постоянными коэффициентами.
- 26. Краевые задачи (определения, примеры).

Реферат

Не предусмотрено

Tecm

Не предусмотрено

Темы выступлений к круглому стол

Не предусмотрено

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Перечень вопросов к зачету с оценкой 2 семестр

1. Определение дифференциального уравнения, порядка уравнения и его решения. Обыкновенное дифференциальное уравнение 1—го порядка.

- 2. Уравнение в дифференциалах. Поле направлений и поле нормалей. Определение интегральной кривой. Лемма о решении уравнения в дифференциалах.
- 3. Уравнение первообразной. Теорема об интеграле дифференциального уравнения.
- 4. Автономное дифференциальное уравнение 1-го порядка и его решение.
- 5. Особые решения обыкновенного дифференциального уравнения. Огибающая семейства однопараметрических кривых.
- 6. Изоклины, изогональные и ортогональные траектории.
- 7. Способы нахождения решений обыкновенных дифференциальных уравнений.
- 8. Уравнения с разделяющимися (разделенными) переменными и приводящиеся к ним.
- 9. Линейные дифференциальные уравнения первого порядка. Определение однородности *k*-ого измерения для уравнения.
- 10. Типы уравнений, приводящихся к линейным дифференциальным уравнениям первого порядка. Лемма об эквивалентности решений однородных уравнений (для f(y/x)).
- 11. Метод вариации постоянной (метод Лагранжа) и метод подстановок Бернулли.
- 12. Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- 13. Определение задачи Коши для обыкновенного дифференциального уравнения.
- 14. Существование и единственность решения задачи Коши. Локальная теорема.
- 15. Задача, двойственная задаче Коши. Лемма об эквивалентности.
- 16. Эквивалентность линейного дифференциального уравнения нормальной системе обыкновенных дифференциальных уравнений. Задача Коши для динамической системы.
- 17. Фундаментальная система решений. Определитель Вронского и его свойства.
- 18. Линейные дифференциальные уравнения *п*-ного порядка. Основные понятия и определения.
- 19. Теорема о пространстве решений однородного дифференциального уравнения *п*-ного порядка.
- 20. Линейное неоднородное дифференциальное уравнение *n*-ного порядка. Принцип суперпозиции решений и следствия из него.
- 21. Метод вариации для линейного неоднородного дифференциального уравнения *n*-ного порядка.
- 22. Теорема о фундаментальной системе решений линейного неоднородного дифференциального уравнения n-ного порядка с постоянными коэффициентами.
- 23. Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение.
- 24. Метод неопределенных коэффициентов при решении неоднородного линейного дифференциального уравнения 2-го порядка с постоянными коэффициентами.
- 25. Определение краевой задачи. Корректность краевой задачи.
- 26. Теорема об альтернативе и следствие из нее.
- 27. Нули решений однородного дифференциального уравнения второго порядка.
- 28. Перемежающиеся нули. Теорема о расположении нулей однородного уравнения.
- 29. Теорема сравнения (Штурма).
- 30. Функция Грина и ее свойства.
- 31. Определение системы дифференциальных уравнений, виды систем дифференциальных уравнений и формы их представлений. Ассоциированное системе дифференциальное уравнение.
- 32. Нормальные системы дифференциальных уравнений с комплексными коэффициентами.
- 33. Множество решений. Продолжимые и непродолжимые решения.
- 34. Постановка Задачи Коши для системы дифференциальных уравнений.
- 35. Физическая интерпретация системы дифференциальных уравнений. Фазовое пространство и фазовые траектории.
- 36. Фундаментальная матрица системы дифференциальных уравнений. Представление общего решения при помощи фундаментальной матрицы. Множество фундаментальных матриц. Основные теоремы.
- 37. Нормальные системы дифференциальных уравнений с постоянными коэффициентами. Интегрирование системы дифференциальных уравнений методом исключения.
- 38. Теорема о корневом пространстве (без доказательства).
- 39. Матрица и формула Коши для системы дифференциальных уравнений с постоянными коэффициентами.
- 40. Теорема существования и единственности решения задачи Коши на отрезке при выполнении условия Липшица.

- 41. Теорема Пеано.
- 42. Устойчивость решения по Ляпунову. Асимптотическая устойчивость решения. Устойчивость при постоянно действующих возмущениях.
- 43. Устойчивость решения системы дифференциальных уравнений, её физический и геометрический смысл.
- 44. Автономные системы дифференциальных уравнений и исследование их на устойчивость.
- 45. Особая точка дифференциального уравнения. Поведение траектории уравнения в окрестности особой точки. Виды особых точек. Область устойчивых решений автономной системы дифференциальных уравнений.

Типовые задачи, выносимые на зачет с оценкой

1.Решить задачу Коши:

$$y'\operatorname{ctg} x - y = 2\operatorname{ctg} x$$

при y(0)=1.

- 2. Решить уравнение: $x^{II} 4x^{I} + 3x = e^{2t}$
- 3. Решить систему:

$$\begin{cases} x' = 2x + 4y - 8 \\ y' = 3x + 6y \end{cases}$$

4. Исследовать устойчивость тривиальное решение системы

$$\begin{cases} x' = -x - 2y + x^5 \\ y' = -2x + 3y - y^4 + x^3 \end{cases}$$

Критерии оценивания результатов обучения

критерии оценивания результатов обучения				
Оценка				
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.			
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки.			
Пороговы й уровень «3» (удовлетв орительно	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы.			
Минималь ный уровень «2» (неудовле творител ьно)	оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы.			

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей:

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме;
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

1. Перечень учебной литературы, информационных ресурсов и технологий

1.1. Учебная литература

- 1. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. М., 2005, https://e.lanbook.com/book/48171/
- 2. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. М., 2009, https://e.lanbook.com/book/59554/
- 3. Сборник задач по дифференциальным уравнениям и вариационному исчислению [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 222 с. Режим доступа: https://e.lanbook.com/book/70710/
- 4. Демидович Б. П. Лекции по математической теории устойчивости. СПб. «Лань», 2008. www.e.lanbook.com/view/book/123/
- 5. Бибиков Ю. Н. Курс обыкновенных дифференциальных уравнений. СПб. «Лань», 2011. www.e.lanbook.com/view/book/1542/

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Библиоклуб».

1.2. Периодическая литература

Указываются печатные периодические издания из «Перечня печатных периодических изданий, хранящихся в фонде Научной библиотеки КубГУ» https://www.kubsu.ru/ru/node/15554, и/или электронные периодические издания, с указанием адреса сайта электронной версии журнала, из баз данных, доступ к которым имеет КубГУ:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

1.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 10. Springer Journals https://link.springer.com/
 - 11. Nature Journals https://www.nature.com/siteindex/index.html
 - 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;

14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Основным источником теоретической информации являются лекции. Также полезно в случае затруднений обращаться к рекомендуемой литературе. Следует с большой осторожностью относиться к справочным материалам и примерам получаемым с помощью стандартного поиска в интернете, так как нет гарантий его достоверности.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного	Мебель: учебная мебель Технические средства обучения:	Microsoft Office
типа Учебные аудитории для проведения занятий	экран, проектор, компьютер Мебель: учебная мебель Технические средства обучения:	Microsoft Office
семинарского типа, групповых и индивидуальных консультаций,	экран, проектор, компьютер	
текущего контроля и промежуточной аттестации		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	

1	1 <i>c</i>	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (ауд.301н,	Комплект специализированной	
308на, 310н)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
	TOAHOMOI NIN WY I-T-1)	