министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет химии и высоких технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.15 ОСНОВЫ ФУНКЦИНИРОВАНИЯ ИОНООБМЕННЫХ МАТЕРИАЛОВ В СИСТЕМАХ ВОДОПОДГОТОВКИ

Направление	20.03.01 Техносферная безопасность
подготовки/специальность	
	(код и наименование направления подготовки/специальности)
Направленность (профиль) /	Экологическая безопасность
специализация	
	(наименование направленности (профиля)специализации)
Форма обучения	очная
	(очная, очно-заочная, заочная)
Квалификация	бакалавр

Рабочая программа дисциплины «Основы функционирования ионообменных материалов в системах водоподготовки» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 20.03.01 Техносферная безопасность.

Программу составила:

Н.В. Лоза, доцент каф. физ. химии, канд. хим. наук

March

Рабочая программа дисциплины «Основы функционирования ионообменных материалов в системах водоподготовки» утверждена на заседании кафедры физической химии

протокол № 12 от «23» <u>апреля 2024 г.</u>

Заведующая кафедрой физической химии Фалина И.В.

Loceecu

Утверждена на заседании учебно-методической комиссии факультета/института химии и высоких технологий протокол № 7 «20» мая 2024 г. Председатель УМК факультета Беспалов А.В.

Рецензенты:

Доценко В.В., профессор кафедры органической химии и технологий ФГБОУ ВО «КубГУ», д-р хим. наук

Петров Н.Н., генеральный директор ООО «Интеллектуальные композиционные решения», канд. хим. наук

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины формирование знаний о строении, свойствах и особенностях применения ионообменных материалов в системах водоподготовки.

1.2 Задачи дисциплины

- формирование знаний о способах получения и физико-химических свойствах ионообменных материалов;
- формирование представлений о равновесии в системах с ионообменными материалами и умений применять полученные знания для выбора оптимальных ионообменных материалов;
- формирование знаний по теоретическим основам и закономерностям кинетики процессов переноса в ионообменных материалах и навыков их применения для выбора условий работы систем водоподготовки;
- формирование навыков выбора и использования оптимальных по своим свойствам ионообменных материалов для использования в системах водоподготовки и решения экологических проблем.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Основы функционирования ионообменных материалов в системах водоподготовки» относится к части, формируемой участниками образовательных отношений Блока 1 "Дисциплины (модули)" учебного плана. Изучению дисциплины должно предшествовать изучение дисциплин «Основы физической химии», «Основы аналитической химии», «Основы органической химии», «Метрология, стандартизация и сертификация» Данная дисциплина является предшествующей для изучения следующих дисциплин: «Системы защиты гидросферы и литосферы», «Моделирование физикохимических процессов в техносфере», «Мембранные технологии в обеспечении в экологической безопасности», «Современные энерго- и ресурсосберегающие технологии».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-4 Способен осуществлять анализ и к	онтроль действующих норм, правил и стандартов
	разрабатывать мероприятия по предупреждению и
устранению несоответствия питьевой воды	требованиям стандарта
ИПК-4.2. Осуществляет поиск, экспертизу,	Знать терминологию в области ионитов и основные
разрабатывает и использует основные	физико-химические свойства ионообменных
методы и приемы при определении	материалов;
причин и разработке мероприятий по	Уметь определять равновесные и кинетические
предупреждению и устранению	физико-химические характеристики ионообменных
несоответствия питьевой воды	материалов по стандартным методикам;
требованиям стандарта.	Владеть основными методами исследования
	равновесных и кинетических физико-химических
	характеристик ионообменных материалов.
ПК-5 Способен оценивать направления разв	вития отечественной и зарубежной науки и техники в
сфере водоподготовки и водоотведения, уча	аствовать в разработке экологически целесообразных
процессов водоподготовки и организовыват	ть работы по их внедрению
ИПК-5.1. Осуществляет поиск и оценку	Знать основные источники научно-технической
направлений развития отечественной и	информации, в том числе нормативно-правовую
зарубежной науки и техники в сфере	документацию, научные публикации и источники,
водоподготовки и водоотведения и	размещенные в глобальных информационных
Dogo Dogo III	ресурсах сети Интернет.
	3

