МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования нервый

проректор

Т.А. Ха уров

подпись

2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.09 ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ И АЛГОРИТМЫ НА ГРАФАХ

Направление

подготовки/специальность

01.05.01 Фундаментальные математика

и механика

Направленность (профиль) /

специализация

Математическое моделирование

Форма обучения

Очная

Квалификация

Математик. Механик. Преподаватель

Рабочая программа дисциплины Б1.В.09 Символьная вычислительная математика составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.01 Математика и компьютерные науки

Программу составил(и):

Ю.М. Вишняков, профессор кафедры вычислительной математики и информатики, д.-р. тех. н., проф.

Рабочая программа дисциплины Б1.В.09 Символьная вычислительная математика утверждена на заседании кафедры вычислительной математики и информатики

протокол № 16 «<u>7» мая</u> 2024 г.

Заведующий кафедрой вычислительной математики и информатики

<u>Гайденко С.В.</u> фамилия, инициалы

Утверждена на заседании учебно-методической комиссии факультета Математики и компьютерных наук

протокол № 3 «<u>14»</u> мая 2024 г.

Председатель УМК факультета

<u>Шмалько С.П.</u> фамилия, инициалы

подпись

поднись

Рецензенты:

<u>Уртенов М.Х.</u>, д.-р. физ.-мат.н., профессор, заведующий кафедрой прикладной математики Кубанского государственного университета <u>Луценко Е.В.</u>, д.-р. э.н., канд. тех.н., профессор кафедры компьютерных технологий и систем Кубанского государственного аграрного университета

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Курс посвящен изучению классических алгоритмов решения оптимизационных задач на графах и сетях с применением различных приемов программирования; построению новых и модификации и комбинации известных алгоритмов для решения конкретных задач; оценке эффективности указанных алгоритмов.

1.2 Задачи дисциплины.

Задачи дисциплины — дать навыки постановки и решения задач оптимизации на графах; научить выбору адекватных алгоритмов для решения вышеуказанных задач; отработать умения по программной реализации алгоритмов на персональном компьютере.

В результате изучения данной дисциплины студенты должны овладеть навыками постановки и решения задач оптимизации на графах, предусматривающими знание адекватных алгоритмов.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Экстремальные задачи и алгоритмы на графах» относится к части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" учебного плана.

В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе по очной форме обучения. Вид промежуточной аттестации: зачет.

Курс опирается на знания, полученные студентами в рамках дисциплины «Дискретная математика».

Знания, полученные в этом курсе, используются в распознавании образов, лингвистических основах информатики, интеллектуальных системах, при оценке сложности комбинаторных вычислений, при изучении алгоритмов и структур данных и др.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций: ОПК-1, ПК-1.

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине		
ОПК-1 Способен находить, формулировать и ре математики и механики	шать актуальные и значимые проблемы фундаментальной		
ОПК-1.1 Знает актуальные и значимые про- блемы фундаментальной математики	Знает основные типы объектов и структур, изучаемых теорией графов Умеет осуществлять подбор эффективных алгоритмов		
	для решения задач на графах Владеет навыками произведения отладки программы и интерпретации результатов ее работы		
ОПК-1.2 Осуществляет выбор методов решения задач фундаментальной математики	Знает основы построения компьютерных моделей на графах. Умеет строить модели объектов и понятий на основе теории графов. Владеет навыками алгоритмизации основных задач теории графов		
ОПК-1.3 Владеет навыками формализации актуальных задач фундаментальной математики и применения подходящих методов их решения	Знает типовые методы, используемые при работе с графами, орграфами, мультиграфами и сетями, постановки наиболее известных задач на графах и сетях и эффективные алгоритмы их решения Умеет формулировать прикладные и теоретические задачи на языке графов и сетей Владеет навыками разработки программной реализации выбранного алгоритма		
ПК-1 Способен формулировать и решать актуальные и значимые задачи фундаментальной и прикладной			

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине
математики	
ПК-1.1 Знает основные понятия, идеи и методы фундаментальных математических дисциплин для решения базовых задач	Знает основные понятия теории графов и комбинаторных алгоритмов, определения и свойства математических объектов, используемых в этой области; постановки оптимизационных задач и методы их решения; формулировки основных утверждений Умеет решать задачи теоретического и прикладного характера из различных разделов комбинаторных алгоритмов Владеет математическим аппаратом комбинаторных алгоритмов
ПК-1.2 Умеет передавать результаты проведенных теоретических и прикладных исследований в виде конкретных предметных рекомендаций в терминах предметной области	Знает основные понятия теории графов, типовые методы, используемые при работе с графами, орграфами, Умеет осуществлять подбор эффективных алгоритмов для решения задач теоретического и прикладного характера из различных сфер применения теории графов Владеет математическим аппаратом теории графов
ПК-1.3 Самостоятельно и корректно решает стандартные задачи фундаментальной и прикладной математики	Знает различные свойства графов и связанных с ними объектов Умеет разработать программную реализацию выбранного алгоритма, произвести отладку программы и интерпретировать результаты ее работы Владеет навыками произведения отладки программы и интерпретации результатов ее работы
ПК-1.4 Имеет навыки решения математических задач, соответствующих квалификации, возникающих при проведении научных и прикладных исследований	Знает формулировки основополагающих утверждений, возможные сферы их приложений Умеет разработать программную реализацию выбранного алгоритма, произвести отладку программы и интерпретировать результаты ее работы Владеет методами произведения отладки программы и интерпретации результатов ее работы

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 2 зачетных единицы, (72 часа), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения
	часов	евнью
		5 семестр (часы)
Контактная работа, в том числе:	54,2	54,2
Аудиторные занятия (всего):	52	52
занятия лекционного типа	18	18
лабораторные занятия	34	34
Иная контактная работа:	2,2	2,2
Контроль самостоятельной работы (КСР)	2	2
Промежуточная аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:	17,8	17,8
Контрольная работа	2	2

