МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Художественно-графический факультет

яя

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования первый проректор

Хагуров Т.А.

«31» мая 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.15.11 АНАЛИЗ ДАННЫХ В ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

 (код и наименование дисциплины в соответствии с учебным планом)

 Направление подготовки _44.03.05 Педагогическое образование (с двумя профилями подготовки)

 (код и наименование направления подготовки)

 Направленность (профиль) Изобразительное искусство, Компьютерная графика

 (наименование направленности (профиля))

 Форма обучения заочная

(очная, очно-заочная, заочная)

Рабочая программа дисциплины «Анализ данных в профессиональной деятельности» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)

код и наименование направления подготовки

Программу составил(и):

Морозкина Е.А., д.п.н., доцент

Ф.И.О. Фамилия, должность, ученая степень, ученое звание

Рабочая программа дисциплины «Анализ данных в профессиональной деятельности» утверждена на заседании кафедры декоративно-прикладного искусства и дизайна

протокол № 13 «15» мая 2024 г.

Заведующий кафедрой декоративно-прикладного искусства и дизайна

Морозкина Е.А., к.п.н., доцент

Рабочая программа обсуждена на заседании совета художественнографического факультета

протокол № 11 « 21 » мая 2024 г.

Декан художественно-графического факультета

Коробко Ю.В., д.п.н., профессор

подпись

1

Утверждена на заседании учебно-методической комиссии художественнографического факультета

протокол № <u>11</u> «<u>21</u>» <u>мая</u> 2024 г.

Председатель УМК факультета

Козыренко К.В., преподаватель каф. Живописи и композиции

Рецензенты:

С.Г. Молотков, канд. пед. наук., доцент кафедры СП АСФ КубГАУ В.Д. Мухин, заслуженный деятель искусств Кубани, директор ДХШ им. В.А. Пташинского

- 1 Цели и задачи изучения дисциплины (модуля)
- **1.1 Цель освоения дисциплины:** формирование у студентов знаний и умений при разработки оригинальных алгоритмов и программных решений с использованием современных технологий.
- 1.2 Задачи дисциплины: изучить развитие подходов к разработки оригинальных алгоритмов и программных решений с использованием современных технологий;рассмотреть новые информационные технологии и искусственный интеллект; овладеть навыками декомпозиции, формализации процессов и объектов для использования интеллектуальных программных решений; приобретение умений и навыков работы на компьютере с нейронными сетями в редакторах (Kandinsky 3.0, Ideogram.ai, Artflow, Krea-ai и другие); изучение процессов генерации и редактирования изображений; развитие образного мышления, творческого воображения, интеллектуальных программных решений с использованием искусственного интеллекта.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Системы искусственного интеллекта» относится к «Художественнотворческому модулю» обязательной части Блока 1 «Дисциплины (модули)» учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций (ОПК)

Код и наименование индикатора*	Результаты обучения по дисциплине (знает, умеет, владеет (навыки и/или опыт деятельности))
ОПК-9 Способен понимать принципы рас использовать их для решения задач професси	боты современных информационных технологий и нональной деятельности
ОПК-9.4 Владеет навыками декомпозиции, формализации процессов и объектов для использования интеллектуальных программных решений	Знает: методы разработки оригинальных алгоритмов и программных решений с использованием современных технологий
	Умеет: пользоваться системами искусственного интеллекта для создания проектов в изобразительной деятельности
	Владеет: навыками декомпозиции, формализации процессов и объектов для использования интеллектуальных программных решений

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач. ед. (72 часа), их распределениепо видам работ представлено в таблице

Вид учебной работы	Всего часов	Семестры (часы)
Аудиторные занятия (всего):	8	8

В том числе:			
Занятия лекционного типа			2
Занятия семинарского типа (семинары, практические занятия)		6	6
Лабораторные занятия			
Самостоятельная работа	(всего)	60	60
В том числе:			
Проработка учебного (теој	ретического) материала	14,2	14,2
Выполнение индивидуальных заданий (подготовка сообщений,			
презентаций)		20	20
Выполнение расчетно-графических заданий		25,8	25,8
Промежуточная аттестация (зачет, экзамен)			0,2
Контроль		3.8	3.8
Общая трудоемкость час.		72	72
	зач. ед	2	2

