МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.05.01 АЛГОРИТМЫ НА ОРИЕНТИРОВАННЫХ ГРАФАХ

Направление

подготовки/специальность

Направленность (профиль) /

специализация

Форма обучения

Квалификация

02.03.01 Математика и компьютерные

науки

Современная алгебра и криптография

Очная

Бакалавр

Рабочая программа дисциплины Б1.В.ДВ.05.01 Алгоритмы на ориентированных графах составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 Математика и компьютерные науки

Программу составил(и):

И.В. Сухан, ст. препод. кафедры вычислительной математики и информатики

нолпись

подпись

Рабочая программа дисциплины Б1.В.ДВ.05.01 Алгоритмы на ориентированных графах утверждена на заседании кафедры вычислительной математики и информатики

протокол № 15 «<u>13</u>» мая 2025 г.

Заведующий кафедрой вычислительной математики и информатики

Наумова Н.А.

Утверждена на заседании учебно-методической комиссии факультета Математики и компьютерных наук

протокол № 4 «<u>14</u>» мая 2025 г.

Председатель УМК факультета

Шмалько С.П. фамилия, инициалы

Рецензенты:

<u>Уртенов М.Х.</u>, д.-р. физ.-мат.н., профессор кафедры прикладной математики Кубанского государственного университета

<u>Луценко Е.В.</u>, д.-р. э.н., канд. тех.н., профессор кафедры компьютерных технологий и систем Кубанского государственного аграрного университета

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Курс посвящен изучению классических алгоритмов решения оптимизационных задач на графах и сетях с применением различных приемов программирования; построению новых и модификации и комбинации известных алгоритмов для решения конкретных задач; оценке эффективности указанных алгоритмов.

1.2 Задачи дисциплины.

Задачи дисциплины — дать навыки постановки и решения задач оптимизации на графах; научить выбору адекватных алгоритмов для решения вышеуказанных задач; отработать умения по программной реализации алгоритмов на персональном компьютере.

В результате изучения данной дисциплины студенты должны овладеть навыками постановки и решения задач оптимизации на графах, предусматривающими знание адекватных алгоритмов.

Кроме того, студенты должны уметь реализовать эти алгоритмы на персональном компьютере в виде программ.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Алгоритмы на ориентированных графах» относится к части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" учебного плана.

Курс опирается на знания, полученные студентами в рамках дисциплин «Языки и технологии программирования», «Дискретная математика», «Комбинаторные алгоритмы» или «Теория графов».

Знания, полученные в этом курсе, используются в распознавании образов, лингвистических основах информатики, интеллектуальных системах и др.

В соответствии с рабочим учебным планом дисциплина изучается на 4 курсе по очной форме обучения. Вид промежуточной аттестации: экзамен.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций (УК/ОПК/ПК):

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине
ПК-3 Способен математически корректно став: сических задач математики	ить естественнонаучные задачи, знание постановок клас-
ПК-3.3 Демонстрирует навыки исследования вычислительной устойчивости решений ал-	Знает основные типы объектов и структур, изучаемых теорией графов
гебраических систем и дискретных аналогов дифференциальных задач	Умеет решать задачи теоретического и прикладного характера из различных разделов комбинаторных алгоритмов
	Владеет математическим аппаратом комбинаторных алгоритмов
=	оды разработки и реализации конкретных алгоритмов ма- пирования и пакетов прикладных программ моделирова-
ПК-5.1 Анализирует поставленные задачи и выбирает эффективные математические мето-	Знает основные понятия теории графов, типовые методы, используемые при работе с графами, орграфами,
ды при создании алгоритмов и вычислительных программ для решения современных за-	Умеет осуществлять подбор эффективных алгоритмов для решения задач теоретического и прикладного харак-
дач математики и механики	тера из различных сфер применения теории графов Владеет математическим аппаратом теории графов
ПК-5.2 Описывает математические модели,	Знает различные свойства графов и связанных с ними