Расчётно-графическ (подготовка)	ая работа (РГР)	10	10
моподготовка (прор лекционного матер	учение разделов, са- аботка и повторение мала и материала ых пособий, подго- ми и т.д.)	5,8	5,8
Подготовка к текущ	ему контролю		
Контроль:	Контроль:		-
Подготовка к экзаме	Подготовка к экзамену		-
Общая трудоем- час.		72	72
кость в том числе кон- тактная работа		54,2	54,2
	зач. ед	2	2

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

No		Количество часов		часов		
	Наименование разделов (тем)		Всего Аудиторна работа		в Внеаудиторная работа	
			Л	ЛР	CPC	
1	Основные определения теории графов.	6	2	2	2	
	Операции с графами. Маршруты, цепи,					
	циклы.					
2	Деревья	8	2	4	2	
3	Связность. Независимость и покрытия	6	2	2	2	
4	Планарность	8	2	4	2	
5	Обходы в графах	6	2	2	2	
6	Раскраски	10	2	6	2	
7	Выявление маршрутов с заданным коли-	8	2	4	2	
	чеством ребер. Определение экстремаль-					
	ных путей на графе. Метод Шимбелла					
8	Поиск кратчайшего пути в графе. Алго-	8	2	4	2	
	ритм Дейкстры. Алгоритм Беллмана-					
	Mypa					
9	Потоки в сетях. Теорема Форда-Фалкер-	9,8	2	6	1,8	
	сона. Приложения задачи о максималь-					
	ном потоке					
	ИТОГО по разделам дисциплины		18	34	17,8	
	Контроль самостоятельной работы (КСР)					
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к экзамену	-				
	Общая трудоемкость по дисциплине	72				

Примечание: Π – лекции, Π – лабораторные занятия, CPC – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины.

2.3.1 Занятия лекционного типа.

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма теку- щего контроля
1	Основные определения теории графов. Операции с графами. Маршруты, цепи, циклы.	Теория графов: основные определения, изоморфизм графов, матричное представление графов. Подграфы, операции над графами. Маршруты, цепи, циклы. Связность. Степени вершин графа. Регулярные графы. Двудольные графы. Поиск в ширину. Метрические характеристики графа. Удаление ребер и вершин, добавление ребер и вершин, отождествление вершин, расщепление вершин. Объединение, пересечение, произведение графов. Гомеоморфные графы. Признаки двудольности графа.	Индивидуальное расчетное задание
2	Деревья	Деревья. Матричная теорема Кирхгофа. Теорема Кэли. Остов минимального веса. Алгоритмы Краскала и Прима.	Индивидуаль- ное расчетное задание
3	Связность. Независи- мость и покрытия	Числа вершинной и реберной связности. Теорема о точках сочленения. Алгоритм поиска точек сочленения. Свойства двусвязных графов. Независимые множества и покрытия. Клика. Паросочетания. Паросочетания в двудольном графе. Вершинная связность и реберная связность. Двусвязные графы. Теорема Менгера.	Индивидуальное расчетное задание
4	Планарность	Плоские и планарные графы. Грани плоского графа. Формула Эйлера. Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости. Характеристики непланарных графов.	Индивидуальное расчетное задание
5	Обходы в графах	Эйлеровы графы. Алгоритм Флёри. Гамильтоновы графы. Фундаментальные циклы.	Индивидуаль- ное расчетное задание
6	Раскраски	Раскраски. Правильная раскраска. Оценки хроматического числа. Хроматический полином. Раскраска ребер. Раскраска планарных графов. Проблема четырех красок.	Индивидуаль- ное расчетное задание
7	Выявление маршрутов с заданным количеством ребер. Определение экстремальных путей на графе. Метод Шимбелла	Основные определения теории ориентированных графов. Полустепени исхода и захода. Исток и сток. Маршруты, пути, цепи. Связность. Конденсация. Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости. Сильные компоненты в орграфе Эйлеровы и гамильтоновы контуры в орграфе. Понятия базы и ядра в орграфе. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов Выявление маршрутов с заданным количеством ребер. Определение экстремальных путей. Метод Шимбелла.	Индивидуальное расчетное задание
8	Поиск кратчайшего пути в графе. Алгоритм Дейкстры. Алгоритм Беллмана-Мура	Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	Индивидуальное расчетное задание
9	Потоки в сетях. Теорема Форда-Фалкерсона. Приложения задачи о максимальном потоке	Теорема Форда-Фалкерсона. Поток минимальной стоимости. Элементы сетевого планирования. Сетевые и линейные графики. Транспортная задача по критерию времени. Задача об оптимальном назначении.	Индивидуальное расчетное задание

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.	Основные определения	Изоморфизм графов, матричное представление гра-	Решение задач
	теории графов. Опера-	ров.Операции над графами. Степени вершин графа. Регу-	
	ции с графами. Марш-	пярные графы. Двудольные графы. Поиск в ширину. Мет-	
	руты, цепи, циклы.	рические характеристики графа. Гомеоморфные графы.	
2.	Деревья	Деревья. Матричная теорема Кирхгофа. Теорема Кэли.	Решение задач
3.	Деревья	Остов минимального веса. Алгоритмы Краскала и Прима.	Решение задач

