министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет компьютерных технологий и прикладной математики

«30» мая 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.01.01 «Решение прикладных задач с использованием математических пакетов»

Направление подготовки 01.03.02 Прикладная математика и информатика

Направленность (профиль) Математическое моделирование в естествознании и технологиях

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины «Решение прикладных задач с использованием математических пакетов» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению 01.03.02 Прикладная математика и информатика, профиль Математическое моделирование в естествознании и технологиях

Программу составили:

Фоменко С.И., канд. физ.-мат. наук, доцент кафедры прикладной математики КубГУ;

Евдокимов А.А., канд. физ.-мат. наук, доцент кафедры математического моделирования

Рабочая программа дисциплины «Решение прикладных задач с использованием математических пакетов» утверждена на заседании кафедры математического моделирования протокол №11 «22» мая 2025 г.

Заведующий кафедрой математического моделирования, акад. РАН, д-р физ.-мат. наук, проф. Бабешко В.А.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол №4 от «23» мая 2025 г. # M

Председатель УМК факультета д-р. техн. наук, доцент Коваленко А.В.

Рецензенты:

Бегларян М.Е., канд. физ.-мат. наук, зав. кафедрой СГЕНД СКФ ФГБОУ ВО «РГУП»

Костенко К.И., канд. физ.-мат. наук, доцент кафедры математического моделирования ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Данная дисциплина ставит своей целью развитие профессиональных компетентностей приобретения практических навыков соответствующих разделов математики, подготовить обучающихся к успешной работе в различных сферах, применяющих математические методы и информационные технологии и развить способности самостоятельно приобретать и применять новые знания и умения.

Цели дисциплины соответствуют формируемой компетенции ПК-2, ПК-3.

1.2 Задачи дисциплины:

Основные задачи дисциплины:

- ознакомление с основами машинных вычислений, базовыми методами вычислительной математики,
 - знакомство с основными элементами алгоритмических языков Фортран;
 - изучение особенностей программной реализации численных алгоритмов.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Решение прикладных задач с использованием математических пакетов» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана подготовки бакалавра, базируется на знаниях, полученных по стандарту высшего образования.

Курс является естественным продолжением читаемых ранее курсов. Данный курс наиболее тесно связан с теорией вычислительных методов, методов машинных вычислений.

Теоретической базой дисциплины являются математические дисциплины: математический анализ, обыкновенные дифференциальные уравнения, численные методы в объеме, предусмотренном для соответствующей специальности.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на овладение обучающимися профессиональной компетенцией (ПК)

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции	
ПК-2 Способен активно участвовать в исследо	вании новых математических моделей в естественных
науках	
ИПК-2.1	Знает базовые методы вычислительной математики
(06.016 А/30.6 Зн.3) Предметная область и	(ИПК-2.1); виды пакетов прикладных программ для
методы математического моделирования в	использования их в своей профессиональной
естественных науках; ИПК-2.3 (40.001 А/02.5	деятельности (ИПК-2.3).
3н.2) Отечественный и международный опыт в	Умеет программировать и решать стандартные задачи
исследовании математических моделей в	по курсу вычислительных методов; применять
естественных науках; ИПК-2.6 (06.016 А/30.6	полученные знания в своей учебной и научной

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции	
У.1) Анализировать входные данные при	деятельности (ИПК-2.6)
проведении исследований математических	Владеет технологией применения пакетов прикладных
моделей в естественных науках; ИПК-2.11	программ для решения научных и практических задач
(40.001 А/02.5 Др.2) Деятельность, направленная	(ИПК-2.11)
на решение задач аналитического характера,	
предполагающих выбор и многообразие	
актуальных способов решения задач, разработки	
новых математических моделей в естественных	
науках	
	ых алгоритмах компьютерной математики; обладать
	реализации математически сложных алгоритмов
ИПК-3.1	Знает состояние современного рынка прикладных
(06.001 D/03.06 Зн.3) Методы и средства проектирования программного обеспечения при	программных продуктов; основы математического моделирования и решения практических задач с
реализации математически сложных алгоритмов	применением ППП; основные подходы к интерпретации
ИПК-3.4	и визуализации результатов численных расчетов (ИПК-
(06.001 D/03.06 У.1) Использовать	3)
существующие типовые решения и шаблоны	Умеет применять на практике численные методы,
проектирования программного обеспечения	применять современные пакеты прикладных программ
эффективно реализующих математически	для решения задач математического моделирования
сложные алгоритмы	физических процессов (ИПК-3.4), визуализировать и
ИПК-3.5	интерпретировать результаты вычислительного
(06.001 D/03.06 У.2) Ориентироваться в	эксперимента, полученные с применением ППП (ИПК-
современных алгоритмах компьютерной	3.5)
математики, при-менять методы и средства	Владеет технологией применения пакетов прикладных
проектирования программного обеспечения,	программ для решения научных и практических задач,
структур данных, баз данных, программных	общими принципами построения вычислительных
интерфейсов	алгоритмов, навыками написания и отладки
ИПК-3.8	вычислительных программ (ИПК-3.8)
(40.001 А/02.5 Тд.1) Проведение экспериментов	
по оценке эффективности реализации	
математически сложных алгоритмов	