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5,6 семестре (заочная форма)

	φορπά		Ко	личеств	о часов		
№	Наименование разделов (тем)	Всего		Аудиторн работа			иторная бота
			Л	ПЗ	ЛР	CPC	КСР С
1	2						
1.	Основные понятия математической статистики	23	1	2		20	-
2.	Проверка статических гипотез	16,2	1	1		14,2	
3.	Генерация случайных последовательностей	16,8		1		15,8	-
4.	Различные виды анализа данных	11		1		10	
5.	Корреляционный и регрессионный анализ	11		1		10	
	ИТОГО по разделам дисциплины	68	2	6		60	ı
	Промежуточная аттестация (ИКР)	0,2					
	Подготовка к текущему контролю	3,8					
	Общая трудоемкость по дисциплине	72					

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование лекций, содержание	Форма теку- щего контроля
1	3	4

Основные задачи систем искусственного интеллекта. Классификация, кластеризация, регрессия. Типы машинного обучения. Классификация на примере алгоритма к-ближайших соседей (kNN). Метрики оценки классификации: полнота, точность, F1, ROC, AUC. Валидационная и тестовая выборка. Кросс-валидация. Работа с категориальными признаками. Регрессия. Метрики оценки регрессии: MSE, MAE, R2 коэффициент Линейная детерминации. регрессия, полиномиальная регрессия. Переобучение и регуляризация, гребневая регрессия, LASSO, Elastic Net. Линейные модели для классификации. Перцептрон, логистическая полносвязные нейронные сети, стохастический градиентный спуск и обратное распространение градиента. Регуляризация линейных моделей классификациии. Кластеризация. k-means, k-means++, DBSCAN, агломеративная кластеризация. Метрики оценки кластеризации. Алгоритмы, основанные на применении решающих деревьев. Критерии разделения узла: информационный выигрыш, критерий Джини. Ансамбли решающих деревьев: случайный градиентный бустинг. Метод опорных векторов. Прямая и обратная задача. Определение опорных векторов. Ядерный трюк. байесовский классификатор. Наивный Методы оценки распределения признаков. ЕМ-алгоритм на примере смеси гауссиан. Методы безградиентной оптимизации: случайный поиск, hill climb, отжиг, генетический алгоритм. Нейронные сети. Функции ошибки нейронных сетей и обучение с помощью обратного распространения градиента. Понятие бэтча и эпохи. Работа с изображениями с помощью нейронных сетей. Сверточные нейронные сети. Операции сверток, max-pooling. Популярные архитектуры сверточных нейронных сетей: AlexNet, VGG, Inception (GoogLeNet), ResNet. Трансферное обучение. Обработка текстов. Работа с естественным языком с помощью нейронных сетей. Векторные представления для текста: word2vec, skipgram, CBOW, fasttext. Рекуррентные нейронные сети, LSTM, GRU. Трансформеры, BERT, GPT. Понятия агента, среды, состояния, действий и награды. Функция ценности состояния (Value function) и функция качества действия (Qfuntion). Оптимизация стратегии с помощью максимизации функций ценности и качества. Q-обучение. Глубокое обучение с подкреплением. Deep Q-Networks, Actor-

2.3.2 Занятия семинарского типа

critic.

2.3.3 Лабораторные занятия

No	Наименование лабораторных работ	Форма теку-
312	панменование лаоораторных расот	щего контроля
1	3	4
1.	Методы работы с таблицами в Python. Агрегация и визуализация	РГЗ
	данных. Проведение первичного анализа данных.	
2.	Использование и сравнение алгоритмов классификации: kNN,	
	решающие деревья и их ансамбли, логистическая регрессия.	
3.	Использование и оценка алгоритмов регрессии. Подбор	
	оптимальных параметров регрессии.	
4.	Оптимизационные задачи и их решения. Подбор гиперпараметров	
	алгоритма с помощью методов оптимизации.	
5.	Классификация изображений и трансферное обучение.	ЬL3
6.	Работа с текстами и их векторными представлениями текстов.	
7.	Применение Q-Networks для решения простых окружений.	ЬL3
8.	Подготовка презентации, состоящей из расчетно-графического	Защита
	материала	презентации

Опрос (О), защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе(Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Не имеется