мость и покрытия гочек сочленения. Свойства двусвязных графов. Независимые множества и покрытия. Клика. Паросочетания. Паросочетания в двудольном графе. Вершинная связность и реберная связность. Двусвязные графы. 5. Планарность Плоские и планарные графы. Грани плоского графа. Формула Эйлера. Характеристики непланарных графов. 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости.	ение задач
мые множества и покрытия. Клика. Паросочетания. Паросочетания в двудольном графе. Вершинная связность и реберная связность. Двусвязные графы. 5. Планарность Плоские и планарные графы. Грани плоского графа. Формула Эйлера. Характеристики непланарных графов. 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости.	ение залач
очетания в двудольном графе. Вершинная связность и ре- берная связность. Двусвязные графы. 5. Планарность Плоские и планарные графы. Грани плоского графа. Фор- мула Эйлера. Характеристики непланарных графов. 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости.	ение залач
Берная связность. Двусвязные графы. 5. Планарность Плоские и планарные графы. Грани плоского графа. Формула Эйлера. Характеристики непланарных графов. 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости.	ение залач
5. Планарность Плоские и планарные графы. Грани плоского графа. Формула Эйлера. Характеристики непланарных графов. Решения 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости. Решения	ение залач
мула Эйлера. Характеристики непланарных графов. 6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм укладки графа на плоскости.	
6. Планарность Плоские триангуляции. Критерии планарности. Алгоритм Решо кладки графа на плоскости.	
укладки графа на плоскости.	ение задач
7. Обходы в графах Эйлеровы графы. Алгоритм Флёри. Гамильтоновы графы. Реш	ение задач
Фундаментальные циклы.	
	ение задач
Оценки хроматического числа.	
	ение задач
кроматического полинома.	3
	ение задач
	ение задач
	ение задач
заданным количеством Полустепени исхода и захода. Исток и сток. Маршруты,	
ребер. Определение экс-пути, цепи. Связность. Конденсация. Матричное представ-	
тремальных путей на ление графов. Матрицы смежности, инцидентности, до-	
графе. Метод Шим-стижимости, контрдостижимости. Сильные компоненты в белла орграфе	
Эйлеровы и гамильтоновы контуры в орграфе. Понятия	
базы и ядра в орграфе.	
	ение задач
заданным количеством ритмов теории графов	
ребер. Определение экс-Выявление маршрутов с заданным количеством ребер.	
тремальных путей на Определение экстремальных путей. Метод Шимбелла.	
графе. Метод Шим-	
белла	
	ение задач
пути в графе. Алгоритм	
Дейкстры. Алгоритм	
Беллмана-Мура	
	ение задач
пути в графе. Алгоритм мального пути.	
Дейкстры. Алгоритм	
Беллмана-Мура	
	ение задач
Форда-Фалкерсона. сти. Элементы сетевого планирования. Сетевые и линей-	
Приложения задачи о ные графики.	
максимальном потоке	
	ение задач
рема Форда-Фалкер- гимальном назначении.	
сона. Приложения за-	
дачи о максимальном	
дачи о максимальном потоке	ение задач

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
---	---------	---

1	Работа с лекционным	Методические рекомендации по организации самостоятель-
	материалом, поиск и	ной работы студентов, утвержденные кафедрой вычисли-
	анализ литературы и	тельной математики и информатики, протокол № 14 от
	электронных источни-	14.06.2017 г.
	ков информации по за-	Методические указания по дисциплине «Комбинаторные ал-
	данной проблеме	горитмы», утвержденные кафедрой вычислительной матема-
		тики и информатики, протокол № 11 от 01.03.16 г.
2	Изучение теоретиче-	Методические рекомендации по организации самостоятель-
	ского материала к ла-	ной работы студентов, утвержденные кафедрой вычисли-
	бораторным занятиям	тельной математики и информатики, протокол № 14 от
		14.06.2017 г.
		Методические указания по дисциплине «Комбинаторные ал-
		горитмы», утвержденные кафедрой вычислительной матема-
		тики и информатики, протокол № 11 от 01.03.16 г.
3	Подготовка к экзамену	Методические рекомендации по организации самостоятель-
		ной работы студентов, утвержденные кафедрой вычисли-
		тельной математики и информатики, протокол № 14 от
		14.06.2017 г.
		Методические указания по дисциплине «Комбинаторные ал-
		горитмы», утвержденные кафедрой вычислительной матема-
		тики и информатики, протокол № 11 от 01.03.16 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, лабораторные занятия, проблемное обучение, модульная технология, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, мозгового штурма, разбора конкретных ситуаций, анализа педагогических задач, педагогического эксперимента, иных форм) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование ОСМДО КубГУ; использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины

– для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Семестр	Вид занятия	Используемые интерактивные образовательные тех-	Количество
		нологии	часов
5	Лабораторные	Тренинг «Теория графов: основные определения,	2
	занятия	матричное представление графов.»	
		Тренинг «Изоморфизм графов.»	2
		Тренинг «Метрические характеристики графа.»	2
		Тренинг «Деревья. Матричная теорема Кирхгофа.»	2
		Тренинг «Деревья. Теорема Кэли.»	2
		Тренинг «Алгоритмы Краскала и Прима.»	2
		Тренинг «Плоские и планарные графы. Формула Эй-	2
		лера. Критерии планарности.»	
		Тренинг «Алгоритм укладки графа на плоскости. Ха-	2
		рактеристики непланарных графов.»	
		Тренинг «Эйлеровы и гамильтоновы графы.»	2
		Тренинг «Раскраски графа.»	2
		Тренинг «Оценки хроматического числа. Хроматиче-	2
		ский полином.»	
		Тренинг «Раскраска планарных графов. Проблема че-	2
		тырех красок.»	
		Тренинг «Независимые множества и покрытия.	2
		Клика.»	
		Тренинг «Паросочетания. Паросочетания в двудоль-	2
		ном графе.»	
		Тренинг «Вершинная связность и реберная связность.	2
		Двусвязные графы. Теорема Менгера.»	
		Тренинг «Применение аппарата теории графов к ре-	4
		шению практических задач в различных областях»	
Итого:			34

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория графов».

Оценочные средства включают контрольные материалы для проведения **текущего контроля** в форме перечня вопросов для устного опроса, типов заданий к контрольной работе, примерного перечня тем рефератов, индивидуального расчетного задания и **промежуточной аттестации** в форме вопросов и заданий к экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

– в форме электронного документа.