Процесс освоения дисциплины «Решение прикладных задач с использованием математических пакетов» направлен на получения необходимого объема знаний, отвечающих требованиям $\Phi\Gamma$ OC BO и обеспечивающих успешное ведение бакалавром научно-исследовательской деятельности, владение методологией формулирования и решения прикладных задач, а также на выработку умений применять на практике методы прикладной математики и информатики.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач. ед., 72 часа (из них 38,2 аудиторных), их распределение по видам работ представлено в таблице.

Вид учебной работы	Всего	Семестры
	часов	(часы)
		5
Контактная работа, в том числе:		
Аудиторные занятия (всего):	34	34
Занятия лекционного типа	_	_
Лабораторные занятия	34	34
Занятия семинарского типа (семинары,		
практические занятия)	_	_

Иная контактная работа			
Контроль самостоятельной	й работы (KCP)	4	4
Промежуточная аттестаци	я (ИКР)	0,2	0,2
Самостоятельная работа	, в том числе:		
Проработка учебного (теор	ретического) материала	10	10
Выполнение индивидуалы	ных заданий	20	20
Подготовка к текущему ко	3,8	3,8	
Контроль:			
Подготовка к зачету		-	-
Общая трудоемкость	час.	72	72
	в том числе контактная работа	38,2	38,2
	зач. ед	2	2

Курс «Решение прикладных задач с использованием математических пакетов» состоит из лабораторных занятий, сопровождаемых регулярной индивидуальной работой преподавателя со студентами в процессе самостоятельной работы.

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 5 семестре

			Количество ч	насов
№	Наименование разделов		Аудиторная работа	Внеауди- торная ра- бота
			ЛР	CPC
1	Основы программирования на языке Фортран	4	2	2
2	Основы программирования на языке Си	4	2	2
3	Погрешности вычислений	4	2	2
4	Табличное задание и интерполирование функций	4	2	2
5	Численное интегрирование	6	2	4
6	Численное решение систем линейных уравнений	6	2	4
7	Численное решение нелинейных уравнений		4	2
8	Переопределенные системы линейных уравнений	6	4	2
9	Численное решение обыкновенных дифферен- циальных уравнений. Задача Коши.	6	4	2
10	Численное решение обыкновенных дифференциальных уравнений. Краевая задача.	10	4	6
11	Численное решение интегральных уравнений	8	4	4
12	12 Обзор изученного материала и проведение зачета		2	1,8
	Контроль самостоятельной работы (КСР)	4	_	_
	Промежуточная аттестация (ИКР)	0,2	_	_
Ито	го по дисциплине:	72	34	33,8

Вид аттестации: зачет

Примечание: ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

Учебный план не предусматривает занятий лекционного типа по дисциплине «Решение прикладных задач с использованием математических пакетов».

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№ раздела	Наименование	Содержание раздела	Форма те- кущего контроля
1	2 3		4
1	Основы программирования на языке Фортран	Синтаксис и семантика языка Фортран (инструкции, циклы, условные операторы и др.). Вычисления с плавающей точкой. Графы вычислительных процессов. Массивы. Указатели. Структуры данных, типы. Функции. Головная программа. Внешние процедуры. Внутренние процедуры. Параметры процедур. Работа с файлами.	Опрос на ЛР, Отчет по ЛР
2	Основы программирования на языке Matlab	Интерфейс Matlab, синтаксис и семантика языка Matlab (инструкции, циклы, условные операторы и др.).Вычисления с плавающей точкой. Графы вычислительных процессов. Массивы. Указатели. Структуры данных, типы. Функции. Головная программа. Внешние процедуры. Внутренние процедуры. Параметры процедур. Работа с файлами.	Опрос на ЛР, Отчет по ЛР
3	Погрешности вычислений	Вычисление машинного эпсилон. Анализ распространения ошибок. Вычисление значения функции с помощью разложения ее в ряд Тейлора. Вычисление производной. Неустойчивость некоторых алгоритмов. Чувствительность некоторых задач.	Опрос на ЛР, Отчет по ЛР
4	Табличное задание и интер- полирование функций	Построение интерполяционных многочленов Лагранжа по табличным значениям функции, численный анализ погрешности. Сплайны. Нелокальная гладкая	Опрос на ЛР, Отчет по ЛР