2.4 Перечень учебно-методического обеспечения для самостоятельной работыобучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплиныпо выполнению
		самостоятельной работы
1	2	3
1	Проработка учебного	Методические указания по организации
	материала	самостоятельной работы по дисциплине «Системы
		искусственного интеллекта»
2	Выполнение	Методические рекомендации по выполнению
	индивидуальных заданий	графических презентаций, аналоговый материал
	(подготовка сообщений,	
	презентаций)	
3	Выполнение расчетно-	Методические рекомендации по выполнению
	графических заданий	расчетно-графических заданий по дисциплине
		«Системы искусственного интеллекта», аналоговый
		материал

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля. Для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Изучение дисциплины «Анализ данных в профессиональной деятельности» предусматривает наличие компьютерного класса с необходимым количеством рабочих станций для работы одной группы студентов. Рабочая станция должна соответствовать определенным требованиям, которые необходимы для работы с блоками Модуля: процессор последней модели, максимально большой объем оперативной памяти, жесткий диск не менее 500 Gb, последних моделей видеоадаптер, доступ в «Интернет» и т.п.

Для эффективного учебного процесса необходимо наличие проектора и электронной доски. При наличие данного интерактивного мультимедийного модуля преподаватель может демонстрировать приемы работы в нейронных сетях для всей группы.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Анализ данных в профессиональной деятельности».

Оценочные средства включают контрольные материалы для проведения **текущего контроля** в форме доклада-презентации по проблемным вопросам, расчетно-графических заданий и **промежуточной аттестации** в форме зачета.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа. Для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

		Код контролируе-	Наиме	енован
No	Контролируемые разделы(темы)	мой компетенции	И	e
п/п	дисциплины*	(или ее части)	оценс	отони
			1 '	ства
			Текущий	Промежуточная
			контроль	аттестация
1	Основные понятия	ОПК-94	Расчетно-	Защита
	математической статистики	(знать)	графические	презентация
			задания	
	Проверка статических гипотез	ОПК-9.4	Расчетно-	
2		(знать)	графические	
_			задания	
			Расчетно-	
		ОПК-9.4	графические	
		(умеет, владеет)	задания	
	Генерация случайных	ОПК-9.4	Расчетно-	
3	последовательностей	(умеет, владеет)	графические	
			задания	
4	Различные виды анализа данных	ОПК-9.4	Расчетно-	
		(умеет, владеет)	графические	
			задания	
5	Корреляционный и	ОПК-9.4	Расчетно-	
	регрессионный анализ	(умеет, владеет)	графические	
			задания	

Показатели, критерии и шкала оценки сформированных компетенций

Код и наименовани е	Соответствие уровней освоения компетенции планируемым результатамобучения и критериям их оценивания		
компетенций	пороговый	базовый	продвинутый
	_	Оценка	-
	Удовлетворительно /зачтено	Хорошо/зачтено	Отлично /зачтено
ОПК-9.4	•	оригинальных алгоритмов и	разработки оригинальных алгоритмов и программных решений с
	алгоритмов	программных решений с	использованием

]			1
		использованием	современных технологий
		современных технологий	
	Умеет –	Умеет – пользоваться	Умеет - пользоваться
	пользоваться	большинством системам	системами искусственного
	некоторыми	искусственного	интеллекта для создания
	системами	интеллекта для создания	проектов в
	искусственного	проектов в	изобразительной
	интеллекта	изобразительной	деятельности
		деятельности	
	Владеет –	Владеет –	Владеет – навыками
	некоторыми	большинством навыкав	декомпозиции,
	навыками	декомпозиции,	формализации процессов
	декомпозиции,	формализации процессов	и объектов для
	формализации	и объектов для	использования
	процессов.	использования	интеллектуальных
		интеллектуальных	программных решений
		программных решений	

Типовые контрольные задания или иные материалы, необходимые для оценкизнаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Выполнение расчетно-графических заданий – ОПК-9.4, (знать, уметь, владеть):

- 1.Создание эскизов при помощи ИИ;
- 2. Разработка тематической иллюстрации на основе эскизов, созданных ИИ.

Выполнение презентации с поэтапным ходом работы – ОПК-9.4, (знать, уметь, владеть).

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Задания для подготовки к зачету:

Выполнение лабораторных работ на заданные тематики с использованием компьютера.