Для лиц с нарушениями слуха:

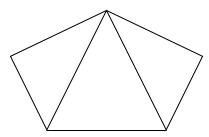
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации


Mo	Код и наименование	Dearway magner a fermanne	Наименование оцен	очного средства
№ п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная ат- тестация
1	ОПК-1.1 Знает актуальные и значимые проблемы фундаментальной математики	Знает основные типы объектов и структур, изучаемых теорией графов Умеет осуществлять подбор эффективных алгоритмов для решения задач на графах Владеет навыками произведения отладки программы и интерпретации результатов ее работы		
2	ОПК-1.2 Осуществляет выбор методов решения задач фундаментальной математики	Знает основы построения компьютерных моделей на графах. Умеет строить модели объектов и понятий на основе теории графов. Владеет навыками алгоритмизации основных задач теории графов	Вопросы для устного (письменного) опроса по теме, разделу Контрольная работа Индивидуальное расчет-	Вопросы и задания к зачету
3	ОПК-1.3 Владеет навыками формализации актуальных задач фундаментальной математики и применения подходящих методов их решения	Знает типовые методы, используемые при работе с графами, орграфами, мультиграфами и сетями, постановки наиболее известных задач на графах и сетях и эффективные алгоритмы их решения Умеет формулировать прикладные и теоретические задачи на языке графов и сетей Владеет навыками разработки программной реализации выбранного алгоритма	ное задание Тестирование	
4	ПК-1.1 Знает основные понятия, идеи и методы фундаментальных математических дисциплин для решения базовых задач	Знает основные понятия теории графов и комбинаторных алгоритмов, определения и свойства математических объектов, используемых в этой области; постановки оптимизационных задач и		

				1
		методы их решения; фор-		
		мулировки основных		
		утверждений		
		Умеет решать задачи тео-		
		ретического и приклад-		
		ного характера из раз-		
		личных разделов комби-		
		наторных алгоритмов		
		Владеет математическим		
		аппаратом комбинатор-		
		ных алгоритмов		
	ПК-1.2 Умеет пере-	Знает основные понятия		
	давать результаты про-	теории графов, типовые		
	веденных теоретиче-	методы, используемые	_	
	ских и прикладных ис-	при работе с графами, ор-	Вопросы для устного	
	следований в виде кон-	графами,	(письменного) опроса по	
	кретных предметных ре-	Умеет осуществлять под-	теме, разделу	
5	комендаций в терминах	бор эффективных алго-	Контрольная работа	Вопросы и задания
	предметной области	ритмов для решения за-	Индивидуальное расчет-	к зачету
		дач теоретического и	ное задание	
		прикладного характера	Тестирование	
		из различных сфер при-		
		менения теории графов		
		Владеет математическим		
		аппаратом теории графов		
	ПК-1.3 Самостоя-	Знает различные свой-		
	тельно и корректно ре-	ства графов и связанных		
	шает стандартные за-	с ними объектов		
	дачи фундаментальной	Умеет разработать про-		
	и прикладной матема-	граммную реализацию		
	тики	выбранного алгоритма,		
6		произвести отладку про-		
		граммы и интерпретиро-		
		вать результаты ее ра-		
		боты		
		Владеет навыками произ-		
		ведения отладки про-		
		граммы и интерпретации		
	TITO 4 4 II	результатов ее работы		
	ПК-1.4 Имеет навыки	Знает формулировки ос-		
	решения математиче-	новополагающих утвер-		
	ских задач, соответству-	ждений, возможные		
	ющих квалификации,	сферы их приложений		
	возникающих при про-	Умеет разработать про-		
	ведении научных и при-	граммную реализацию		
_	кладных исследований	выбранного алгоритма,		
7		произвести отладку про-		
		граммы и интерпретиро-		
		вать результаты ее ра-		
		боты		
		Владеет методами произ-		
		ведения отладки про-		
		граммы и интерпретации		
		результатов ее работы		

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры задач для контрольных работ Неориентированные графы

- 1. Граф G задан множествами вершин и ребер, представить граф G рисунком, матрицей смежности и матрицей инцидентности.
- $G = (\{1; 2; 3; 4; 5; 6\}, \{\{1; 2\}; \{2; 3\}; \{3; 4\}; \{4; 5\}; \{5; 6\}; \{1; 3\}; \{1; 4\}; \{1; 5\}; \{2; 6\}; \{3; 5\}\}).$
- 2. Граф G задан рисунком, представить граф G множествами вершин и ребер, матрицей смежности и матрицей инцидентности.

3. Граф G задан матрицей смежности, представить граф G рисунком, множествами вершин и ребер, и матрицей инцидентности.

0	1	0	0	0	0
1	0	1	0	1	0
0	1	0	1	1	1
0	0	1	0	1	1
0	1	1	1	0	1
0	0	1	1	1	0

4. Граф G задан матрицей инцидентности, представить граф G рисунком, множе-

ствами вершин и ребер, и матрицей смежности

етвами вершин и ресер, и матрицеи емежности.								
1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0
0	1	1	1	0	1	0	0	0
0	0	0	1	1	0	1	0	0
0	0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	0	1