Код и наименование индикатора*	Результаты обучения по дисциплине
использует экологически целесообразные процессы водоподготовки	Уметь находить научно-техническую информацию в данной предметной области, размещенных в том числе в глобальных информационных ресурсах; Владеть навыками самостоятельной работы с научно-технической и учебной информацией из различных источников для решения профессиональных задач;
ИПК-5.2. Принимает участие в разработке современных экологически целесообразных процессов и технологии в сфере водоподготовки и водоотведения и	Знать современные тенденции развития техники и технологий с применением ионообменных материалов в области обеспечения техносферной безопасности;
организации работ по их внедрению	Уметь выбирать и оценивать свойства ионообменных материалов с точки зрения их применения в процессах водоподготовки; Владеть навыками выбора и использования оптимальных по своим свойствам ионообменных материалов для использования в системах водоподготовки и решения экологических проблем новый.

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зачетных единицы (144 часов), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения
	часов	очная
		5 семестр
		(часы)
Контактная работа, в том числе:	106,4	106,4
Аудиторные занятия (всего):	102	102
занятия лекционного типа	30	30
лабораторные занятия	54	54
практические занятия	18	18
Иная контактная работа:	4,2	4,2
Контроль самостоятельной работы (КСР)	4	4
Промежуточная аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:	37,8	37,8
Подготовка к выполнению и защите лабораторных работ	20	20
Самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к практическим занятиям)	9	9
Подготовка к текущему контролю (контрольным работам)	8,8	8,8

Контроль:		0	0
Подготовка к экзамену		0	0
Общая час.		144	144
трудоемкость	в том числе контактная работа	104,6	104,6
	зач. ед	4	4

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре (3 курс) очной формы обучения.

	Наименование разделов (тем)		Количество часов				
№			Аудиторная работа		Внеаудит орная работа		
			Л	ПЗ	ЛР	CPC	
1.	Классификация ионообменных материалов, их строение, физико-химические свойства и методы получения	34	8	4	14	8	
2.	Равновесие в гетерогенной системе ионообменный материал - раствор	44	10	6	18	10	
3.	Кинетика ионного обмена в системе ионообменный материал/раствор электролита	32	6	4	14	8	
4.	Мембранная электрохимия	24	6	4	8	6	
	ИТОГО по разделам дисциплины	134	30	18	54	32	
	Контроль самостоятельной работы (КСР)	4	·				
	Промежуточная аттестация (ИКР)	0,2					
	Подготовка к текущему контролю	5,8					
	Общая трудоемкость по дисциплине	144	20	18	54	37,8	

Примечание: Π — лекции, Π 3 — практические занятия / семинары, Π 9 — лабораторные занятия, Π 9 — семинары студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Классификация ионообменных материалов, их	Ионообменные материалы, применяемые в водоподготовке. Классификация ионообменных материалов.	Тест №1
2.	строение, физико- химические свойства и	Природные и синтетические ионообменные материалы. Основные понятия, определения и классификация.	Контрольная работа №1
3.	методы получения	Ионообменные мембраны и их классификация.	Контрольная работа №2
4.		Структура ионообменных материалов и методы ее исследования. Различные состояния воды в ионообменных материалах	Контрольная работа №2
5.	Равновесие в гетерогенной системе ионообменный	Процессы набухания ионообменных материалов и осмотическая стабильность.	Контрольная работа №2
6.	материал - раствор	Модельные представления набухания ионитов	Контрольная работа №2

7.		Равновесие ионит - раствор неэлектролита	Контрольная работа №2
8.		Равновесие ионит-раствор сильного электролита	Контрольная работа №2
9.		Ионообменное равновесие. Уравнение Никольского	Контрольная работа №2
10.	Кинетика ионного обмена в системе ионообменный	Основные закономерности протекания ионного обмена в системе ионообменный материал/раствор электролита.	Контрольная работа №3
11.	материал/раствор электролита	Понятие лимитирующей стадии ионообменной реакции в гетерогенной системе. Гелевая и пленочная кинетика ионообменной реакции в системе ионообменный материал/раствор электролита.	Контрольная работа №3
12.		Экспериментальные методы изучения кинетики ионного обмена	Контрольная работа №3
13.	Мембранная электрохимия	Селективность ионообменных материалов	Контрольная работа №3
14.		Электропроводность ионообменных материалов	Контрольная работа №3
15.		Двухфазная модель проводимости ионообменных материалов	Контрольная работа №3