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине
формулирует, теоретически обосновывает и реализует программно численные методы для решения поставленных задач	объектов Знает формулировки основополагающих утверждений, возможные сферы их приложений
	Умеет разработать программную реализацию выбранного алгоритма, произвести отладку программы и интерпретировать результаты ее работы
	Владеет методами произведения отладки программы и интерпретации результатов ее работы
ПК-5.3 Применяет в профессиональной деятельности методику исследования и создания новых моделей, методов и технологий в мате-	Знает постановки классических задач теории графов, возможные сферы их приложений, основы построения компьютерных моделей
матике, механике и естественных науках	Умеет строить модели объектов и понятий на основе теории графов. Владеет навыками алгоритмизации основных задач тео-
THE S A OF	рии графов
ПК-5.4 Обладает навыками математического и алгоритмического моделирования социальных процессов	Знает основные понятия теории графов и комбинаторных алгоритмов, определения и свойства математических объектов, используемых в этой области; постановки оптимизационных задач и методы их решения; формулировки основных утверждений Знает типовые методы, используемые при работе с графами, орграфами, мультиграфами и сетями, постановки наиболее известных задач на графах и сетях и эффективные алгоритмы их решения Умеет осуществлять подбор эффективных алгоритмов для решения задач на графах Умеет разработать программную реализацию выбранного алгоритма, произвести отладку программы и интерпретировать результаты ее работы Умеет формулировать прикладные и теоретические за-
	дачи на языке графов и сетей Владеет навыками разработки программной реализации выбранного алгоритма и отладки программы и интерпретации результатов ее работы

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 3 зачетных единицы (108часов), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения
	часов	очная
		7 семестр
		(часы)
Контактная работа, в том числе:	44,3	44,3
Аудиторные занятия (всего):	40	40
занятия лекционного типа	14	14
лабораторные занятия	26	26
Иная контактная работа:	4,3	4,3
Контроль самостоятельной работы	4	4

(KCP)			
Промежуточная атте	естация (ИКР)	0,3	0,3
Самостоятельная ле:	Самостоятельная работа, в том числе:		37
Контрольная работа		2	2
Самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и т.д.)		20	20
Подготовка к текущ	ему контролю	15	15
Контроль:		26,7	26,7
Подготовка к экзаме	Подготовка к экзамену		26,7
Общая трудоем- час.		108	108
кость	в том числе кон- тактная работа	44,3	44,3
	зач. ед	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины

№		Количество часов			
	Наименование разделов	Всего	Аудиторная работа		Внеаудиторная работа
			Л	ЛР	CPC
1	Основные понятия, связанные с ориентированными графами. Достижимость и компоненты	8	2	2	4
2	Матрицы, ассоциированные с орграфами	8	2	2	4
3	Контуры в графах. База и ядро		2	2	4
4	Упорядочивание дуг и вершин орграфа	8	2	2	4
5	Экстремальные пути на графах	14	2	6	6
6	Потоки в сетях	14	2	6	6
7	Приложения задачи о максимальном потоке	17	2	6	9
	ИТОГО по разделам дисциплины	77	14	26	37
	Контроль самостоятельной работы (КСР)	4			
	Промежуточная аттестация (ИКР)	0,3			
	Подготовка к экзамену				
	Общая трудоемкость по дисциплине	108			

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины.

2.3.1 Занятия лекционного типа.