- 5. Построить несколько остовных подграфов графа $G1 = (\{1; 2; 3; 4; 5; 6; 7; 8\}, \{\{1; 2\}; \{1; 7\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 5\}; \{3; 6\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{7; 8\}\}).$
- 6. Построить подграф, порожденный подмножеством вершин VH= $\{2; 4; 5; 7; 9\}$ графа $G2 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 8\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{5; 10\}; \{6; 7\}; \{6; 9\}; \{7; 9\}; \{9; 10\}\}).$
- 7. Построить подграф, порожденный подмножеством ребер ЕН = {{1; 2};{2; 8}; {3; 4}; {4; 5}; {5; 6}; {6; 8}; {7;9}; {8;10}} графа G3 = ({1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, {{1; 2}; {1; 7}; {2; 3}; {2; 8}; {2; 9}; {3; 4}; {3; 8}; {4; 5}; {4; 10}; {5; 6}; {6; 7}; {6; 8}; {7; 8}; {7;9}; {8;9}; {8;10}}).
- 8. Построить граф полученный удалением ребер $\{1;2\};\{2;3\};\{3;4\};$ $\{4;5\};\{5;6\};$ $\{6;7\};$ $\{8;10\}$ графа G3.
 - 9. Построить граф полученный удалением вершин 5 и 8 графа G3.
 - 10. Построить граф полученный отождествлением вершин 8 и 9 графа G3.
 - 11. Построить граф полученный стягиванием ребер {2; 8} и {6; 9} графа G2.
 - 12. Построить граф полученный расщеплением вершины 8 графа G3.
 - 13. Построить объединение графов G1 и G2.
 - 14. Построить произведение графов $G1 = (\{1; 2; 3\}, \{1; 2\}; \{2; 3\})$ и

 $G2 = (\{a; b; c\}, \{\{a;b\}; \{b; c\}).$

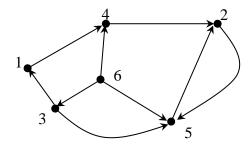
15. Найти несколько маршрутов соединяющих вершины 1 и 6 графа $G1 = (\{1; 2; 3; 4; 5; 6; 7; 8\}, \{\{1; 2\}; \{1; 7\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 5\}; \{3; 6\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{7; 8\}\})$, а также найти длины этих маршрутов.

16. Найти несколько цепей и простых цепей графа $G2 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 8\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{5; 10\}; \{6; 7\}; \{6; 9\}; \{7; 9\}; \{9; 10\}\}), а также найти длины этих цепей.$

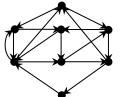
17. Найти несколько циклов и простых циклов графа $G3 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 7\}; \{2; 3\}; \{2; 8\}; \{2; 9\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{4; 10\}; \{5; 6\}; \{6; 7\}; \{6; 8\}; \{7; 8\}; \{7; 9\}; \{8; 9\}; \{8; 10\}\})$, а также найти длины этих циклов.

18. Найти обхват графа $G3 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 7\}; \{2; 3\}; \{2; 8\}; \{2; 9\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{4; 10\}; \{5; 6\}; \{6; 7\}; \{6; 8\}; \{7; 8\}; \{7; 9\}; \{8; 9\}; \{8; 10\}\})..$

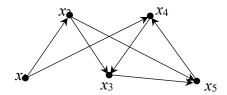
19. Построить дополнение графа $G2 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 8\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{5; 10\}; \{6; 7\}; \{6; 9\}; \{7; 9\}; \{9; 10\}\}).$

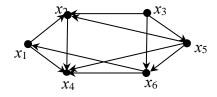

20. Найти степени вершин графа и выяснить, является ли этот граф регулярным $G2 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}, \{\{1; 2\}; \{1; 8\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{5; 10\}; \{6; 7\}; \{6; 9\}; \{7; 9\}; \{9; 10\}\}).$

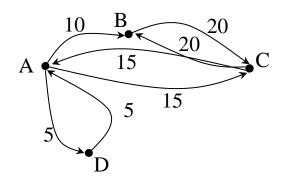
21. Поиском в ширину проверить, является ли граф $G4 = (\{1; 2; 3; 4; 5; 6; 7; 8; 9\}, \{\{1; 2\}; \{1; 6\}; \{1; 8\}; \{2; 3\}; \{2; 9\}; \{3; 4\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{6; 7\}; \{7; 8\}; \{7; 9\}\})$. двудольным.


22. Найти расстояние между вершинами 1 и 6, 7 и 5, 2 и 7, 1 и 4 в графе $G1 = (\{1; 2; 3; 4; 5; 6; 7; 8\}, \{\{1; 2\}; \{1; 7\}; \{2; 3\}; \{2; 8\}; \{3; 4\}; \{3; 5\}; \{3; 6\}; \{3; 8\}; \{4; 5\}; \{5; 6\}; \{7; 8\}\}).$

Ориентированные графы


- **1.** Опишите строение орграфа порядка n без параллельных дуг, удовлетворяющих для каждой вершины одному из следующих условий: a) $d^+(v) = 0$; б) $d^-(v) = 0$; в) $d^+(v) = n$; г) $d^-(v) = n$.
- 2. Покажите, что в любом бесконтурном орграфе есть и вершина с нулевой полустепенью захода, и вершина с нулевой полустепенью исхода.
- **3.** Орграф задан рисунком, представить граф матрицей смежности вершин, смежности дуг, инцидентности, матрицы достижимости, контрдостижимости. Найдите сильные компоненты графа


4. В орграфе, изображенном на рисунке, найдите контуры длиной 2, 3, 4, 5, 6; циклическую эйлерову цепь; гамильтонов контур.


- 5. Укажите орграф наименьшего порядка без петель, который не содержит ядра.
- 6. Найти матрицы сильных компонент и маршрутов длины три для графа

7. Упорядочьте, если это возможно, вершины и дуги орграфов графическим и матричным способом. Постройте наглядные изображения изоморфных графов

8. Найдите кратчайшие и максимальные пути длины 2 и 3 в графе G

9. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.

	x_1	x_2	<i>x</i> ₃	x_4	<i>X</i> 5	x_6
x_1	_	4	5	10	11	8
x_2	∞	_	11	3	5	8
<i>x</i> ₃	∞	8	_	6	7	8
χ_4	∞	8	8	_	6	8
<i>X</i> 5	∞	8	8	8	_	8
x_6	∞	8	8	8	8	_

10. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана — Мура.

	x_1	x_2	x_3	χ_4	χ_5	x_6
x_1		7	5	8	9	8
x_2	8	_	-8	4	8	8
χ_3	8	8		3	6	8
χ_4	8	8	8	_	8	8
χ_5	8	8	8	-4	_	6
χ_6	8	8	8	8	8	_

11. Граф задан матрицей весов. Найти длину максимального пути из вершины x_1 в x_6 и сам этот путь.

