АННОТАЦИЯ

дисциплины

<u>Б1.В.ДВ.02.02 ВЫСОКОЧАСТОТНЫЕ ПЕРЕДАЮЩИЕ</u> <u>УСТРОЙСТВА</u>

Объем трудоемкости:

Объем дисциплины составляет 4 зачетных единиц, 144 часа выделенных на контактную работу обучающихся с преподавателем, и 192 часа самостоятельной работы обучающихся.

Цель дисциплины:

Целью прохождения дисциплины является достижение следующих результатов образования:

- подготовка студентов по теоретическим основам, принципам построения, практическому проектированию трактов приема и аналого-цифровой обработки сигналов радиотехнических систем различного назначения;
- получение профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности в сфере радиотехнических средств передачи, приема и обработки сигналов;
- практическое закрепление и углубление теоретических знаний обучающихся, полученных при изучении дисциплин Блока 1;
- комплексное формирование компетенций (ПК-1; ПК-2, ПК-3) обучающихся, приобретение ими практических навыков, необходимых для последующей производственной деятельности в условиях современного рынка радиотехнических средств передачи, приема и обработки сигналов.

Задачи дисциплины:

– комплексное формирование компетенций (ПК-1; ПК-2, ПК-3) обучающихся, приобретение ими практических навыков, необходимых для последующей производственной деятельности в условиях современного рынка радиотехнических средств передачи, приема и обработки сигналов.

1.1 Задачи освоения дисциплины

Задачи освоения дисциплины включают в себя:

- закрепление теоретических знаний, полученных в результате освоения теоретических курсов и самостоятельной работы;
- формирование способности выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ (ПК-1);
- выполнять анализ и верификацию результатов моделирования принципиальных схем радиоэлектронных устройств (ПК-2);
- выполнять разработку структурных и функциональных схем радиоэлектронных устройств и систем (ПК-3).

Место дисциплины в структуре ООП.

Место дисциплины в структуре ООП определяется следующим.

Дисциплина «Высокочастотные передающие устройства» относится к обязательной части, формируемой участниками образовательных отношений (Блок 1).

Дисциплина является составной частью учебных программ подготовки студентов бакалавриата.

Содержание дисциплины логически и методически тесно взаимосвязано с вышеуказанными дисциплинами, поскольку главной задачей прохождения дисциплины является закрепление и углубление теоретических знаний и практических умений, полученных студентами при изучении естественнонаучных и профессиональных дисциплин в области радиотехнических средств передачи, приема и обработки сигналов.

В процессе освоения дисциплины по получению первичных профессиональных умений и навыков обучающийся должен формировать умения и готовности решать следующие профессиональные задачи:

- выполнять математическое и компьютерное моделирование радиоэлектронных устройств и систем (ПК-1);
- выполнять анализ и верификацию результатов моделирования принципиальных схем радиоэлектронных устройств (ПК-2);
- выполнять разработку структурных и функциональных схем радиоэлектронных устройств и систем (ПК-3).

Прохождению дисциплины предшествует и необходимо для изучения дисциплин: «Основы теории цепей», «Электроника», «Электродинамика и распространение радиоволн», «Введение в робототехнику», «Радиоматериалы и радиокомпоненты», «Радиотехнические цепи и сигналы», «Цифровые устройства и микропроцессоры», «Радиоавтоматика», «Основы компьютерного моделирования и проектирования РЭС», «Схемотехника аналоговых электронных устройств», «Цифровая обработка сигналов», «Радиотехнические системы», «Технологии компоновки РЭА», «Устройства генерирования и формирования сигналов», а также для подготовки и защиты курсовых проектов.

Требования к уровню освоения дисциплины В результате прохождения дисциплины студент должен приобрести следующие компетенции.

Код компетенция	Результаты обучения			
ПК-1 Способен	Знать: пакеты прикладных программ для моделирования объектов и			
осуществлять	процессов; типовые методики процессов построения модельных			
социальное	объектов и процессов в радиотехнических системах			
взаимодействие и	Уметь: использовать методики и прикладные программы моделировани			
реализовывать свою	Владеть: процессами моделирования объектов и процессов			
роль в команде	радиотехнических систем			
ПК-2 Способен	Знать: способы анализа процесса моделирования принципиальных			
выполнять анализ и	схем, радиоэлектронных устройств			
верификацию	Уметь: выполнять верификацию процесса моделирования			
результатов	радиотехнических устройств и систем			
моделирования				
принципиальных схем	Владеть: методами анализа и верификации процессов моделирования			
радиоэлектронных	радиотехнических устройств и систем			
устройств				
	Знать: средства автоматизации схемотехнического проектирования			
ПК-3 Способен	Уметь: читать принципиальные электрические схемы; применять			
выполнять разработку	средства автоматизации схемотехнического проектирования			
структурных и	Владеть: навыками графического схемного ввода элементов блоков с			
функциональных схем	использованием стандартных библиотек элементов и библиотек из			
радиоэлектронных	состава используемой технологической платформы; методами			
устройств и систем	разработки схемотехнических решений аналоговых субблоков и			
	построением списка связей			

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

Основные разделы дисциплины:

Объем дисциплины составляет 4 зачетных единиц, 144 часа выделенных на контактную работу обучающихся с преподавателем, и 192 часа самостоятельной работы обучающихся. Распределение зачетных единиц (часов) по видам работ и семестрам представлено в таблице

		Всего	Семестры	
Вид учебной работы			(часы)	
		часов	7	
Контактная работа, в том числе:			70,3	
Аудиторные занятия (всего):			66,3	
Занятия лекционного типа			22	
Лабораторные занятия			22	
Занятия семинарского типа (семинары, практические занятия)			22	
Иная контактная работа:			4	
Контроль самостоятельной работы (КСР)			4	
Промежуточная аттестация (ИКР)				
Самостоятельная работа, в том числе:			38	
Курсовая работа				
Выполнение индивидуальных заданий (подготовка презентаций)	сообщений,	0,3	0,3	
Реферат				
Контроль:			35,7	
Подготовка к экзамену				
Обиная труповикости	час	144		
Общая трудоемкость	зач.ед.	4		

Основная литература:

- 1. Игнатов, А.Н. Оптоэлектроника и нанофотоника: учеб. пособие [Электронный ресурс] Электрон. дан. СПб: Лань, 2017. 596 с. Режим доступа: https://e.lanbook.com/book/95150
- 2. Портнов, Э.Л. Принципы построения первичных сетей и оптические кабельные линии связи. Учебное пособие для вузов [Электронный ресурс] —Электрон. дан. осква: Горячая линия-Телеком, 2013. 544 с. Режим доступа: https://e.lanbook.com/book/94575
- 3. Давыдов, В.Н. Физические основы оптоэлектроники. Учебное пособие Электронный ресурс]: учеб./ В.Н. Давыдов ; Министерство образования и науки Российской Федерации. Томск : ТУСУР, 2016. 139 с. -- Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=480763
- 4. С. Н. Чеботарев, М. Л. Лунина, Д. Л. Алфимова. Наноструктуры AIV BIV и AIII BV для устройств оптоэлектроники; Рос. акад. наук, Южный научный центр. Ростов-на-Дону: Изд-во ЮНЦ РАН, 2014. 274 с BIV и AIII BV для устройств оптоэлектроники; Рос. акад. наук, Южный научный центр. Ростов-на-Дону: Изд-во ЮНЦ РАН, 2014. 274 с