Аннотация дисциплины Б1.В.ДВ.02.02

Компьютерная алгебра АТ-групп и их обобщений

(код и наименование дисциплины)

Объем трудоемкости: 3 зачетные единицы

Цель освоения дисциплины — дальнейшее формирование у студентов, приобретенных на первых двух курсах знаний по фундаментальной алгебре и математическим моделям естествознания.

Задачи освоения дисциплины Компьютерная алгебра АТ-групп и их обобщений: получение базовых теоретических сведений по алгебраическим системам и теории групп; развитие познавательной деятельности и приобретение практических навыков работы с алгебраическими и общематематическими понятиями.

При освоении дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для решения задач в области теории групп, теории чисел, математического моделирования информационных процессов. Получаемые знания лежат в основе математического образования и необходимы для понимания и освоения курсов теоретической математики, а также для продолжения обучения в магистратуре по соответствующему направлению подготовки.

Место дисциплины в структуре ООП ВО

Дисциплина Компьютерная алгебра АТ-групп и их обобщений относится к вариативной части блока Б1, части, формируемой участниками образовательных отношений "Дисциплины (модули)" дисциплина по выбору учебного плана Б1.В.ДВ.02.02.

Курс Компьютерная алгебра АТ-групп и их обобщений продолжает начатое на первых двух курсах алгебраическое образование студентов, соответствующего направления подготовки. Знания, полученные в этом курсе, могут быть использованы в дискретной математике, теории чисел, методах оптимизации и др. Слушатели должны владеть математическими знаниями в рамках программы курса «Фундаментальная и компьютерная алгебра».

Требования к уровню освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование индикатора* дости-
жения компетенции

Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))

ПК-1 Способен демонстрировать базовые знания математических и естественных наук, основ программирования и информационных технологий

ПК-1.1 Способен решать актуальные и важные задачи фундаментальной и прикладной математики

ПК-1.2 Демонстрирует навыки программирования подготовленных алгоритмов решения вычислительных задач, разработки структуры и программирования реляционных баз данных, а также экспертных систем

ПК-1.4 Собирает и анализирует научно- техническую информацию с учетом базовых представлений, полученных в области фундаментальной математики, механики, естественных наук, программирования и информационных технологий

Знать: О компьютерной реализации информационных объектов.

Связи компьютерной алгебры и численного анализа

Уметь: Применять основные математические методы, используемые в анализе типовых алгоритмов

Владеть навыками: использования библиотеки алгоритмов и пакетов расширения;

поиска и использования современной научнотехнической литературой в области символьных вычислений.

ПК-6 Способен использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач

Код и наименование индикатора* достижения компетенции

ПК-6.1 Анализирует поставленные задачи и выбирает для их решения современные методы разработки и реализации алгоритмов математических моделей на базе языков и пакетов прикладных программ моделирования ПК-6.2 Разрабатывает численные методы и алгоритмы для реализации вычислительных экспериментов, основанных на математических моделях явлений и процессов в областях естественных и гуманитарных наук

Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))

Знать: Основные структурный единицы группы; Основные условия конечности в теории групп; Основные алгоритмы комбинаторной теории групп; методы исследования групп автоморфизмов деревьев.

Уметь: Конструктивно описывать классы АТгрупп, использовать в научной работе приобретенные знания, реализовывать на компьютере некоторые алгоритмы, предложенные в курсе алгоритмическая алгебра: группы с условиями конечности.

Владеть: методами исследований, используемыми в комбинаторных теориях алгебраических систем, теории графов, теории групп автоморфизмов деревьев.

Содержание дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

	Наименование разделов (тем)	Количество часов				
№		Всего	Аудиторная			Внеауди- торная работа
			Л	ПЗ	ЛР	CPC
1.	Основные понятия теории групп	24	4		4	16
2.	Графы, деревья, автоморфизмы деревьев. Определение AT-рупп.	24	4		4	16
3.	Численные характеристики групп автоморфизмов деревьев. Условия конечности.	26	4		4	18
4.	Вычисления в АТ-группах	27,8	4		6	17,8
5.	Итого по дисциплине:		16		18	67,8
	Контроль самостоятельной работы (КСР)	6				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	17,8				
	Общая трудоемкость по дисциплине	108				

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: зачет

Автор А.В. Рожков, профессор, д.ф.-м.н.