2.3.2 Занятия семинарского типа

	2.3.2 Запятия семинарского типа					
№	Наименование раздела (темы)	Тематика занятий	Форма текущего контроля			
1.	Классификация ионообменных материалов, их	Ионообменные материалы, применяемые в водоподготовке. Классификация ионообменных материалов.	Устный опрос, тест № 1			
2.	строение, физико- химические свойства и методы получения	Процессы набухания ионообменных материалов и осмотическая стабильность.	Устный опрос, контрольная работа № 1			
3.	Равновесие в гетерогенной системе ионообменный	Процессы набухания ионообменных материалов и осмотическая стабильность. Модельные представления набухания ионитов	Устный опрос, контрольная работа № 2			
4.	материал - раствор	Равновесие ионит - раствор неэлектролита.	Устный опрос, контрольная работа № 2			
5.		Равновесие ионит - раствор электролита. Ионообменное равновесие. Уравнение Никольского	Устный опрос, контрольная работа № 2			
6.	Кинетика ионного обмена в системе ионообменный материал/раствор	Понятие лимитирующей стадии ионообменной реакции в гетерогенной системе. Гелевая и пленочная кинетика ионообменной реакции в системе ионообменный материал/раствор электролита.	Устный опрос, контрольная работа № 3			
7.	электролита	Экспериментальные методы изучения кинетики ионного обмена	Устный опрос, контрольная работа № 3			
8.	Мембранная электрохимия	Электропроводность ионитов	Устный опрос, контрольная работа № 3			
9.		Двухфазная модель проводимости ионообменных материалов	Устный опрос, контрольная работа № 3			

No	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
1	2	3	4
1.	Классификация ионообменных	1. Кондиционирование ионообменных материалов.	Защита лабораторной работы, включающая
2.	материалов, их строение, физико-	2. Перевод ионообменных материалов в различную ионную форму.	проверку письменного отчета по
3.	химические свойства и методы получения	3. Определение обменной емкости ионообменных материалов.	лабораторной работе и устный и/или
4.		4. Определение плотности ионообменных материалов.	письменный опрос
5.		5. Определение влагосодержания и гидратной емкости ионообменных материалов.	
6.	Равновесие в гетерогенной системе	6. Определение изменения линейных размеров мембран при их набухании.	Защита лабораторной работы, включающая
7.	ионообменный материал - раствор	7. Изучение сорбции электролитов ионитами различного типа.	проверку письменного отчета по
8.		8. Изучение сорбции неэлектролитов ионообменными материалами.	лабораторной работе и устный и/или
9.	Кинетика ионного обмена в системе	9. Изучение скорости ионного обмена в системе ионполимер-раствор электролита	письменный опрос
10.	ионообменный материал/раствор электролита	10. Определение кажущейся константы равновесия в системе ионит-раствор.	
11.	Мембранная электрохимия	11. Определение удельной электропроводности ионообменных мембран.	

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с Φ ГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов) - учебным планом не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы			
1	Подготовка к выполнению и защите лабораторных работ	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. — Краснодар: Кубанский			
		гос. ун-т, 2018. 89 с. 2. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В., Шкирская С.А. Мембранная электрохимия: лабораторный практикум // Учеб. пособие. Краснодар, КубГУ, 2017.			
2	Подготовка к текущему контролю	практикум // учео. посооие. Краснодар, Куог у, 2017. 1. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В., Шкирская С.А. Мембранная электрохимия: лабораторный практикум // Учеб. пособие. Краснодар, КубГУ, 2017. 2. Мембраны и мембранные технологии / под ред. Ярославцева А.Б. М.: Научный мир, 2013. 612 с. http://biblioclub.ru/index.php?page=book_red&id=468334&sr=1 3. Лейкин, Ю.А. Физико-химические основы синтеза полимерных сорбентов [Электронный ресурс]: учебное			