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма теку- щего контроля
1	Основные понятия, связанные с ориентированными графами. Достижимость и компоненты.	Основные определения. Полустепени исхода и захода. Исток и сток. Маршруты, пути, цепи. Связность. Конденсация.	Опрос
2	Матрицы, ассоцииро- ванные с орграфами Инцидентности, достижимости, контрдостижимости. Сильные компоненты в орграфе		Опрос
3	Контуры в графах. База и ядро.	Эйлеровы и гамильтоновы контуры в орграфе. Понятия базы и ядра в орграфе.	Опрос

4	Упорядочивание дуг и вершин орграфа	Упорядочивание элементов орграфов. Особенности алгоритмов теории графов	Опрос
5	Экстремальные пути на графах	Выявление маршрутов с заданным количеством ребер. Определение экстремальных путей. Метод Шимбелла. Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	Опрос
6	Потоки в сетях	Теорема Форда-Фалкерсона. Поток минимальной стоимости. Элементы сетевого планирования. Сетевые и линейные графики.	Опрос
7	Приложения задачи о максимальном потоке	Транспортная задача по критерию времени. Задача об оптимальном назначении.	Опрос

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.		·	
2.	1	Матрицы смежности, инцидентности, достижимости, контр-достижимости	ЛР
3.		Эйлеровы и гамильтоновы контуры в орграфе. Понятия базы и ядра в орграфе	ЛР
4.		Упорядочивание элементов орграфов. Выявление маршру- гов с заданным количеством ребер	ЛР
5.	Экстремальные пути на	Определение экстремальных путей. Метод Шимбелла.	ЛР
6.	графах	Нахождение кратчайших путей. Алгоритм Дейкстры	ЛР
7.		Нахождение кратчайших путей. Алгоритм Беллмана-Мура.	ЛР
8.	Потоки в сетях	Потоки в сетях. Теорема Форда-Фалкерсона.	ЛР
9.		Поток минимальной стоимости.	ЛР
10.		Алгоритм нахождения максимального пути.	ЛР
11.	Приложения задачи о	Транспортная задача по критерию времени.	ЛР
12.	максимальном потоке	Задача об оптимальном назначении.	ЛР
13.		Контрольная работа	

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.4 Примерная тематика курсовых работ (проектов).

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Работа с лекционным	Методические рекомендации по организации самостоятельной
	материалом, поиск и	работы студентов, утвержденные кафедрой вычислительной
	анализ литературы и	математики и информатики, протокол № 14 от 14.06.2017 г.

	электронных источни-	
	ков информации по за-	
	данной проблеме	
2	Изучение теоретиче-	Методические рекомендации по организации самостоятельной
	ского материала к лабо-	работы студентов, утвержденные кафедрой вычислительной
	раторным занятиям	математики и информатики, протокол № 14 от 14.06.2017 г.
3	Подготовка к заче-	Методические рекомендации по организации самостоятельной
	ту/экзамену	работы студентов, утвержденные кафедрой вычислительной
		математики и информатики, протокол № 14 от 14.06.2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, лабораторные занятия, проблемное обучение, модульная технология, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, мозгового штурма, разбора конкретных ситуаций, анализа педагогических задач, педагогического эксперимента, иных форм) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование ОСМДО КубГУ; использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Алгоритмы на ориентированных графах».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме перечня вопросов для устного опроса, типовых заданий к контрольной работе, и **промежуточной аттестации** в форме вопросов и заданий к зачету/экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

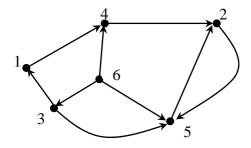
Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

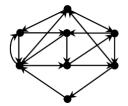
Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

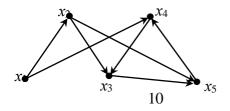
No	Код и наименование	Результаты обучения	Наименование оцено	очного средства
п/п	индикатора (в соответствии с п. 1.4)	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИПК-3.3 Демонстрирует навыки исследования вычислительной устойчивости решений алгебраических систем и дискретных аналогов дифференциальных задач	Знает основные типы объектов и структур, изучаемых теорией графов Умеет решать задачи теоретического и прикладного характера из различных разделов комбинаторных алгоритмов Владеет математическим аппаратом комбинаторных алгоритмов	Вопросы для устного	
2	ИПК-5.1 Анализирует поставленные задачи и выбирает эффективные математические методы при создании алгоритмов и вычислительных программ для решения современных задач математики и механики	Знает основные понятия теории графов, типовые методы, используемые при работе с графами, орграфами, Умеет осуществлять подбор эффективных алгоритмов для решения задач теоретического и прикладного характера из различных сфер применения теории графов Владеет математическим аппаратом теории графов	(письменного) опроса по теме, разделу Контрольная работа	Вопросы и задания к экзамену