		кусочно-многочленная интерполяция. Тригонометрическая интерполяция. Многочлены Чебышёва.	
5	Численное интегрирование	Разработка программ численного интегрирования с помощью различных квадратурных формул (трапеций, метод Симпсона, формулы Гаусса), кубатурные формулы, численные эксперименты.	Опрос на ЛР, Отчет по ЛР
6	Численное решение систем линейных уравнений	Разработка компьютерных алгоритмов численного решение система линейных алгебраических уравнений с помощью прямых (гаусса, LU-разложение, методы ортогоналзизации) и итерационных методов (Зейделя, сопряженных градиентов, релаксации).	Опрос на ЛР, Отчет по ЛР
7	Численное решение не- линейных уравнений	Разработка компьютерных программ решения нелинейных уравнений с помощью различных методов (дихотомии, секущих, метод парабол, простых итераций)	Опрос на ЛР, Отчет по ЛР
8	Переопределенные системы линейных уравнений	Реализация алгоритмов решения переопределенных систем уравнений. Оценка обусловленности матрицы системы МНК. Метод Гаусса. Метод сопряженных градиентов.	Опрос на ЛР, Отчет по ЛР
9	Численное решение обыкновенных дифференциальных уравнений. Задача Коши.	Реализация алгоритмов численного решения задачи Коши различными методами (Эйлера, Рунге-Куты, экстраполяция Ричардсона. и др.)	Опрос на ЛР, Отчет по ЛР
10	Численное решение обыкновенных дифференциальных уравнений. Краевая задача.	Реализация алгоритмов численного решения линейных краевых задач различными методами (Рунге-Куты, метод пристрелки, конечно-разностный метод)	Опрос на ЛР, Отчет по ЛР
11	Численное решение инте- гральных уравнений	Реализация алгоритмов численного решения интегральных уравнений (метод последовательных приближений, проекционные методы, метод коллокаций, наименьших квадратов, метод моментов)	Опрос на ЛР, Отчет по ЛР

2.3.4 Примерная тематика курсовых работ (проектов)

Учебный план не предусматривает курсовых работ по дисциплине «Решение прикладных задач с использованием математических пакетов».

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Подготовка к текущему контролю, подготовка индивидуальных заданий	1. Алгазин С.Д. Численные алгоритмы классической математической физики. М.: Диалог-МИФИ, 2010. 240 с. [Электронный ресурс] Режим доступа: http://biblioclub.ru/index.php?page=book&id=135962. 2. Артёмов И. Программирование больших вычислительных задач на современном Фортране с использованием компиляторов Intel. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 178 с. [Электронный ресурс] Режим доступа: http://biblioclub.ru/index.php?page=book&id=429190. 3. Методические указания по организации и выполнению самостоятельной работы, утвержденные на заседании кафедры математического моделирования факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол № 10 от 30.03.2018

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

С точки зрения применяемых методов используются традиционные методы: лабораторные занятия, самостоятельная работа студента консультации, зачет.

Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Семестр	Вид за-	Исп	Используемые интерактивные образовательные техноло- гии				
		Ком	пьютерные симуляции. Разбор конкретных ситуа-	часов 10			
		ций.		10			
		No	Тема	количество			
		245	1 Civia	часов			
		1	Численное решение обыкновенных дифференци-	2			
5	ЛЗ	1	альных уравнений. Задача Коши	<u> </u>			
		2	Численное решение обыкновенных дифференциаль-	2			
							ных уравнений. Краевая задача
		3	Численное решение интегральных уравнений	2			
		4	Численное решение нелинейных уравнений	2			
		5	Переопределенные системы линейных уравнений	2			

Цель *пабораторного занятия* — научить применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах.