		пособие / Ю.А. Лейкин. — Электрон. дан. — Москва :
		Издательство "Лаборатория знаний", 2015. — 416 с. — Режим
		доступа: https://e.lanbook.com/book/70769.
3	Самоподготовка	1. Методические рекомендации к организации аудиторной и
	(проработка и	внеаудиторной (самостоятельной) работы студентов:
	повторение	методические указания / сост. Т.П. Стороженко, Т.Б.
	лекционного материала	Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский
	и материала учебников	гос. ун-т, 2018. 89 с.
	и учебных пособий,	2. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В.,
	подготовка к	Шкирская С.А. Мембранная электрохимия: лабораторный
	практическим	практикум // Учеб. пособие. Краснодар, КубГУ, 2017.
	занятиям)	
4	Подготовка к	1. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В.,
	промежуточной	Шкирская С.А. Мембранная электрохимия: лабораторный
	аттестации (зачет)	практикум // Учеб. пособие. Краснодар, КубГУ, 2017.
		2. Мембраны и мембранные технологии / под ред.
		Ярославцева А.Б. М.: Научный мир, 2013. 612 с.
		http://biblioclub.ru/index.php?page=book_red&id=468334&sr=1
		3. Березина Н.П. Электрохимия мембранных систем. Учеб.
		пособие. Краснодар, КубГУ, 2009.
		4. Лейкин, Ю.А. Физико-химические основы синтеза
		полимерных сорбентов [Электронный ресурс] : учебное
		пособие / Ю.А. Лейкин. — Электрон. дан. — Москва :
		Издательство "Лаборатория знаний", 2015. — 416 с. — Режим
		доступа: https://e.lanbook.com/book/70769.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: проблемное обучение, лабораторные работы в малых группах, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов разбора конкретных ситуаций в сочетании с внеаудиторной работой. При проведении лекционных занятий

используются мультимедийные презентации. В рамках лабораторных занятий применяются методы проектного обучения и исследовательские методы.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационноттелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Основы функционирования ионообменных материалов в системах водоподготовки».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме тестовых заданий, устного опроса, выполнения и защиты лабораторных работ и **промежуточной аттестации** в форме вопросов к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

3.0	Код и наименование		Наименование оценочного средства	
№ п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИПК-4.2. Осуществляет поиск,	Знать терминологию в области ионитов и основные физико-химические свойства ионообменных материалов;	Устный опрос; тест; контрольные работы; лабораторные работы	Вопросы на зачете
2	экспертизу, разрабатывает и использует основные методы и приемы при определении причин и разработке мероприятий по предупреждению и устранению несоответствия	Уметь определять равновесные и кинетические физико-химические характеристики ионообменных материалов по стандартным методикам;	Устный опрос; контрольные работы; лабораторные работы	Вопросы на зачете 10, 11, 17, 18, 19, 20, 21
3	питьевой воды требованиям стандарта.	Владеть основными методами исследования равновесных и кинетических физикохимических характеристик ионообменных материалов.	Лабораторные работы	Вопросы на зачете 7, 14, 15, 18, 19, 20, 21
4	ИПК-5.1. Осуществляет поиск и оценку направлений развития отечественной и зарубежной науки и техники в сфере водоподготовки и водоотведения и использует	Знать основные источники научнотехнической информации, в том числе нормативно-правовую документацию, научные публикации и источники, размещенные в глобальных информационных ресурсах сети Интернет.	Устный опрос	