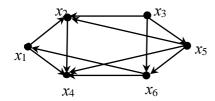

	ИПК-5.2 Описывает	Знает различные свой-	
	математические модели,	ства графов и связанных	
	формулирует, теорети-	с ними объектов, форму-	
	чески обосновывает и	лировки основополага-	
	реализует программно	ющих утверждений,	
	численные методы для	возможные сферы их	
	решения поставленных	приложений	
	задач	Умеет разработать про-	
3		граммную реализацию	
3		выбранного алгоритма,	
		произвести отладку про-	
		граммы и интерпретиро-	
		вать результаты ее рабо-	
		ТЫ	
		Владеет методами про-	
		изведения отладки про-	
		граммы и интерпретации	
		результатов ее работы	
	ИПК-5.3 Применяет в	Знает постановки клас-	
	профессиональной дея-	сических задач теории	
	тельности методику ис-	графов, возможные сфе-	
	следования и создания	ры их приложений, осно-	
	новых моделей, методов	вы построения компью-	
	и технологий в матема-	терных моделей	
4		-	
	тике, механике и есте-	Умеет строить модели объектов и понятий на	
	ственных науках		
		основе теории графов.	
		Владеет навыками алго-	
		ритмизации основных	
	HILLS A OF	задач теории графов	
	ИПК-5.4 Обладает	Знает основные понятия	
	навыками математиче-	теории графов и комби-	
	ского и алгоритмиче-	наторных алгоритмов,	
	ского моделирования	определения и свойства	
	социальных процессов	математических объек-	
		тов, используемых в этой	
		области; постановки оп-	
		тимизационных задач и	
		методы их решения;	
		формулировки основных	
		утверждений	
		Знает типовые методы,	
		используемые при работе	
		с графами, орграфами,	
		мультиграфами и сетями,	
		постановки наиболее	
5		известных задач на гра-	
		фах и сетях и эффектив-	
		ные алгоритмы их реше-	
		ния	
		Умеет осуществлять	
		подбор эффективных	
		алгоритмов для решения	
		задач на графах	
		Умеет разработать про-	
		граммную реализацию	
		выбранного алгоритма,	
		произвести отладку про-	
		граммы и интерпретиро-	
		вать результаты ее рабо-	
		ТЫ	
		Умеет формулировать	
		прикладные и теоретиче-	
	i		l

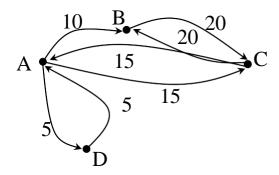
ские задачи на языке графов и сетей Владеет навыками разработки программной реализации выбранного алгоритма и отладки программы и интерпретации результатов ее	
тации результатов ее работы	


Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

Типовые задания для самостоятельных (контрольных) работ


- **1.** Опишите строение орграфа порядка n без параллельных дуг, удовлетворяющих для каждой вершины одному из следующих условий: a) $d^+(v) = 0$; б) $d^-(v) = 0$; в) $d^+(v) = n$; г) $d^-(v) = n$.
- 2. Покажите, что в любом бесконтурном орграфе есть и вершина с нулевой полустепенью захода, и вершина с нулевой полустепенью исхода.
- **3.** Орграф задан рисунком, представить граф матрицей смежности вершин, смежности дуг, инцидентности, матрицы достижимости, контрдостижимости. Найдите сильные компоненты графа


4. В орграфе, изображенном на рисунке, найдите контуры длиной 2, 3, 4, 5, 6; циклическую эйлерову цепь; гамильтонов контур.