12. По данной матрице пропускных способностей дуг орграфа найти максимальный поток от вершины $s = x_1$ до $t = x_7$ и указать минимальный разрез, отделяющий s от t

	x_1	x_2	Х3	<i>X</i> 4	<i>X</i> 5	χ_6	<i>X</i> 7
x_1	_	_	15	12	_	11	-
x_2	_	_	_	17	12	_	14
<i>x</i> ₃	_	_	_	_	17	15	21
<i>X</i> 4	_	_	_	_	16	25	_
<i>X</i> 5	_	_	_	_	_	13	_
x_6	_	13	_	_	_	_	10
<i>X</i> 7	_	_	_	_	_	_	_

13. В таблице указаны запасы a_i некоторого однородного груза, находящегося у поставщиков A_i . Этот груз необходимо доставить за минимальное время получателям B_j , потребности b_j которых известны. В таблице приведены и продолжительности t_{ij} доставки груза (незави-

симо от объема поставки) каждым поставщиком A_i каждому потребителю B_j . Составьте реализуемый за минимальное время план перевозок, при котором спрос потребителей удовлетворяется полностью.

a_i	13	5	2
9	3	10	6
7	4	2	5
4	7	4	8

14. Найдите оптимальное распределение работ между исполнителями с учетом их возможностей, оцениваемых элементами данной матрицы, и исходя из указанного начального распределения

	\mathcal{U}_1	\mathcal{U}_2	И3	\mathcal{U}_4
P_1	1	0	1	0
P_2	0	1	1	1
P_3	1	0	0	1
P_4	1	0	0	1

Работы P_1 , P_2 , P_3 первоначально закреплены за исполнителями U_1 , U_2 , U_4 соответственно.

Образец вопросов для обсуждения на занятиях

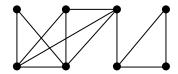
Сформулируйте определение дерева.

Сформулируйте признаки дерева.

Перечислите свойства центральных вершин графа.

Назовите способы обхода вершин в графе.

Назовите способы поиска остова в графе.


Сформулируйте теорему Кирхгофа.

Сформулируйте и докажите теорему Кэли.

Как построить матрицу фундаментальных циклов?

Укажите отличия алгоритмов Краскала и Прима поиска минимальных остовов.

Образец индивидуального расчетного задания

- 1. Пометьте вершины графа числами 1, ..., 8. Найдите степени всех вершин графа. Проверьте справедливость леммы о рукопожатиях для данного графа. Является ли граф регулярным? Полным? Обоснуйте.
- 2. Сколько ребер содержит дополнение графа? Нарисуйте его. Является ли граф самодополнительным? Приведите пример графа, изоморфного данному.
- 3. Постройте матрицу смежности графа и матрицу инцидентности. Как по ним определить степени вершин? Покажите связь между этими матрицами.
- 4. Приведите пример графа, гомеоморфного данному. Постройте граф, производными от которого являются эти графы.
 - 5. Есть ли в графе циклы? Приведите три примера. Чему равен обхват графа?
- 6. Является ли граф двудольным? (Воспользуйтесь поиском в ширину и теоремой Кенига).
- 7. Постройте матрицу расстояний графа. Найдите эксцентриситеты всех вершин графа, его радиус, диаметр, центр, периферию и медианы.
- 8. Постройте подграф, порожденный вершинами {1, 2, 3, 4}. Найдите в нем все маршруты длины 3. Сколько их? Какие из них являются цепями? Простыми цепями? Какие из них являются циклами?
 - 9. Чему равно цикломатическое число графа?
- 10. Сколько остовов имеет граф? Нарисуйте один из них, построив его при помощи обхода в ширину, или глубину, или разрушая циклы.
- 11. Постройте для остова из п.10 код Прюфера, затем переведите этот код обратно в дерево. (Убедитесь, что это одно и то же дерево).
- 12. Постройте матрицу фундаментальных циклов данного графа относительно выбранного остова.
- 13. Найдите число вершинной связности и число реберной связности графа. Есть ли в графе точки сочленения и мосты? Является ли граф двусвязным? Укажите блоки графа. Постройте граф блоков b(G), граф блоков точек сочленения bc(G).
- 14. Является ли граф планарным? Воспользовавшись алгоритмом у, постройте его плоскую укладку или докажите, что граф не планарный.

- 15. Проверьте справедливость формулы Эйлера для плоской укладки из п.14. Триангулируйте полученный плоский граф. Сколько у него ребер и граней?
 - 16. Найдите род, толщину, число скрещиваний, искаженность графа.
- 17. Является ли граф эйлеровым, гамильтоновым? Если нет, то проверьте, имеет ли он эйлерову или гамильтонову цепь.
- 18. Постройте правильную раскраску графа, воспользовавшись каким-либо алгоритмом раскраски. Является ли она минимальной? Оцените и определите хроматическое число графа.
- 19. Постройте хроматический полином данного графа. Убедитесь с его помощью, что хроматическое число графа в п.18 было найдено верно.
- 20. Найдите независимые подмножества вершин графа, максимальные независимые подмножества вершин графа, наибольшие независимые подмножества вершин графа. Определите число независимости графа.
- 21. Найдите доминирующие подмножества вершин графа, минимальные доминирующие подмножества вершин графа, наименьшие доминирующие подмножества вершин графа. Найдите число доминирования.
 - 22. Найдите ядро графа.
- 23. Найдите вершинные покрытия графа, минимальные вершинные покрытия графа, наименьшие вершинные покрытия графа. Найдите число вершинного покрытия.
- 24. Найдите реберные покрытия графа, минимальные реберные покрытия графа, наименьшие реберные покрытия графа. Найдите число реберного покрытия.
- 25. Найдите клики графа, максимальные клики графа, наибольшие клики графа. Нарисуйте подграфы, порожденные максимальными кликами. Найдите плотность графа. Найдите число кликового покрытия. Постройте матрицу клик, граф клик.
- 26. Найдите паросочетания графа, максимальные паросочетания, наибольшие паросочетания графа. Найдите число паросочетания.