Перечень компетенций (части компетенции), проверяемых оценочным средством

ОПК-9.4

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Методические рекомендации, определяющие процедуры оценивания на зачете:

Студенты обязаны сдать зачет в соответствии с расписанием и учебным планом. Зачет по дисциплине преследует цель оценить работу студента за семестр, получение теоретических и практических знаний, их прочность, развитие творческого мышления, приобретение навыков самостоятельной работы, умение применять полученные знания для решения практических задач. На зачет студент приносит портфолио с полным набором творческих работ, выполненных на лабораторных занятиях по изучаемой дисциплине за семестр.

Форма проведения зачета: защита презентации.

Результат сдачи зачета заносится преподавателем в зачетную ведомость и зачетную книжку.

5. Перечень основной и дополнительной учебной литературы, необ-ходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. Петер Флах. ДМК Пресс. 2015.
- 2. Глубокое обучение. Погружение в мир нейронных сетей Николенко Сергей Игоревич, Кадурин А. А. | Николенко Сергей Игоревич, Кадурин А. А.
- 3. Обучение с подкреплением / Саттон Ричард С., Барто Эндрю Г., ДМК Пресс, 2020.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Основы искусственного интеллекта: учебное пособие / Е.В.Боровская, Н. А. Давыдова. 4-е изд., электрон. М.: Лаборатория знаний, 2020. 130 с.
- 2. Искусственный интеллект с примерами на Python. Джоши Пратик. Вильямс. 2019.
- 3. Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем, 2-е издание. Жерон Орельен. Диалектика-Вильямс. 2020.
 - 4. Хенрик Бринк, Джозеф Ричардс, Марк Феверолф «Машинное обучение», Питер 2017.
 - 5. Как учится машина: Революция в области нейронных сетей и глубокого обучения. Ян Лекун. Альпина PRO. 2021.
- 6. Грокаем глубокое обучение. Эндрю Траск. Питер. 2019.
- 7. Обучение с подкреплением на PyTorch. Сборник рецептов. Юси Лю. ДМК Пресс. 2020.

Интернет-ресурсы:

1. https://spinningup.openai.com/en/latest/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Приоритетным условием качества подготовки специалистов является компетентность. Формирование профессиональной компетентности студентов становится возможным, если:

- процесс профессиональной подготовки будущего специалиста имитирует профессиональное пространство;
 - имеется средовый и личностно-ориентировочный подход;
- разработаны показатели оценки эффективности системы подготовки студентов к профессиональной деятельности.

Особое значение в профессиональной подготовке имеет виртуальный лабораторный практикум. Виртуальный лабораторный практикум призван ознакомить студентов с системами ИИ, а также привить определен ные навыки самостоятельного создания расчетно-графического материала, с использованием систем ИИ.

В создание презентации входит комплекс лабораторных работ, в которых студент использует приобретенные умения и навыки работы с ИИ для создания творческих работ.

Самостоятельная работа студентов направлена на решение следующих задач:

- 1) развитие и совершенствование умений и навыков работы с системами ИИ;
- 2) самостоятельное овладение новым учебным материалом в работе с нейронными сетями;
- 3) развитие и совершенствование творческих способностей при самостоятельном выполнении расчетно-графических заданий.

Навыки работы с системами ИИ, развитие и совершенствование профессиональных способностей, творческих способностей вырабатываются при выполнении студентами заданий, непосредственно связанных с нейронными сетями, а также при самоподготовке.

Интерактивные технологии в совокупности с интерактивным программным обеспечением позволяют реализовать качественно новую эффективную модель преподавания учебных дисциплин, а современные интерактивные доски, появившиеся в образовательных учреждениях, являются техническим инструментом для реализации эффективной модели электронного обучения

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

7.1 Перечень информационно-коммуникационных технологий

Электронная информационно-образовательная среда ФГБОУ ВО «КубГУ» https://infoneeds.kubsu.ru обеспечивает доступ к учебно-методической документации: учебный план, рабочие программы дисциплин (модулей), практик, комплекс основных учебников, учебно-методических пособий, электронным библиотекам и электронным образовательным ресурсам, указанным в рабочих программах всех учебных дисциплин (модулей), практик, НИР и др.