- 5. Укажите орграф наименьшего порядка без петель, который не содержит ядра.
- 6. Найти матрицы сильных компонент и маршрутов длины три для графа

7. Упорядочьте, если это возможно, вершины и дуги орграфов графическим и матричным способом. Постройте наглядные изображения изоморфных графов

8. Найдите кратчайшие и максимальные пути длины 2 и 3 в графе G

9. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.

	x_1	x_2	<i>X</i> ₃	χ_4	<i>X</i> 5	χ_6
x_1	_	4	5	10	11	∞
x_2	∞	_	11	3	5	∞
x_3	∞	8	_	6	7	8
χ_4	∞	8	8	_	6	8
<i>X</i> 5	∞	8	8	8		8
x_6	∞	∞	∞	∞	∞	

10. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана — Мура.

	x_1	x_2	χ_3	χ_4	χ_5	x_6
x_1		7	5	8	9	8
x_2	8	_	-8	4	8	8
χ_3	8	∞	_	3	6	8
χ_4	8	8	8	_	8	8
χ_5	8	8	8	-4	_	6
x_6	∞	∞	∞	∞	∞	_

11. Граф задан матрицей весов. Найти длину максимального пути из вершины x_1 в x_6 и сам этот путь.

	x_1	\mathcal{X}_2	χ_3	χ_4	χ_5	χ_6
x_1	_	6	11	5	∞	∞
x_2	∞	_	∞	6	7	6
<i>x</i> ₃	∞	-5	_	∞	6	∞
x_4	∞	∞	∞	_	-4	5
<i>X</i> 5	∞	∞	∞	∞	_	7
x_6	∞	∞	∞	∞	∞ 7 6 -4 - ∞	_

12. По данной матрице пропускных способностей дуг орграфа найти максимальный поток от вершины $s = x_1$ до $t = x_7$ и указать минимальный разрез, отделяющий s от t

	x_1	χ_2	<i>X</i> 3	χ_4	<i>X</i> 5	χ_6	<i>X</i> 7
x_1	_	_	15	12	_	11	_
x_2	_	_	_	17	12	_	14
<i>x</i> ₃	_	_	_	_	17	15	21
χ_4	_	_	_	_	16	25	_
<i>x</i> ₅	_	_	_	_	_	13	_
x_6	_	13	ı	1	ı	ı	10
<i>x</i> ₇	_						

13. В таблице указаны запасы a_i некоторого однородного груза, находящегося у поставщиков A_i . Этот груз необходимо доставить за минимальное время получателям B_j , потребности b_j которых известны. В таблице приведены и продолжительности t_{ij} доставки груза (независимо от объема поставки) каждым поставщиком A_i каждому потребителю B_j . Составьте реализуемый за минимальное время план перевозок, при котором спрос потребителей удовлетворяется полностью.

a_i	13	5	2
9	3	10	6
7	4	2	5
4	7	4	8

14. Найдите оптимальное распределение работ между исполнителями с учетом их возможностей, оцениваемых элементами данной матрицы, и исходя из указанного начального распределения

	\mathcal{U}_1	\mathcal{U}_2	M_3	\mathcal{U}_4
P_1	1	0	1	0
P_2	0	1	1	1
P_3	1	0	0	1
P_4	1	0	0	1

Работы P_1 , P_2 , P_3 первоначально закреплены за исполнителями U_1 , U_2 , U_4 соответственно.

Перечень компетенций, проверяемых оценочным средством:

ПК-3, ПК-5

Зачетно-экзаменационные материалы для промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Основные определения. Полустепени исхода и захода. Исток и сток.
- 2. Маршруты, пути, цепи.
- 3. Связность. Конденсация.
- 4. Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости.
 - 5. Сильные компоненты в орграфе.
 - 6. Эйлеровы и гамильтоновы контуры в орграфе.
 - 7. Понятия базы и ядра в орграфе.
 - 8. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов
 - 9. Выявление маршрутов с заданным количеством ребер.
 - 10. Определение экстремальных путей. Метод Шимбелла.
 - 11. Нахождение кратчайших путей. Алгоритм Дейкстры.
 - 12. Алгоритм Беллмана-Мура.
 - 13. Алгоритм нахождения максимального пути.
 - 14. Теорема Форда-Фалкерсона. Поток минимальной стоимости.
 - 15. Элементы сетевого планирования. Сетевые и линейные графики.
 - 16. Транспортная задача по критерию времени.
 - 17. Задача об оптимальном назначении.