5	экологически целесообразные процессы водоподготовки	Уметь находить научно- техническую информацию в данной предметной области, размещенных в том числе в глобальных информационных ресурсах;	Устный опрос; лабораторные работы	
6		Владеть навыками самостоятельной работы с научно-технической и учебной информацией из различных источников для решения профессиональных задач;	Лабораторные работы	
7	ИПК-5.2. Принимает	Знать современные тенденции развития техники и технологий с применением ионообменных материалов в области обеспечения техносферной безопасности;	Устный опрос; лабораторные работы	Вопросы на зачете 8, 22
8	участие в разработке современных экологически целесообразных процессов и технологии в сфере водоподготовки и водоотведения и организации работ по их	Уметь выбирать и оценивать свойства ионообменных материалов с точки зрения их применения в процессах водоподготовки;	Устный опрос; лабораторные работы	Вопросы на зачете 1-6
9	внедрению	Владеть навыками выбора и использования оптимальных по своим свойствам ионообменных материалов для использования в системах водоподготовки и решения экологических проблем новый.	Устный опрос; лабораторные работы	Вопросы на зачете 5, 8, 9, 10- 13, 14-16, 20, 22

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерный перечень вопросов и заданий

Тест по теме «Ионный обмен и ионообменные материалы для экозащитных процессов»

- 1. Раствор электролита это
 - а) проводник первого рода;
 - б) проводник второго рода;
 - в) диэлектрик
- 2. Ионообменная смола это
 - а) полимерный материал, применяемый для очистки растворов методом фильтрации;
 - б) полимерный материал, способный к ионному обмену и обладающий зарядовой селективностью;

- в) полимерный материал, способный к ионному обмену и не обладающий зарядовой селективностью.
- 3. Сорбция это
 - а) процесс фильтрации через полупроницаемую мембрану;
 - б) процесс поглощения одного вещества другим;
 - в) мембранный процесс разделения веществ под действием градиента давления.
- 4. Проводники второго рода имеют
 - а) электронную проводимость;
 - б) ионную проводимость;
 - в) смешанную электронную и ионную проводимость.
- 5. Диффузия это
 - а) процесс самопроизвольного переноса вещества из области с его большей концентрации в область с меньшей концентрацией;
 - б) процесс переноса вещества из области с его меньшей концентрации в область с большей концентрацией под действием градиента давления;
 - в) процесс переноса вещества в условиях наложении внешнего электрического поля.
- 6. Электродиализ это
 - а) процесс диффузии вещества через полупроницаемую перегородку;
 - б) процесс мембранного разделения, при котором ионы переносятся через мембрану под действием внешнего электрического поля;
 - в) процесс мембранного разделения под действием градиента давления.
- 7. Электрический ток это
 - а) тепловое движение молекул;
 - б) направленное движение заряженных частиц;
 - в) броуновское движение заряженных частиц.
- 8. Катион это
 - а) положительно заряженная частица;
 - б) отрицательно заряженная частица;
 - в) молекула.
- 9. Электрон имеет заряд
 - а) отрицательный;
 - б) положительный;
 - в) не имеет.
- 10. См/м это единица измерения
 - а) удельного электрического сопротивления;
 - б) напряжения;
 - в) удельной электропроводности.
- 11. Электролитическая диссоциация это
 - а) реакция нейтрализации кислоты щелочью;
 - б) гидролиз солей под действием молекул растворителя;
 - в) распад молекул электролита на ионы в растворе или расплаве.
- 12. Проводники первого рода имеют
 - а) электронную проводимость;
 - б) ионную проводимость;

в) смешанную электронную и ионную проводимость.

Примерная контрольная работа №1

1. Дайте определение следующим понятиям:

Катионит – это

Коион – это

Функциональная группа

- 2. Рассчитайте массу чистого гидроксида натрия, содержащегося в 200 мл раствора с массовой долей NaOH 25%. Плотность раствора равна 1,27 г/мл.
- 3. Какие функциональные группы содержит смола КУ-2?
- 4. Напишите уравнение ионного обмена (в молекулярном, полном и сокращенном ионном виде) для системы: КУ-2 в H⁺ форме помещен в раствор сульфата меди CuSO₄.

