Аннотация к рабочей программы дисциплины **Б1.О.17** «Электроника»

Объем трудоемкости: 6 зачетных единиц (216 часа, из них – 110 часа аудиторной нагрузки: лекционных 48 ч., практических 32 ч., лабораторных 30 ч.; 63,8 часа самостоятельной работы; 6 ч. КСР; 0,5 ч. промежуточной аттестации)

Цель дисциплины

Учебная дисциплина «Электроника» ставит своей целью: изучение студентами эффектов и процессов, лежащих в основе принципов действия полупроводниковых, электровакуумных и оптоэлектронных приборов и устройств, с одновременным изучением элементной базы средств связи, применяемой телекоммуникационных тропосферной, системах, телевизионной, радиорелейной, космической и радиолокационной связи.

Электроника, являясь одним из сложнейших технических и наукоемких направлений развития нашей цивилизации, служит фундаментом для интенсивно развивающейся электронной промышленности. Благодаря ее теоретическим исследованиям и разработке новых электронных компонентов, появляются в свет все более новые приборы и оборудование, в которых применяются самые инновационные решения.

Задачи дисциплины

Основной задачей дисциплины является изучение принципов действия, характеристик, параметров и особенностей устройства важнейших полупроводниковых, электровакуумных и оптоэлектронных приборов, используемых в системах связи. К их числу относятся диоды, биполярных и полевые транзисторы, приборы с отрицательной дифференциальной проводимостью, оптоэлектронные и электровакуумные приборы, элементы интегральных схем и основы технологии их производства. В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие использовать полупроводниковые, электровакуумные и оптоэлектронные приборы, при разработке и эксплуатации средств связи.

Место дисциплины в структуре образовательной программы

Дисциплина «Электроника» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 2-м и 3-м курсе по очной форме обучения. Вид промежуточной аттестации: в четвёртом семестре — зачет, а в пятом - экзамен.

В результате изучения дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для схемотехнических дисциплин: усвоения последующих «Схемотехника ряда телекоммуникационных систем», «Электропитание устройств И систем телекоммуникаций», «Микропроцессорная техника в оптических системах связи», «Цифровая электроника».

Настоящая дисциплина находится на стыке дисциплин, обеспечивающих базовую и специальную подготовку студентов, необходимую для эксплуатации электронных приборов в средствах связи. Изучая эту дисциплину, студенты, кроме теоретических получают и практические навыки экспериментальных измерений параметров и технических характеристик, методов измерений разнообразных электровакуумных и полупроводниковых приборов, их маркировку. Поэтому для её освоения необходимо успешное усвоение сопутствующих дисциплин: «Физика», «Математический анализ», «Дискретная математика», «Теория электрических цепей».

Требования к уровню освоения дисциплины

обучающихся общепрофессиональных компетенций: ОПК-1, ОПК-2

Код и наименование индикатора достижения Результаты обучения по дисциплине компетенции

ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности.

ИОПК-1.1. Знает фундаментальные законы природы основные физические математические законы и методы накопления, передачи обработки И информации

Способен ИОПК-1.2. применять физические законы и математически методы для решения задач теоретического и прикладного характера

ИОПК-1.3. Владеет навыками использования знаний физики и математики при решении практических задач

знать функциональное назначение изучаемых приборов; принцип действия изучаемых приборов и понимать сущность физических процессов и явлений, происходящих в них; физические явления и эффекты, определяющие принцип действия основных полупроводниковых, электровакуумных и оптоэлектронных приборов; зонные диаграммы собственных и примесных полупроводников, р-п перехода, контакта металл-полупроводник и простейшего гетероперехода; математическую модель идеализированного р-п перехода и влияние на ВАХ ширины запрещенной зоны (материала), температуры и концентрации примесей; физический смысл дифференциальных, частотных и импульсных параметров приборов; эквивалентные схемы биполярного и полевого транзисторов; преимущества интегральных схем: принцип работы базовых каскадов аналоговых и базовых ячеек цифровых схем.

уметь объяснять устройство изучаемых приборов, их принцип действия, назначение элементов структуры и их влияние на электрические параметры и частотные свойства; находить значения электрофизически х параметров основных полупроводников ых материалов в vчебной и справочной литературе для оценки их влияния на параметры структур; объяснять физическое назначение элементов и влияние их параметров на электрические параметры и частотные свойства базовых каскадов аналоговых схем и переходные процессы в базовых ячейках цифровых схем; пользоваться

справочными эксплуатационны ми параметрами приборов;

владеть навыком расчета базовых каскадов аналоговых и ячеек цифровых схем; навыками определения неисправных компонентов (элементарных электронных полупроводниковых приборов) по их внешнему виду и электрическим характеристикам; навыками изображения полупроводниковых структур с использованием зонных энергетических диаграмм; навыками определения параметров и поиска компонентов элементарных приборов взамен или аналогов для замещения в электронных схемах;

ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных.