Билеты к экзамену

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №1

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Основные определения. Полустепени исхода и захода. Исток и сток.
- 2. Задача об оптимальном назначении.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №2

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Маршруты, пути, цепи.
- 2. Транспортная задача по критерию времени.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №3

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Связность. Конденсация.
- 2. Элементы сетевого планирования. Сетевые и линейные графики.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №4

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости.
- 2. Теорема Форда-Фалкерсона. Поток минимальной стоимости.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №5

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Сильные компоненты в орграфе.
- 2. Алгоритм Беллмана-Мура.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №6

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Эйлеровы и гамильтоновы контуры в орграфе.
- 2. Нахождение кратчайших путей. Алгоритм Дейкстры.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №7

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Понятия базы и ядра в орграфе.
- 2. Определение экстремальных путей. Метод Шимбелла.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №8

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов
- 2. Выявление маршрутов с заданным количеством ребер.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Образцы задач для экзамена

- **1.** Упорядочьте, если это возможно, вершины и дуги орграфов, заданных матрицами смежности вершин, графическим и матричным способом. Постройте наглядные изображения изоморфных графов
- **2.** По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.
- **3.** По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана Мура.

4. На сети с истоком I и стоком S построить поток максимальной мощности. Выписать ребра, образующие разрез минимальной пропускной способности. Для удобства на рисунке пропускные способности указаны в скобках в одну и другую сторону

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии оценивания результатов обучения в соответствии с уровнем освоения дисциплины.

Пороговый уровень (оценка удовлетворительно): знание и понимание теоретического содержания курса с незначительными пробелами; отсутствие некоторых практических умений при решении задач; недостаточное качество выполнения всех предусмотренных программой обучения учебных заданий; владение приемами решения почти всех типов практических заданий; знание формулировок основных определений и утверждений дисциплины, проявление способности к восприятию информации, постановке цели и выбору путей ее достижения в ходе решения практических заданий; владение и использование основной профессиональной логико-математической лексики.

Базовый уровень (оценка хорошо): достаточное знание и понимание теоретического содержания курса, без пробелов; недостаточная сформированность некоторых практических умений при применении знаний в конкретных ситуациях; достаточное качество выполнения всех предусмотренных программой обучения учебных заданий; владение приемами решения всех типовых практических заданий; знание формулировок всех определений и основных утверждений дисциплины, умение доказывать некоторые из них, применяя методы обобщения и анализа, проявление способности к восприятию информации, постановке цели и определению путей ее достижения; достаточное владение и использование профессиональной логико-математической лексики.

Продвинутый уровень (оценка *отлично*): полное знание и понимание теоретического содержания курса, без пробелов; полная сформированность необходимых практических умений при применении знаний в конкретных ситуациях; высокое качество выполнения всех предусмотренных программой обучения учебных заданий; свободное владение приемами решения всех типовых практических заданий; знание формулировок всех определений и утверждений курса, владение методами доказательств основных утверждений, в ходе которых проявляется способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения; владение и свободное использование профессиональной логико-математической лексики.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