Перечисленные компоненты представлены на сайте ФГБОУ ВО «КубГУ» https://www.kubsu.ru/ в разделе «Образование», вкладка «Образовательные программы» и локальной сети.

Электронная информационно-образовательная среда обеспечивает формирование и хранение электронного портфолио обучающегося, в том числе сохранение работ обучающихся (курсовых, дипломных, проектных работ), рецензий и оценок на эти работы со стонылюбых участников образовательного процесса.

Единая информационно-образовательная среда Кубанского государственного университета реализована на базе университетского портала http://www.kubsu.ru, объединяющего основные автоматизированные информационные системы, обеспечивающие образовательную и научно-исследовательскую деятельность вуза:

- Автоматизированная информационная система «Управления персоналом»;
- «База информационных потребностей» (<u>http://infoneeds.kubsu.ru</u>), содержащая всю информацию об учебных планах и рабочих программах по всем направлениям подготовки, данные о публикациях и научных достижениях преподавателей.
- Автоматизированная информационная система «Приемная кампания», обеспечивающая обработку данных абитуриентов.
 - Базы данных научных исследований и интеллектуальной собственности.
- Интегрированная автоматизированная информационная система «Управление учебным процессом».

- Два раздела среды динамического модульного обучения (<u>http://moodle.kubsu.ru</u> и <u>http://moodlews.kubsu.ru</u>), используемые для создания электронных учебных курсов и их применения в учебном процессе.
- Электронное хранилище документов (<u>http://docspace.kubsu.ru</u>), предназначенное для размещения документов диссертационных советов и электронных учебников.
- Электронная среда для совместной работы по созданию информационных ресурсов (http://wiki.kubsu.ru).

Система проведения вебинаров на базе программного продукта Cisco Webex позволяет использовать дистанционные технологии в учебном процессе.

Студенты и преподаватели имеют персональные пароли доступа к университетской сети, использование которых позволяет получить доступ к университетской сети Wi-Fi и личным кабинетам, работать в компьютерных классах, используя лицензионное прикладное программное обеспечение, получать доступ из дома к университетским информационным Система личных кабинетов позволяет автоматически сформировать общедоступное личное портфолио, реализовать доступ к информационным ресурсам вуза, автоматизировать передачу информации различным группам пользователей. Реализовано управление информационными потоками, обеспечивающее информационное взаимодействие между различными службами вуза.

7.2 Перечень лицензионного и свободно распространяемого программного обеспечения

Компьютерный класс $X\Gamma\Phi$ (ауд. 502-н) обеспечен необходимым комплектом лицензионного программного обеспечения, в состав которого входят графические редакторы, которые необходимы для проведения лабораторных занятий по дисциплине «Системы искусственного интеллекта»:

№	Перечень лицензионного программного обеспечения
1.	Microsoft Windows 8, 10
2.	Microsoft Office Professional Plus
3.	Acrobat DC
4.	Photoshop CC
5.	Illustrator CC
6.	CorelDRAW Graphics Suite X8
7.	Internet

7.3 Перечень современных профессиональных баз данных и информационных справочных систем

Современные профессиональные базы данных, информационные справочные и поискове системы:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Гарант.ру информационно-правовой портал (http://www.garant.ru/)

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронно-библиотечным системам:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/
- 2. Электронный каталог Hayчной библиотеки (https://www.kubsu.ru/)
- 3. Электронная библиотечная система «Университетская библиотека ONLINE» (www.biblioclub.ru)
- 4. Электронная библиотечная система издательства «Лань» (http://e.lanbook.com/)
- 5. Электронная библиотечная система «Юрайт» (http://www.biblio-online.ru)
- 6. Электронная библиотечная система

«ZNANIUM.COM»

(http://znanium.com/catalog/)

- 7. Электронная библиотечная система «BOOK.ru» (https://www.book.ru)
- 8. Scopus база данных рефератов и цитирования (http://www.scopus.com/)
- 9. Электронная библиотека «Издательского дома «Гребенников» (www.grebennikon.ru)

8. Материально-техническое обеспечение по дисциплине (модулю)

Интерактивные способы обучения дают возможность преподавателю визуализировать процесс усвоения учебного материала студентами. Важным отличием мультимедиа технологии от любой другой технологии является интеграция в одном программном продукте разнообразных видов информации, как традиционных - текст, таблицы, иллюстрации, так и активно развивающихся: речь, музыка, анимация. Очень важным аспектом здесь является параллельная передача аудио и визуальной информации. Эта технология реализует новый уровень интерактивного общения человека и компьютера, где пользователь может переходить от одного объекта к другому, организовывать режим вопросов и ответов.