Примерная контрольная работа №2

- 1. Что такое общая пористость? Что подразумевают под термином "пора" применительно к ионитам?
- 2. Что такое набухание ионитов и чем оно обусловлено?
- 3. Как влияет на набухание ионитов концентрация равновесного раствора? Почему?
- 4. Рассчитайте влагосодержание в образце МФ-4СК по следующим экспериментальным данным:

т(бюкса),г	т(бюкса+набухшая мембран), г	т(бюкса+сухая мембран), г
***	***	***

Примерная контрольная работа №3

- 1. Полная обменная емкость сухого сульфокатионита КУ-2-8 равна 4,8 моль-экв/кг. Определите предельно возможное количество (в г) бария (II), которое может поглотить 1.2 кг исходного ионита в Na⁺-форме из раствора, содержащего нитрат бария. Напишите уравнения протекающих реакций в молекулярной, ионной и сокращенной ионной форме. Атомная масса бария составляет 137,327 а. е. м.
- 2. Какими основными свойствами должны обладать ионообменные материалы?

Зачетно-экзаменационные материалы для промежуточной аттестации ()

Вопросы для подготовки к зачету по дисциплине:

- 1. Классификация и основные свойства ионообменных материалов.
- 2. Природные ионообменные материалы.
- 3. Ионообменные материалы на основе синтетических смол.
- 4. Жидкие ионообменные мембраны.
- 5. Классификация ионообменных мембран.
- 6. Получение гомогенных и гетерогенных ионообменных мембран.
- 7. Структура синтетических ионообменных материалов и методы ее исследования.
- 8. Основные области применения ионообменных материалов.
- 9. Равновесие в гетерогенной системе. Набухание ионитов. Факторы, влияющие на набухание.
- 10. Физико-химические характеристики ионообменных материалов: обменная, гидратная и сорбционная емкость.

- 11. Модельные представления ионообменного равновесия Грегора, Лазара, Качальского, Райса.
- 12. Равновесие ионообменный материал- раствор неэлектролита. Изотерма адсорбции и коэффициенты распределения.
- 13. Ситовый эффект и эффект высаливания. Силы взаимодействия.
- 14. Равновесие ионит-раствор сильного электролита. Термодинамическое уравнение Доннана и его анализ.
- 15. Учет неоднородности ионитов при сорбции сильных электролитов.
- 16. Ионообменное равновесие. Изотерма обмена, коэффициенты разделения, распределения и равновесия.
- 17. Основные закономерности протекания ионного обмена в гетерогенных системах ионообменный материал -раствор электролита.
- 18. Механизм ионного обмена в системе ионообменный материал -раствор электролита. Лимитирующая стадия реакции ионного обмена.
- 19. Экспериментальные методы изучения кинетики ионного обмена в системе ионообменный материал -раствор электролита.
- 20. Электропроводность ионообменных материалов.
- 21. Модельные представления механизмов электропроводности ионообменных материалов.
- 22. Перфторированные ионообменные мембраны для получения хлора и щелочи.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

- оценка «зачтено»: студент владеет теоретическими знаниями по данному разделу, знает основные свойства, области применения, методы исследования ионообменных материалов, допускает незначительные ошибки; студент умеет правильно объяснять экспериментальные данные с применением теоретических представлений.
- оценка «не зачтено»: материал не усвоен или усвоен частично, студент затрудняется в описании основных свойств ионообменных материалов, не может привести конкретные примеры материалов, соответствующих заданному набору свойств, затрудняется привести примеры методов исследования основных свойств ионообменных материалов.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Кононенко Н.А., Демина О.А., Лоза Н.В., Фалина И.В., Шкирская С.А. Мембранная электрохимия: лабораторный практикум // Учеб. пособие. Краснодар, КубГУ, 2017.
- 2. Лейкин, Ю.А. Физико-химические основы синтеза полимерных сорбентов [Электронный ресурс]: учебное пособие / Ю.А. Лейкин. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 416 с. Режим доступа: https://e.lanbook.com/book/70769.
- 3. Мембраны и мембранные технологии, под ред. А.Б. Ярославцева, М.: Научный мир, 2013. Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=468334&sr=1
- 4. Березина Н.П. Электрохимия мембранных систем. Учеб. пособие. Краснодар, КубГУ, 2009.