Темы, задания и вопросы для самостоятельной работы призваны сформировать навыки поиска информации, умения самостоятельно расширять и углублять знания, полученные в ходе лабораторных занятий.

Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы. Это обусловлено тем, что в процессе моделирования часто встречаются задачи, для которых единых подходов не существует. Каждая конкретная задача при своем моделировании (исследовании) имеет множество подходов, а это требует разбора и оценки целой совокупности конкретных ситуаций. Этот подход особенно широко используется при определении адекватности численной модели и результатов моделирования на отдельных этапах.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины.

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме:

- контроль за выполнением домашних заданий;
- проверка выполнения самостоятельных работ;
- проведение контрольных работ.

и промежуточной аттестации в форме вопросов и заданий на зачете.

Зачет выставляется по результатам выполненных контрольных работ, индивидуальных заданий и текущей работы на лабораторных и лекционных занятиях (посещаемост), а также ответа на теоретические вопросы во время зачета.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

No	Код и наименование	Dearway general of the same	Наименование оцен	ючного средства
п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИПК-2.1 (06.016 А/30.6 Зн.3) Предметная область и методы математического моделирования в естественных науках;	Знает базовые методы вычислительной математики	Устный опрос и письменный отче-ты по лабора-торным работам 4-11;	Вопросы на зачете, отчеты по лабораторным работам 4-11
2	ИПК-2.3 (40.001 A/02.5 3н.2) Отечественный и международный опыт в исследовании математических моделей в естественных науках;	Знает виды пакетов прикладных программ для использования их в своей профессиональной деятельности	Устный опрос и письменный отчеты по лабораторным работам 1-3	Вопросы на зачете, отчеты по лабораторным работам 1-3
3	ИПК-2.6 (06.016 A/30.6 У.1) Анализировать входные данные при проведении исследований математических моделей в естественных науках;	Умеет программировать и решать стандартные задачи по курсу вычислительных методов; применять полученные знания в своей учебной и научной деятельности	Устный опрос и письменный отчеты по лабораторным работам 3-8	Вопросы на зачете, отчеты по лабораторным работам 3-8
4	ИПК-2.11 (40.001 A/02.5 Др.2) Деятельность, направленная на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач,	Владеет технологией применения пакетов прикладных программ для решения научных и практических задач	Устный опрос и письменный отче-ты по лаборатор-ным работам 1-2,5,6, 9-11	Вопросы на зачете, отчеты по лабораторным работам 1-2,5,6, 9-11

	разработки новых			
	математических моделей в			
	естественных науках ИПК-3.1(06.001 D/03.06 Зн.3) Методы и средства проектирования программного	Знает состояние современного рынка прикладных программных	Устный опрос и письменный отче- ты по лаборатор-	Вопросы на за- чете, отчеты по лаборатор-
5	обеспечения при реализации математически сложных алгоритмов	продуктов; основы математического моделирования и решения практических задач с применением ППП; основные подходы к интерпретации и визуализации результатов численных расчетов	ным работам 1-11	ным работам 1- 11
6	ИПК-3.4(06.001 D/03.06 У.1) Использовать существующие типовые решения и шаблоны проектирования программного обеспечения эффективно реализующих математически сложные алгоритмы	Умеет применять на практике численные методы, применять современные пакеты прикладных программ для решения задач математического моделирования физических процессов	Устный опрос и письменный отче-ты по лабораторным работам 10-11, проверка индивидуальных заданий.	отчеты по лабораторным работам 10-11, отчет по инди- видуальной за- даче
7	ИПК-3.5 (06.001 D/03.06 У.2) Ориентироваться в современных алгоритмах компьютерной математики, при-менять методы и средства проектирования программного обеспечения, структур данных, баз данных, программных интерфейсов	Умеет визуализировать и интерпретировать результаты вычислительного эксперимента, полученные с применением ППП	Устный опрос и письменный отче-ты по лабораторным работам 4-11	Вопросы на зачете, отчеты по лабораторным работам 4-11
8	ИПК-3.8 (40.001 A/02.5 Тд.1) Проведение экспериментов по оценке эффективности реализации математически сложных алгоритмов	Владеет технологией применения пакетов прикладных программ для решения научных и практических задач, общими принципами построения вычислительных алгоритмов, навыками написания и отладки вычислительных программ	Устный опрос и письменный отче- ты по лаборатор- ным работам 5-11	Вопросы на зачете, отчеты по лабораторным работам 5-11

4.1 Фонд оценочных средств для проведения текущего контроля.