Для проведения лабораторного практикума по дисциплине «Компьютерная графика есть специализированная аудитория — компьютерный класс (аудитория № 502-н), которая находится на художественно-графическом факультете. Данная аудитория оснащена всем необходимым оборудованием: 16 рабочих станций, интерактивная панель. На рабочих станция установлены необходимые для данного курса графические программы: Corel DRAW/Adobe Illustrator, пакет Adobe Standart, с доступом к сети «Интернет» (с возможностью использования: Kandinsky 3.0, Ideogram.ai, Artflow, Krea-ai и другие).

No॒	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения
1.	Лабораторные занития	Компьютерный класс, учебная аудитория для проведения лабораторных работ, курсового проектирования, текущегоконтроля и промежуточной аттестации (350040 г. Краснодар, ул. Ставропольская, 149) ауд. № 502(Н). Лабораторияукомплектована учебной мебелью, интерактивной панелью, персональными компьютерами — 16 шт. с доступом к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации, с полным комплектом лицензионного ПО, необходимого для проведения лабораторных занятий по дисциплине
2.	Групповые (индивидуальные) консультации	«Компьютерная графика» Компьютерный класс, учебная аудитория для проведения лабораторных работ, курсового проектирования, текущегоконтроля и промежуточной аттестации (350040 г. Краснодар, ул. Ставропольская, 149) ауд. № 502(Н). Лабораторияукомплектована учебной мебелью, интерактивной панелью, персональными компьютерами — 16 шт. с доступом к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации, с полным комплектом лицензионного ПО, необходимого для проведения лабораторных занятий по дисциплине

		«Компьютерная графика»
3.	Текущий контроль, промежуточная аттестация	Компьютерный класс, учебная аудитория для проведения лабораторных работ, курсового проектирования, текущегоконтроля и промежуточной аттестации (350040 г. Краснодар, ул. Ставропольская, 149) ауд. № 502(Н). Лаборатория укомплектована учебной мебелью, интерактивной панелью, персональными компьютерами — 16 шт. с доступом к сети «Интернет» и обеспечением доступа в электроннуюинформационно-образовательную среду организации, с полным комплектом лицензионного ПО, необходимого для проведения лабораторных занятий по дисциплине «Компьютерная графика»
4.	Самостоятельная работа	Помещение для самостоятельной работы (350040 г. Краснодар, ул. Ставропольская, 149) ауд. № 503(A). Помещение оснащено учебной мебелью, персональными компьютерами — 3 шт. с доступом к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду организации

Рецензия на рабочую программу по дисциплине «Анализ данных в профессиональной деятельности» Направление 44.03.05 Педагогическое образование (с двумя профилями подготовки), направленность (профиль): «Изобразительное искусство, Компьютерная графика», программа подготовки академический бакалавриат

Цель дисциплины: формирование у студентов знаний и умений при разработки оригинальных алгоритмов и программных решений с использованием современных технологий.

Задачи дисциплины:

- развитие навыков целенаправленной комплектации системного блока, в соответствии с задачами дизайн-проектирования;
- приобретение умений и навыков работы на компьютере в графических редакторах;
 - изучение процессов обработки и редактирования изображений;
- развитие художественных способностей, образного мышления, творческого воображения, зрительной памяти;
- изучение методов разработки оригинальных алгоритмов и программных решений с использованием современных технологий.

Осваиваемые компетенции (ПК):

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

ОПК-9 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности

Основные разделы дисциплины:

Проектирование и разработка баз данных;

Интеллектуальный анализ данных.

Изучение дисциплины заканчивается аттестацией в форме зачета.

Литература отвечает требованиям, соответствует предмету и отражает актуальное состояние изучения дисциплины. Учтены потребности лиц с ограниченными возможностями здоровья.

Программа соответствует требованиям $\Phi \Gamma OC$ BO, соответствует ООП по направлению подготовки и может быть рекомендована к использованию в учебном процессе.