5.2. Периодическая литература

Указываются печатные периодические издания из «Перечня печатных периодических изданий, хранящихся в фонде Научной библиотеки КубГУ» https://www.kubsu.ru/ru/node/15554, и/или электронные периодические издания, с указанием адреса сайта электронной версии журнала, из баз данных, доступ к которым имеет КубГУ:

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/
- 3. Журнал «Экология и промышленность России»
- 4. Журнал «Экологические системы и приборы»
- 5. Журнал «Безопасность в техносфере»
- 6. Журнал «Технологии гражданской безопасности»
- 7. Журнал «Электрохимия»

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 2. 9EC «BOOK.ru» https://www.book.ru
- 3. 3EC «ZNANIUM.COM» www.znanium.com
- 4. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на

Российской платформе научных журналов НЭИКОН http://archive.neicon.ru

6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/

- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Словари и энциклопедии http://dic.academic.ru/;
- 6. Образовательный портал "Учеба" http://www.ucheba.com/;
- 7. Химическая информационная сеть. http://www.chemnet.ru
- 8. Государственная публичная научно-техническая библиотека (ГПНТБ) http://www.gpntb.ru/
- 9. http://econavt.ru/instrukcii-po-ohrane-truda/dokumenty База нормативных документов по охране труда.
- 10. http://gostexpert.ru Единая база гостов РФ
- 11. http://www.fips.ru Федеральный институт патентной собственности
- 12. http://www.viniti.msk.su/ Всероссийский институт научной и технической информации (ВИНИТИ)
- 13. http://www.icsti.su/portal/index.html Международный центр научной и технической информации (МЦНТИ)
- 14. http://www.vntic.org.ru/ Всероссийский научно-технический информационный центр (ВНТИЦ)
- 15. http://www.gpntb.ru/ Государственная публичная научно-техническая библиотека (ГПНТБ)
- 16. http://www.uspto.gov/web/menu/search.html База данных патентов США
- 17. http://www.epo.org/searching/free/espacenet.html База данных патентов более 70 стран мира
- 18. http://www.i-r.ru/ журнал "Изобретатель и рационализатор"
- 19. http://www.intelpress.ru/ журнал "Интеллектуальная собственность"
- 20. http://patents-and-licences.webzone.ru/index.html журнал «Патенты и лицензии»
- 21. http://www.patentinfo.ru/ журнал «Патентный поверенный»

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы.

Работа с конспектом лекций

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции. Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

Лабораторные работы выполняются обучающимися в малых группах (обычно 2-3 человека). В начале курса проводится инструктаж по технике безопасности работы в химической лаборатории и составляется график выполнения лабораторных работ. Выполнение лабораторной работы включает в себя следующие этапы:

- 1) подготовительный этап (самостоятельная работа студентов);
- 2) получение допуска к выполнению экспериментальной части лабораторной работы (контактная работа с преподавателем каждой малой группы);
- 3) выполнение экспериментальной части лабораторной работы под контролем преподавателя;
- 4) анализ полученных результатов, формулировка вывода и подготовка к защите лабораторной работы (может выполняться как самостоятельная работа студента дома, или под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем);
 - 5) защита лабораторной работы (контактная работа с преподавателем).

После выполнения всех этих этапов лабораторная работа считается выполненной.

Подготовительный этап

Перед занятием обучающимся необходимо подготовится к выполнению лабораторной работы. Теоретическая подготовка необходима для проведения эксперимента и должна проводиться обучающимися в порядке самостоятельной работы. Ее следует начинать внимательным разбором руководства к лабораторной работе. Теоретическая подготовка завершается предварительным составлением отчета в лабораторном журнале со следующим порядком записей:

Название работы.

Цель работы.

Оборудование.

Ход работы, который в том числе включает рисунки, схемы, таблицы, основные формулы для определения величин, а также расчетные формулы для определения погрешностей измеряемых величин.

Получение допуска к выполнению экспериментальной части лабораторной работы

Приступая к лабораторным работам, необходимо получить у лаборанта приборы, требуемые для выполнения работы. Разобраться в назначении материалов, химической посуды, приборов и принадлежностей в соответствии с их техническими данными. Получить допуск к выполнению лабораторной работы у преподавателя. Допуск студенты получают в результате устного опроса преподавателем о порядке выполнения эксперимента, предусмотренного данной лабораторной работой.