Примерные задания на лабораторные работы

Раздел 1,2.

1) Каждая разновидность целого типа моделируется множеством

$$i=s\sum_{k=1}^q w_k\cdot r^{k-1}$$
, где $s=\pm 1$, q- положительное число, r — основание в модели (r = 2), w_k — целое число ($0\le w_k < r$). Каждая разновидность вещественного типа моделируется множеством $x=0$ и $x=s\cdot b^e\sum_{k=1}^p f_k\cdot b^{-k}$, где $s=\pm 1$, p — целое число, $p>1$, b — основание в модели (b = 2), е — целое число из отрезка $e_{\min}\le e< e_{\max}$, f_k — целое число

ло ($0 \le f_k < b$), кроме того $f_1 \ne 0$. Для данных представлений целого и нормализованного вещественного числа вывести формулы количества N_i целых чисел и N_r вещественных нормализованных чисел, учитывая, что представление нуля единственно, а первая цифра после запятой мантиссы не равна нулю.

Раздел 3.

- 1) Написать программу для округления вещественного числа до N значащих десятичных цифр, т.е. до N десятичных разрядов в мантиссе. Реализовать два варианта округления методом отбрасывания и методом симметричного округления.
- 2) Вычислить значения синуса через разложение в виде ряда Тейлора $\sin\ x \approx \sum_{n=1}^N \frac{x^{(2n-1)}}{(2n-1)!} (-1)^{(n+1)}$. Суммировать член ряда, пока его абсолютная величина превышает $\varepsilon=10^{-8}$. Если его абсолютная величина меньше или равна $\varepsilon=10^{-8}$, прекращать суммирование. Вычислить таким образом значения для $x=\frac{\pi}{6}+2\pi k$; $k=0,1,...\,10,11$. Вычисления произвести для простой и двойной точности переменных. Вывести результат как таблицу аргументов, значений синуса для простой и двойной точности и значений синуса, вычисленных стандартной программой простой и двойной точности. Объяснить результаты.

Раздел 4.

- 1) Дан многочлен P(x) порядка n. Написать программу, точно и приближенно вычисляющую его производные P'(x), P''(x), P'''(x).
- 2). Даны действительные числа s и t, многочлен P(x) степени n. Написать программу, вычисляющую коэффициенты многочлена $(sx^2 + t)P(x) + P'(x)$
- 3) Даны действительные числа s и t, многочлен P(x) степени n. Написать программу, вычисляющую точное значение интеграла $\int\limits_{0}^{t}P(x)dx$

Раздел 5.

1) Написать программу разложения функции $f(x) = \begin{cases} -\frac{\pi}{2} - \mathbf{x} & , & -\pi \leq \mathbf{x} < 0 \\ & \mathbf{B} \\ \mathbf{x} - \frac{\pi}{2} & , & 0 < \mathbf{x} \leq +\pi \end{cases}$

ряд Фурье на интервале $(-\pi, +\pi)$: $\tilde{f}(x) \approx \frac{a_0}{2} + \sum_{n=1}^p (a_n \cos nx + b_n \sin nx)$; $p \le 100$; $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$; $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$; $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$. Интегралы вычислять по методу Симпсона.

2) Написать программу разложения функции $f(x) = \sin\left(\frac{\pi x}{2}\right)$ по полиномам Чебышева на интервале (-1,+1): $\tilde{f}(x) \approx \sum_{i=0}^n a_i T_i(x)$, $n \leq 9$, $a_0 = \frac{1}{\pi} \int_{-1}^1 \frac{f(x) dx}{\sqrt{1-x^2}}$,

 $a_i = rac{2}{\pi} \int\limits_{-1}^1 rac{f(x)T_i(x)dx}{\sqrt{1-x^2}}$, интегралы вычислять по квадратурным формулам Гаусса 2-го порядка.

Раздел 6.

- 1) Найти численно частичную сумму ряда: $S_1 = \sum_{n=1}^N n^{-a}$. Суммирование производится до тех пор, пока S_1 изменяется. Максимальное N, при котором S_1 изменяет свое значение, запоминается, затем производится вычисление частичной суммы ряда в обратном направлении: $S_2 = \sum_{n=N}^1 n^{-a}$. Найти такое $0.01 \le a \le 1$ с шагом a = 0.01, для которого $R = \left|S_2 / S_1 1\right|$ достигает своего максимального значения. Привести значения N, a, R. Объяснить результаты.
- 2) Дана квадратная матрица A порядка m, натуральное число n. Написать программу, вычисляющую матрицу $E + A + A^2 + ... A^n$, где E- единичная матрица порядка m.
- 3) Написать программу решения системы линейных уравнений с комплексной матрицей общего вида размерности $N \times N$, $N \le 25$ с произвольной правой частью методом Гаусса.