- 1. Болотюк, В. А. Практикум и индивидуальные задания по элементам теории графов (типовые расчеты): учебное пособие для вузов / В. А. Болотюк, Л. А. Болотюк. Санкт-Петербург: Лань, 2022. 152 с. ISBN 978-5-8114-8761-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/200357(дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 2. Дзержинский, Р. И. Теория графов: учебное пособие / Р. И. Дзержинский, Б. А. Крынецкий. Москва: РТУ МИРЭА, 2022. 104 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/311000 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 3. Игнатьев, А. В. Теория графов. Лабораторные работы: учебное пособие / А. В. Игнатьев. Санкт-Петербург: Лань, 2022. 64 с. ISBN 978-5-8114-9603-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/230342 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 4. Карпов, Д. В. Теория графов: учебное пособие / Д. В. Карпов. Москва: МЦНМО, 2022. 555 с. ISBN 978-5-4439-3690-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/305501 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 5. Сухан, Ирина Владимировна (КубГУ). Графы: учебное пособие / И. В. Сухан, О. В. Иванисова, Г. Г. Кравченко; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Изд. 2-е, испр. и доп. Краснодар: 2015. 172 с.: ил. Библиогр.: с. 168. ISBN 978-5-8209-1125-5
- 6. Сухан И. В. Ориентированные графы: учебное пособие / И. В. Сухан. изд.2-е, испр. Краснодар, КубГУ, 2019. 124 с.
- 7. Шевелев, Ю.П. Сборник задач по дискретной математике: учеб. пособие / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев.— Санкт-Петербург: Лань, 2013. 528 с. https://e.lanbook.com/book/5251

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Университетская библиотека ONLINE».

Собственные электронные образовательные и информационные ресурсы КубГУ: Среда модульного динамического обучения http://moodle.kubsu.ru

6. Методические указания для обучающихся по освоению дисциплины (модуля).

Текущая самостоятельная работа студента, направленная на углубление и закрепление знаний студента, развитие практических умений, осуществляется при проработке материалов лекций и соответствующей литературы, подготовке к промежуточному и итоговому контролям, подготовке к выполнению лабораторных работ и написанию отчетов.

Для улучшения качества и эффективности самостоятельной работы студентов предлагаются методические указания к лабораторным работам, списки основной и дополнительной

литературы. Все методические материалы предоставляются как в печатном, так и в электронном видах.

Текущая и опережающая СРС заключается в:

- работе студентов с лекционным материалом, поиске и анализе литературы и электронных источников информации по заданной проблеме;
 - изучение теоретического материала к лабораторным занятиям;
 - подготовке к промежуточному контролю.

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Формы контроля со стороны преподавателя включают:

- проверочные работы по результатам изучения некоторых разделов курса;
- отчет по лабораторным занятиям;
- экзамен.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Для подготовки к экзамену необходимо использовать указания и рекомендации, данные преподавателем в ходе занятий. Если студент испытывает какие-либо затруднения с пониманием материала, он всегда может получить консультацию преподавателя.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows 10 Microsoft Office PowerPoint Professional Plus.
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Мебель: учебная мебель	
Учебные аудитории для проведения лабораторных работ.	Мебель: учебная мебель	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду университета.

Наименование помещений для самостоятельной работы обуча-	Оснащенность помещений для самостоятельной работы обуча-	Перечень лицензионного про- граммного обеспечения
ющихся	ющихся	
Помещение для самостоятельной	Мебель: учебная мебель	1. Microsoft Windows 10
работы обучающихся (читальный	Комплект специализированной	2. Microsoft Office PowerPoint
зал Научной библиотеки)	мебели: компьютерные столы	Professional Plus.
	Оборудование: компьютерная	

	<u> </u>	<u> </u>
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	
	рудование, обеспечивающее до-	
	ступ к сети интернет (проводное	
	соединение и беспроводное со-	
	единение по технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	1. Microsoft Windows 10
работы обучающихся (ауд.)	Комплект специализированной	2. Microsoft Office PowerPoint
	мебели: компьютерные столы	Professional Plus.
	Оборудование: компьютерная	
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	
	рудование, обеспечивающее до-	
	ступ к сети интернет (проводное	
	соединение и беспроводное со-	
	единение по технологии Wi-Fi)	