Темы рефератов

- 1. Обзор задач теории графов.
- 2. Представление графов в компьютере.
- 3. Применение теории графов в различных сферах деятельности.
- 4. Свойства реберного графа.
- 5. Автоморфизм.
- 6. Степенные последовательности.
- 7. Вершинная и реберная реконструируемость графов.
- 8. Центроид дерева.
- 9. Пространство фундаментальных циклов.
- 10. Лабиринты и графы.
- 11. Задача коммивояжера.
- 12. Метод ветвей и границ.
- 13. Укладка графов на различных поверхностях.
- 14. Абстрактно двойственные графы.
- 15. Доказательство теоремы Брукса.
- 16. k-критические графы.
- 17. Реберная раскраска графа.

- 18. Проблема четырех красок.
- 19. Перечисление графов.
- 20. Решение комбинаторных задач с помощью теоремы Пойа.
- 21. Последние достижения теории графов.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Вопросы к зачету/экзамену

1. Основные понятия

- 1.1 Лемма о рукопожатиях
- 1.2 Теорема о вершинах с одинаковой степенью
- 1.3 Теорема о вершинах степени 0 или *n*-1
- 1.4 Изоморфизм графов
- 1.5 Матричное представление графов

2. Операции с графами

- 2.1 Удаление ребер и вершин, добавление ребер и вершин, отождествление вершин, расщепление вершин
- 2.2 Объединение, пересечение, произведение графов
- 2.3 Гомеоморфные графы
- 2.4 п-мерные кубы как особый класс графов. Коды Грея

3. Маршруты, цепи, циклы

- 3.1 Выявление маршрутов с заданным количеством ребер
- 3.2 Теорема о связи количества ребер, вершин и компонент связности в графе
- 3.3 Теорема о связности дополнения графа
- 3.4 Теорема о простом цикле
- 3.5 Признаки двудольности графа
- 3.6 Распознавание двудольности поиском в ширину

4. Деревья

- 4.1. Признаки дерева
- 4.2. Три способа построения остова. Алгоритм построения остова обходом графа в ширину
- 4.3. Три способа построения остова. Алгоритм построения остова обходом графа в глубину
- 4.4. Фундаментальные циклы
- 4.5. Теорема о центре дерева
- 4.6. Теорема Кирхгофа о числе остовов
- 4.7. Теорема Кэли о числе помеченных деревьев. Алгоритм перевода дерева в последовательность
- 4.8. Теорема Кэли о числе помеченных деревьев. Алгоритм перевода последовательности в дерево
- 4.9. Поиск остова минимального веса. Алгоритм Краскала
- 4.10. Поиск остова минимального веса. Алгоритм Прима
- 4.11. Поиск остова минимального веса. Матричный алгоритм Прима

5. Связность

- 5.1. Числа вершинной и реберной связности. Теорема о точках сочленения
- 5.2. Алгоритм поиска точек сочленения
- 5.3. Теорема о связи чисел вершинной и реберной связности
- 5.4. Свойства двусвязных графов
- 5.5. Теоремы о блоках графа

6. Планарные графы

- 6.1 Теорема Эйлера о связи чисел вершин, ребер и граней
- 6.2 Непланарность графов К₅ и К_{3,3}
- 6.3 Критерии планарности
- 6.4 Триангуляция графа. Теорема Фари
- 6.5 Гамма-алгоритм укладки графа на плоскости

7. Обходы в графах

- 7.1 Уникурсальные графы. Теорема Эйлера
- 7.2 Алгоритм Флёри построения эйлерова цикла
- 7.3 Эйлеров путь в графе
- 7.4 Лабиринты
- 7.5 Признаки гамильтонова графа

8. Раскраски

- 8.1 Оценки хроматического числа
- 8.2 Конструирование хроматического полинома
- 8.3 Теорема Кёнига о бихроматических графах
- 8.4 Алгоритм построения правильной раскраски
- 8.5 Теорема Хивуда о раскраске планарных графов
- 8.6 Раскраска карт
- 8.7 Теоремы Шеннона и Визинга о хроматическом классе

9. Независимость и покрытия

- 9.1 Оценки числа независимости
- 9.2 Построение независимого множества вершин
- 9.3 Оценки числа покрытия
- 9.4 Задача о наименьшем покрытии
- 9.5 Оценки кликового числа
- 9.6 Алгоритм выделения клик в графе
- 9.7 Теорема о наибольшем паросочетании
- 9.8 Алгоритм поиска максимального паросочетания
- 9.9 Матричный алгоритм поиска максимального паросочетания
- 9.10 Теорема о связи чисел
- 9.11 Теорема Холла о совершенном паросочетании

10. Ориентированные графы

- 10.1 Основные определения. Полустепени исхода и захода. Исток и сток.
- 10.2 Маршруты, пути, цепи.
- 10.3 Связность. Конденсация.
- 10.4 Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости.
- 10.5 Сильные компоненты в орграфе.
- 10.6 Эйлеровы и гамильтоновы контуры в орграфе.
- 10.7 Понятия базы и ядра в орграфе.
- 10.8 Упорядочивание элементов орграфов. Особенности алгоритмов теории графов

- 10.9 Выявление маршрутов с заданным количеством ребер.
- 10.10 Определение экстремальных путей. Метод Шимбелла.
- 10.11 Нахождение кратчайших путей. Алгоритм Дейкстры.
- 10.12 Алгоритм Беллмана-Мура.
- 10.13 Алгоритм нахождения максимального пути.
- 10.14 Теорема Форда-Фалкерсона. Поток минимальной стоимости.
- 10.15 Элементы сетевого планирования. Сетевые и линейные графики.
- 10.16 Транспортная задача по критерию времени.
- 10.17 Задача об оптимальном назначении.