Протестировать программу на системе вида Ax = b, где

$$a_{nm} = \frac{1}{2m+n} + i \frac{(-1)^{(n+m+1)}}{m+2n}, b_j = \sum_{k=1}^{N} a_{jk}.$$

Таким образом, решение этой системы известно: $x = \{1,.....1\}$. Сравнить невязки $\max_{2 \le N \le 20} \| \widetilde{x} - x \|$ как функции размерности системы N данного вида и вывести в виде графика N = 1,2,...,25.

Раздел 7.

- 1) Напишите программу для нахождения на основе метода Ньютона-Рафсона вещественных корней уравнения $x^4-26\,x^3+131\,x^2-226\,x+120=0\,$ с точностью $\varepsilon=10^{-14}$ на интервале $0\leq x\leq 20$.
- 2) Реализовать в виде подпрограммы метод нахождения корней многочлена 3-й степени $p(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0$ с произвольными комплексными коэффициентами a_n по формулам Кардано. В качестве входных параметров задаются значения коэффициентов a_n . В качестве выходных параметров выдается комплексный массив найденных корней $z_1 z_3$. В качестве контроля найти корни многочленов

$$f(z) = (z-i)(z-2i)(z-3i)$$
, $f(z) = (z-1)(z-2)(z-3)$, $f(z) = (z-1)^3$,
 $f(z) = (z-i)(z-1.001i)(z-1.0001i)$, $f(z) = (z-1)(z-1)(z-2)$.

Раздел 9, 10

1) Дано уравнение $y' = f(x, y) = 4 \sin x - 2x^2$ и начальное условие y(0) = -1. Реализуйте вычисление y(x) методом Рунге-Кутта 4-го порядка по формулам

$$y_{n+1} = y_n + \Delta y_n$$
, $\Delta y_n = \frac{1}{8}(k_1 + 3k_2 + 3k_3 + k_4)$, $k_1 = hf(x_n, y_n)$,

$$k_2 = hf(x_n + \frac{h}{3}, y_n + \frac{k_1}{3}), k_3 = hf(x_n + \frac{2h}{3}, y_n - \frac{k_1}{3} + k_2),$$

 $k_4 = hf(x_n + h, y_n + k_1 - k_2 + k_3)$

в виде внешней процедуры-функции. Обозначим это решение как $\tilde{y}(x)$. Величину шага h подберите эмпирически исходя из требуемой точности.

Найдите все нули \tilde{x}_n функции $\tilde{y}(x)$ на отрезке [-2,3] с точностью $\varepsilon = 10^{-3}$ с помощью подпрограммы DZBREN из библиотеки IMSL (Бартеньев О.В. Фортран для профессионалов. Математическая библиотека IMSL . Часть 2, с. 87).

2) Дано уравнение $y' = f(x, y) = \sin y^2 + \cos x$ и начальное условие y(0) = -1.

Реализуйте вычисление y(x) методом Рунге-Кутта 4-го порядка по формулам

$$y_{n+1} = y_n + \Delta y_n$$
, $\Delta y_n = \frac{1}{6}(k_1 + 4k_3 + k_4)$, $k_1 = hf(x_n, y_n)$, $k_2 = hf(x_n + \frac{h}{4}, y_n + \frac{k_1}{4})$, $k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$, $k_4 = hf(x_n + h, y_n + k_1 - 2k_2 + 2k_3)$

в виде внешней процедуры-функции. Обозначим это решение как $\tilde{y}(x)$.

Величина шага h подбирается эмпирически исходя из требуемой точности.

По графику функции $\tilde{y}(x)$ определите приблизительно вид асимптотического решения $y_a(x)$ (в виде элементарной функции) уравнения (1) при больших значениях аргумента x>20. Для 90 < x < 100 определите параметры функции $y_a(x)$, приближенно описывающей асимптотику $\tilde{y}(x)$ при $x\to\infty$. Написать программу определения параметров асимптотики с абсолютной погрешностью $\varepsilon=0.01$ и уточнить эти параметры. Постройте график $\tilde{y}(x)$, $y_a(x)$ на отрезке [0,100].