Выполнение экспериментальной части лабораторной работы под контролем преподавателя

Затем обучающиеся выполняют экспериментальный этап лабораторной работы, в ходе которого записываются все измеренные величины с обязательным указанием их размерности в лабораторный журнал. Не допускается использование черновиков для записи экспериментальных данных, запись карандашом и иные способы, дающие

возможность корректировки полученных результатов. В случае, если в методических указаниях к лабораторной работе предложены таблицы или шаблон для записи экспериментальных данных, то заполняются эти таблицы или шаблон. В ином случае запись экспериментальных данных делается студентом в произвольной форме.

По окончании выполнения эксперимента студенты должны привести свое рабочее место в порядок и вымыть используемую химическую посуду. После этого рабочее место сдается преподавателю или лаборанту и в лабораторный журнал студента ставится отметка о выполнении экспериментальной части лабораторной работы с обязательным указанием даты ее выполнения.

Анализ полученных результатов и формулировка вывода(ов)

Может выполняться как самостоятельная работа студента дома, или под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем. Студенты должны выполнить все необходимые расчеты согласно методическим указаниям к выполнению лабораторных работ. В лабораторном журнале приводятся все необходимые расчеты с указанием размерностей полученных величин, а также все графики и рисунки в соответствии с требования лабораторного практикума.

В случае, если в ходе лабораторной работы имеет место протекание химических реакций, все они должны быть записаны в лабораторном журнале в молекулярном, полном ионном и сокращенном ионном виде.

Далее на основании полученных результатов студенты должны сформулировать и записать вывод, который должен быть согласован с заявленными целями и/или задачами лабораторной работы. Вывод должен содержать необходимую количественную информацию.

При подготовке к защите лабораторной работы необходимо ответить на предложенные контрольные вопросы, которые имеются после каждой лабораторной работы. Особое внимание в ходе теоретической подготовки должно быть обращено на понимание физической сущности процесса(ов) излучающихся в ходе работы. Для самоконтроля в каждой работе приведены контрольные вопросы, на которые обучающийся обязан дать четкие, правильные ответы.

Защита лабораторной работы

Защита лабораторных работ происходит в виде собеседования с преподавателем по лабораторной работе с обязательной проверкой преподавателем лабораторного журнала студента. Для успешной защиты лабораторной работы студент должен предоставить лабораторный журнал, оформленный в соответствии с установленными требованиями, включая наличие отметки о выполнении экспериментальной части работы. В ходе устной беседы с преподавателем студент должен продемонстрировать знание целей и задач выполненной работы, законов, которые лежат в основе наблюдаемых в ходе работы явлений, продемонстрировать умение анализировать полученную информацию и делать на ее основе выводы. В этом случае в лабораторном журнале на соответствующей работе ставится пометка «зачтено», роспись преподавателя, принявшего работу, и дата защиты работы. После этого лабораторная работа считается выполненной. Допускается защита лабораторных работ индивидуально или в составе малых групп обучающихся, совместно выполнявших данную работу.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и

лабораторным оборудованием.

лаобраториым оборудованием.			
Наименование специальных	Оснащенность специальных	Перечень лицензионного	
помещений	помещений	программного обеспечения	
Учебные аудитории для	Мебель: учебная мебель	MS Office	
проведения занятий лекционного	Технические средства обучения:		
типа	экран, проектор, компьютер		
Учебные аудитории для	Мебель: учебная мебель	MS Office	
проведения занятий	Технические средства обучения:		
семинарского типа, групповых и	экран, проектор, компьютер		
индивидуальных консультаций,			
текущего контроля и			
промежуточной аттестации			
Учебные аудитории для	Специализированная мебель и		
проведения лабораторных работ.	технические средства обучения,		
Лаборатория 139с	необходимые для выполнения		
	лабораторных работ: весы		
	лабораторные, шкаф сушильный,		
	мешалки магнитные, рН-метры-		
	иономеры с комплектом		
	электродов; кондуктометр;		
	мультиметр; микрометр;		
	необходимая лабораторная		
	посуда, приборы и реактивы.		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	

	беспроводное соединение по технологии Wi-Fi)	
Помещение для самостоятельной работы обучающихся (400с, 401с, 431с, 329с)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационнообразовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	MS Office