Код и наименование индикатора достижения	Результаты обучения по дисциплине					
*	т сзультаты осучения по дисциплине					
компетенции ИОПК-2.1. Находит и	VOTORVIA					
, ,	знать условные	уметь определять	владеть навыками			
критически анализирует	графические	дифференциальны	работы с контрольно-			
информацию, необходимую	обозначения изучаемых	е параметры по	измерительной			
для решения поставленной	приборов, схемы	статическим	аппаратурой;			
задачи	включения и режимы	характеристикам;	навыками работы с			
	работы электронных	по виду	типовыми			
	приборов; вид	статических	средствами			
ИОПК-2.2. Способен выбирать	статических	характеристик	измерений с целью			
способы и средства измерений	характеристик и их	определять тип	измерения основных			
и проводить	семейств в различных	прибора и схему	параметров и			
экспериментальные	схемах включения;	его включения;	статических			
исследования	основные методы	выбирать на	характеристик			
ИОПК-2.3. Владеет способами	аппроксимации	практике	изучаемых структур;			
обработки и представления	результатов	оптимальные	навыками			
полученных данных и оценки	экспериментальных	режимы работы	составления и			
погрешности результатов	измерений.	изучаемых	оформления отчетов			
измерений		приборов;	по результатам			
		экспериментально	экспериментальных			
		определять	лабораторных			
		статические	исследований			
		характеристики и	изучаемых структур,			
		параметры	навыками чтения			
		различных	принципиальных			
		структур.	схем электронных			
			устройств;			

Содержание дисциплины Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 4 и 5 семестрах сводная таблица (очная

форма):

форма	Наименование разделов (тем)	Количество часов					
Nº		Всего	Аудиторная работа			КСР	Внеаудиторная работа
		20010	Л	ПЗ	ЛР	1101	CPC
1.	Основы физики полупроводников	11	4	2			5
2.	Кинетика носителей заряда в полупроводниках и токи.	11	4	2		0,5	4,5
3.	Физические процессы при контакте разнородных материалов.	20	6	4	2	0,5	7,5
4.	Полупроводниковые диоды.	21	4	4	6	0,5	6,5
5.	Биполярные транзисторы.	19	4	4	4	0,5	6,5
6.	Полевые транзисторы	13	2	2	4		5
7.	Полупроводниковые приборы с отрицательным сопротивлением	11,8	2	2	4		3,8
8.	Введение работы элементов электроники в аналоговых схемах	31	6	8	8	3	6
9.	Технологические основы интегральных схем.	11	2	4			5
10.	Диоды и транзисторы - основа цифровой микросхемотехники	8	2		2		4
11.	Введение в вакуумную электронику	9	6				3
12.	Оптоэлектронные приборы	10	4			1	5
13.	Аспекты применения и параметры некоторых электронных компонентов	4	2				2

	Наименование разделов (тем)	Количество часов						
№			Аудиторная			КСР	Внеаудиторная	
		Всего	работа		работа			
			Л	ПЗ	ЛР		CPC	
	ИТОГО по разделам дисциплины	179,8	48	32	30	6	63,8	
	Зачёт	0,2						
	Подготовка к экзамену	35,7						
	Экзамен	0,3						
	Общая трудоемкость по дисциплине	216						

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

Разделы (темы) дисциплины, изучаемые в 4 семестре (очная форма):

	Наименование разделов (тем)	Количество часов						
№		Всего	Аудиторная работа			КСР	Внеаудиторная работа	
			Л	П3	ЛР		CPC	
1.	Основы физики полупроводников	11	4	2			5	
2.	Кинетика носителей заряда в полупроводниках и токи.	11	4	2		0,5	4,5	
3.	Физические процессы при контакте разнородных материалов.	18	6	4		0,5	7,5	
4.	Полупроводниковые диоды.	13	4	4		0,5	4,5	
5.	Биполярные транзисторы.	13	4	4		0,5	4,5	
6.	Полевые транзисторы	7	2	2			3	
7.	Полупроводниковые приборы с отрицательным сопротивлением	5,8	2	2			1,8	
8.	Введение работы элементов электроники в аналоговых схемах	18	4	8		2	4	
9.	Технологические основы интегральных схем.	11	2	4			5	
	ИТОГО по разд. дисц. в 4-м семестре	107,8	32	32		4	39,8	
	зачет	0,2					_	
	Итого в 4-м семестре:	108						

Разделы (темы) дисциплины, изучаемые в 5 семестре (очная форма):

	Наименование разделов (тем)	Количество часов						
No		Всего	Аудиторная			КСР	Внеаудиторная	
			работа				работа	
			Л	П3	ЛР		CPC	
3.	Физические процессы при контакте	2			2			
٥.	разнородных материалов.	2						
4.	Полупроводниковые диоды.	8			6		2	
5.	Биполярные транзисторы.	6			4		2	
6.	Полевые транзисторы	6			4		2	
7.	Полупроводниковые приборы с	6			4		2	
	отрицательным сопротивлением	U			4		۷.	
8.	Введение работы элементов электроники	13	2		8	1	2.	
	в аналоговых схемах	13			0	1	<i>L</i>	
10.	Диоды и транзисторы - основа цифровой	8	2		2		4	
	микросхемотехники	o	2		2		T	
11.	Введение в вакуумную электронику	9	6				3	
12.	Оптоэлектронные приборы	10	4			1	5	
13.	Аспекты применения и параметры	4	2				2	
15.	некоторых электронных компонентов		4				2	
	ИТОГО по разд. дисц. в 5-м семестре	72	16	-	30	2	24	
	Подготовка к экзамену	35,7						
	Экзамен	0,3						
	Итого в 5-м семестре:	108						

Курсовые проекты: не предусмотрены **Форма проведения аттестации по дисциплине:** зачёт (4 семестр) и экзамен (5 семестр).

Автор РПД А.С. Левченко