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Основные требования к результатам освоения дисциплины представлены в таблице в виде признаков сформированности компетенций. Требования формулируются по двум уровням: пороговый и повышенный и в соответствии со структурой, принятой в ФГОС ВО: знать, уметь, владеть.

Примерный перечень вопросов, выносимых на зачет Сравнение соответствующих элементов языков Фортран и Matlab.

- 1. Управляемый списком ввод-вывод.
- 2. Типы встроенных данных. Операторы объявления типов.
- 3. Дескрипторы данных.
- 4. Файлы прямого доступа.
- 5. Дескрипторы управления
- 6. Статические массивы.
- 7. Арифметические выражения.
- 8. Логические выражения и выражения отношения.

Оператор IF. Конструкции IF.

- 9. DO-циклы. Операторы EXIT и CYCLE.
- 10. Головная программа. Внешние процедуры. Внутренние процедуры.

Параметры процедур.

- 11. Оператор FORMAT. Преобразование данных.
- 12. Списки ввода-вывода.
- 13. Виды файлов Фортрана. Файловый указатель.
- 14. Внутренние файлы. Внешние файлы.
- 15. Файлы последовательного доступа.
- 16. Операции над внешними файлами.
- 17. Методология императивного программирования.
- 18. Методология объектно-ориентированного программирования.
- 19. Технологии программирования. Классические технологические процессы.
- 20. Тестирование и отладка. Ввод программы в действие. Эксплуатация и сопровождение.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Для успешного выполнения лабораторной работы обучающемуся следует ознакомиться с теоретической частью дисциплины по теме лабораторной работы, изложенной в лекциях. Для углубленного понимания теоретического материала могут быть использованы источники, указанные в списке основной литературы [1-4], дополнительной [1-3].

Критерием должной подготовки студентов к выполнению лабораторных работ являются приобретенные знания, позволяющие безошибочно ответить на вопросы, сформу-

лированные по каждой теме лабораторных работ, подготовить в письменном виде отчет о проделанной лабораторной работе, оформленный согласно ГОСТ..

Зачет является заключительным этапом процесса формирования компетенции студента при изучении дисциплины или ее части и имеет целью проверку и оценку знаний студентов по теории и применению полученных знаний, умений и навыков при решении практических задач. Зачеты проводятся по расписанию, сформированному учебным отделом и утвержденному проректором по учебной работе, в сроки, предусмотренные календарным графиком учебного процесса. Расписание зачетов доводится до сведения студентов не менее чем за две недели до начала экзаменационной сессии. Зачеты принимаются преподавателями, ведущими занятия.

Зачеты проводятся в устной форме. Зачет проводится только при предъявлении студентом зачетной книжки и при условии выполнения всех контрольных мероприятий, предусмотренных учебным планом и рабочей программой по изучаемой дисциплине. Результаты зачета оцениваются по двухбалльной системе («зачет», «незачет») и заносятся в ведомость и зачетную книжку. В зачетную книжку заносятся только положительная оценка.

Критерии выставления оценок

Оценка «зачет»:

- правильные и полные ответы на зачетные вопросы, правильное выполнение зачетных задач;
- высокий уровень сформированности заявленных в рабочей программе компетенций.

Оценка «незачет»:

- неправильные или неполные ответы на зачетные вопросы, неправильное выполнение зачетных задач;
- отказ от ответа;
- -низкий уровень сформированности заявленных в рабочей программе компетенций.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Алгазин С.Д. Численные алгоритмы классической математической физики. М.: Диалог-МИФИ, 2010. 240 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=135962.
- 2. Артёмов И. Программирование больших вычислительных задач на современном Фортране с использованием компиляторов Intel. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 178 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=429190.
- 3. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: БИНОМ. Лаборатория знаний, 2011. 636 с.
- 4. Синицын С.В. Основы разработки программного обеспечения на примере языка С. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 212 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=429186.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1. Немнюгин С.А. Введение в программирование на Intel Cilk Plus. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 148 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=429080.
- 2. Царев, Р.Ю. Программирование на языке Си. Красноярск: Сибирский федеральный университет, 2014. 08 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=364601.
- 3. Хиценко, В.П. Основы программирования. Новосибирск: НГТУ, 2015. 83 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=438365.