Образец задач для зачета/экзамена

- 1) Докажите, что сумма степеней всех вершин любого графа есть число четное, равное удвоенному числу ребер.
- 2) Докажите, что в любом графе число вершин нечетной степени четно.
- 3) Докажите, что в любом нетривиальном графе всегда найдутся по крайней мере две вершины с одинаковыми степенями.
- 4) Докажите, что если в нетривиальном графе порядка n имеются в точности две вершины с одинаковыми степенями, то в этом графе всегда найдется либо в точности одна вершина степени 0, либо в точности одна вершина степени n-1.
- 5) Для каких n и d существует регулярный граф порядка n и степени d.
- 6) Докажите, что всякий цикл содержит простой цикл.
- 7) Упорядочьте, если это возможно, вершины и дуги орграфов, заданных матрицами смежности вершин, графическим и матричным способом. Постройте наглядные изображения изоморфных графов
- 8) По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.
- 9) По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана Мура.
- 10) На сети с истоком I и стоком S построить поток максимальной мощности. Выписать ребра, образующие разрез минимальной пропускной способности. Для удобства на рисунке пропускные способности указаны в скобках в одну и другую сторону

Критерии оценивания результатов обучения в соответствии с уровнем освоения дисциплины

Пороговый уровень (оценка «зачтено»): знание и понимание теоретического содержания курса, возможно, с незначительными пробелами; сформированность, полная или частичная, необходимых практических умений при применении знаний в конкретных ситуациях; удовлетворительное качество выполнения всех предусмотренных программой обучения учебных заданий; владение приемами решения почти всех типов практических заданий; знание формулировок основных определений и утверждений дисциплины, владение и использование основной профессиональной логико-математической лексики.

Низкий уровень (оценка «не зачтено»): недостаточные знание и понимание теоретического содержания курса, отсутствие практических умений при решении задач; недоста-

точное качество выполнения всех предусмотренных программой обучения учебных заданий; отсутствие владения приемами решения основных типов практических заданий; незнание формулировок основных определений и утверждений курса.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

- 1. Болотюк, В. А. Практикум и индивидуальные задания по элементам теории графов (типовые расчеты): учебное пособие для вузов / В. А. Болотюк, Л. А. Болотюк. Санкт-Петербург: Лань, 2022. 152 с. ISBN 978-5-8114-8761-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/200357 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 2. Дзержинский, Р. И. Теория графов: учебное пособие / Р. И. Дзержинский, Б. А. Крынецкий. Москва: РТУ МИРЭА, 2022. 104 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/311000 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 3. Игнатьев, А. В. Теория графов. Лабораторные работы: учебное пособие / А. В. Игнатьев. Санкт-Петербург: Лань, 2022. 64 с. ISBN 978-5-8114-9603-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/230342 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 4. Карпов, Д. В. Теория графов: учебное пособие / Д. В. Карпов. Москва: МЦНМО, 2022. 555 с. ISBN 978-5-4439-3690-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/305501 (дата обращения: 22.05.2023). Режим доступа: для авториз. пользователей.
- 5. Сухан, Ирина Владимировна (КубГУ). Графы: учебное пособие / И. В. Сухан, О. В. Иванисова, Г. Г. Кравченко; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Изд. 2-е, испр. и доп. Краснодар: 2015. 172 с.: ил. Библиогр.: с. 168. ISBN 978-5-8209-1125-5

- 6. Сухан И. В. Ориентированные графы: учебное пособие / И. В. Сухан. изд.2-е, испр. Краснодар, КубГУ, 2019. 124 с.
- 7. Шевелев, Ю.П. Сборник задач по дискретной математике : учеб. пособие / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев.— Санкт-Петербург : Лань, 2013. 528 с. https://e.lanbook.com/book/5251

Собственные электронные образовательные и информационные ресурсы КубГУ:

Среда модульного динамического обучения http://moodle.kubsu.ru

6. Методические указания для обучающихся по освоению дисциплины (модуля).

Текущая самостоятельная работа студента, направленная на углубление и закрепление знаний студента, развитие практических умений, осуществляется при проработке материалов лекций и соответствующей литературы, подготовке к рубежному и итоговому контролям, подготовке к выполнению лабораторных работ, их выполнению и написанию отчетов.

Для улучшения качества и эффективности самостоятельной работы студентов предлагаются методические указания к лабораторным работам, списки основной и дополнительной литературы. Все методические материалы предоставляются как в печатном, так и в электронном видах.

Текущая и опережающая СРС, заключается в:

- работе студентов с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме;
 - изучение теоретического материала к лабораторным занятиям;
 - подготовке к зачету /экзамену.

Творческая проблемно-ориентированная самостоятельная работа, направленная на развитие интеллектуальных умений, комплекса профессиональных компетенций, повышение творческого потенциала студентов заключается в

- поиске и анализе научных публикаций по каждому разделу курса их структурированию и представлении материала для презентации на рубежном контроле;
 - участии в научных студенческих конференциях, семинарах и олимпиадах.

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows 10 Microsoft Office PowerPoint Professional Plus.
Учебные аудитории для проведения занятий семинарского типа,	Мебель: учебная мебель	

групповых и индивидуальных консультаций, текущего контроля		
и промежуточной аттестации	Makama wakam	
Учебные аудитории для проведения лабораторных работ.	Мебель: учебная мебель	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучаю- щихся	Оснащенность помещений для самостоятельной работы обучающихся	Перечень лицензионного про- граммного обеспечения
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows 10 Microsoft Office PowerPoint Professional Plus.
Помещение для самостоятельной работы обучающихся (ауд.)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows 10 Microsoft Office PowerPoint Professional Plus.