5.3. Периодические издания:

- 1. Вычислительные технологии// Институт вычислительных технологий СО РАН. http://www.ict.nsc.ru/jct/
- 2. Журнал вычислительной математики и математической физики //«Академиздатцентр «Наука». ISSN 0044-4669. http://www.mathnet.ru/zvmmf
- 3. Вычислительные методы и программирование: новые вычислительные технологии // Научно-исследовательский вычислительный центр Московского государственного университета им. М.В. Ломоносова. ISSN 1726-3522. http://num-meth.srcc.msu.ru
- 4. Компьютерные исследования и моделирование // Институт компьютерных исследований. ISSN 2077-6853. http://crm.ics.org.ru/journal/page/crminfo/

5.4. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Scopus http://www.scopus.com/
- 2. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 3. Springer Materials http://materials.springer.com/
- 4. zbMath https://zbmath.org/

Ресурсы свободного доступа:

- 1. Мир математических уравнений EqWorld. http://eqworld.ipmnet.ru/ru/library.htm
- 2. Физика, химия, математика. http://www.ph4s.ru/index.html
- 3. Journal of Mathematical Physics. Online ISSN 1089-7658. http://jmp.aip.org
- 4. Словари и энциклопедии http://dic.academic.ru/:
- 1. Параллельные расширения и диалекты языка Fortran. http://parallel.ru/tech/tech_dev/fortran.html
- 2. GNU Fortran. http://gcc.gnu.org/fortran/
- 3. The NAG Fortran Library. http://www.nag.co.uk/numeric/fl/
- 4. Intel Fortran Compilers. http://software.intel.com/en-us/fortran-compilers

Собственные электронные образовательные и информационные ресурсы КубГУ:

1. Среда модульного динамического обучения http://moodle.kubsu.ru

2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

По курсу предусмотрено проведение лабораторных занятий, на которых студенты применяют полученные знания к решению конкретных задач. Уровень усвоения теоретического материала проверяется посредством опроса по основным вопросам темы и результатам выполнения лабораторных заданий.

Важнейшим этапом курса является самостоятельная работа по дисциплине. Перечень разделов для самостоятельного изучения приведен в разделе 2.5.

Поиск информации для ответов на вопросы для самостоятельной работы и выполнения заданий в некоторых случаях предполагает не только изучение основной учебной литературы, но и привлечение дополнительной литературы, а также использование ресурсов сети Интернет.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список задач и вопросов коллоквиума) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

Критерии выставления оценок.

Зачет выставляется по результатам выполненных контрольных работ, индивидуальных заданий и текущей работы на лабораторных и лекционных занятиях. Отметка «зачтено» выставляется при более, чем 60% выполненном объема индивидуальных заданий, а также 60% освоения теоретического материала.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта

между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

7. Материально-техническое обеспечение по дисциплине

№	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лабораторные занятия	Компьютерный класс, укомплектованный компьютерами с лицензионным программным обеспечением, необходимой мебелью (доска, столы, стулья). (аудитории: 101, 102, 106, 106a, 105/1, 107(2), 107(3), 107(5), A301). Лицензионное программное обеспечение: Matlab 5, Microsoft Visual Studio с установленным компилятором языка Fortran
2.	Текущий контроль, промежуточная аттестация	Аудитория для семинарских занятий, текущего контроля и промежуточной аттестации, укомплектованная необходимой мебелью (доска, столы, стулья) (аудитории: 129, 131, 133, A305, A307, 147, 148, 149, 150, 100C, A3016, A512), компьютерами с лицензионным программным обеспечением и выходом в интернет (106, 106a, A301). Лицензионное программное обеспечение: Matlab, Microsoft Visual Studio с установленным компилятором языка Fortran
3.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения, обеспеченный доступом в электронную информационно-образовательную среду университета, необходимой мебелью (доска, столы,

No	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
		стулья). (Аудитория 102a, читальный зал).

Компьютерная поддержка учебного процесса по направлению 01.03.02 Прикладная математика и информатика обеспечивается по всем дисциплинам. Факультет компьютерных технологий и прикладной математики, оснащен компьютерными классами, установлена локальная сеть, все компьютеры факультета подключены к сети Интернет. Студентам доступны современные ПЭВМ, современное лицензионное программное обеспечение.

Студенты и преподаватели вуза имеют постоянный доступ к электронному каталогу учебной, методической, научной литературе, периодическим изданиям и архиву статей.