МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования - первый

проректор

I.A. Xarypon

«26» мая 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.05.01 Современная теория эллиптических и параболических уравнений

Специальность: 01.05.01 Фундаментальные математика и механика

Специализация: Вычислительная механика и компьютерный инжиниринг

Форма обучения: очная

Квалификация: Математик. Механик. Преподаватель.

Рабочая программа дисциплины Б1.В.ДВ.05.01 СОВРЕМЕННАЯ ТЕОРИЯ ЭЛЛИПТИЧЕСКИХ И ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.05.01 Фундаментальные математика и механика

Программу составил(и): Щербаков Е. А., профессор, д. ф.-м. н., доцент

Рабочая программа дисциплины Б1.В.ДВ.05.01 СОВРЕМЕННАЯ ТЕОРИЯ ЭЛЛИПТИЧЕСКИХ И ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ утверждена на заседании кафедры ТЕОРИЯ ФУНКЦИИ протокол № 10 «18» апреля 2023 г.
Заведующий кафедрой (разработчика) Голуб М. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 8 «27» апреля 2023 г. Председатель УМК факультета/института Шмалько С. П.

Рецензенты:

Фоменко Сергей Иванович, канд. физ. - мат. наук, старший научный сотрудник лаборатории волновых процессов

Анопко Михаил Викторович, Генеральный директор ООО «УК АЙСТРИМ »

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Цель дисциплины «Современная теория эллиптических и параболических уравнений» заключается в изучении современных методов решения задач математической физики и уравнений в частных производных, применяемых для решения теоретических и прикладных проблем в различных областях техники с точки зрения современной теории.

1.2 Задачи дисциплины.

- понимание математических основ, лежащих в основе современной теории эллиптических и параболических уравнений;
- формирование навыков необходимых для анализа и решения задач механики и математической физики;
- развитие навыков работы с такими математическими объектами, как дифференциальные формы, многообразия, бескоординатный язык.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Современная теория эллиптических и параболических уравнений» относится к вариативной части профессионального цикла Блока1 "Дисциплины (модули)" учебного плана направления 01.05.01 «Фундаментальная математика и механика» (Б1.В.ДВ). Для успешного освоения дисциплины обучающийся должен владеть знаниями, умениями и навыками по программе дисциплин Б1.О.16 «Математический анализ», Б1.О.17 «Функциональный анализ», Б1.О.23 «Дифференциальные уравнения», Б1.О.14 «Технология программирования и работа на электронно-вычислительной машине (ЭВМ)», Б1.О.13 «Численные методы». Данная дисциплина призвана расширить кругозор студентов в плане применения строгих математических методов к решению прикладных задач.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	
ПК-1 Способен формулировать и решать акт прикладной математики	уальные и значимые задачи фундаментальной и	
ИПК-1.4. Имеет навыки решения математических задач, соответствующих квалификации, возникающих при проведении научных и прикладных исследований	Знает схему построения общего подхода к уравнениям в частных производных с использованием аналитических функций многих переменных. Умеет решать эллиптические уравнения, эллиптические квазилинейные уравнения, линейные и нелинейные параболические уравнения.	
	Владеет теоретическими и практическими знаниями о вариационном методе; использованием на практике теоретические знания, полученные в результате изучения дисциплины.	
ИПК-2.2 Разрабатывает новые математическ	ие модели в естественных науках	
ИПК-2.2 Разрабатывает новые математические модели в естественных науках	Знает понятия и гипотезы для предметной области и исследуемых моделей.	
	Умеет использовать современные методы и подходы для изучения рассматриваемых процессов и явлений, грамотно использовать и развивать математическую теорию и физико-математические модели, лежащие в их основе. Владеет навыками применения классических и	
	современных методов анализа математических моделей формализованных материальных объектов и процессов.	

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зачетных единиц (72 часа), их

распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения			
	часов	оч	ная	очно- заочная	заочная
		8	-	_	_
		семестр	семестр	семестр	курс
		(часы)	(часы)	(часы)	(часы)
Контактная работа, в том числе:	32,2	32,2			
Аудиторные занятия (всего):	30	30			
занятия лекционного типа	10	10			
лабораторные занятия	20	20			
Иная контактная работа:	2,2	2,2			
Контроль самостоятельной работы (КСР)	2	2			
Промежуточная аттестация (ИКР)	0,2	0,2			
Самостоятельная работа, в том числе:	39,8	39,8			
Контрольная работа	12	12			
Самостоятельное изучение разде самоподготовка (проработка повторение лекционного материал материала учебников и учеб пособий, подготовка к лабораторны практическим занятиям, коллоквиу, и т. д.)	и на и эных 27,8 ым и	27,8			
Подготовка к текущему контролю	_	_			
Контроль:	-	-			
Подготовка к экзамену	_	_			
Общая час.	72	72			
трудоемкость в том числе контактная работа	32,2	32,2			
зач. ед	2	2			

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 8 семестре (*очная форма обучения*)

		Количество часов				
№	Наименование разделов (тем)		Аудиторная работа		Внеаудит орная работа	
			Л	П3	ЛР	CPC
1.	Линейные эллиптические уравнения	14	2		4	8
2.	Квазилинейные эллиптические уравнения	14,4	2		4	8,4
3.	Собственные значения эллиптических операторов	13,4	2		4	7,4
4.	Линейные параболические уравнения	14	2		4	8
5.	Нелинейные параболические уравнения	14	2		4	8
	ИТОГО по разделам дисциплины	69,8	10		20	39,8
	Контроль самостоятельной работы (КСР)	2				
	Промежуточная аттестация (ИКР)					
	Подготовка к текущему контролю					
	Общая трудоемкость по дисциплине	72				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Линейные эллиптические уравнения	Обобщенные решения краевых задач для эллиптических уравнений второго порядка. Исследование разрешимости краевых задач на основе леммы Лакса—Мильграма. Краевые задачи для уравнения Лапласа в прямоугольнике, параллелепипеде. Краевые задачи для уравнений Лапласа и Пуассона в круге, цилиндре, шаре. Гладкость обобщенного решения однородной задачи Дирихле.	T
2.	Квазилинейные эллиптические уравнения	Оператор Немыцкого. Уравнения с монотонным оператором. Метод регуляризации. Уравнения в монотонной главной часть. Метод Галеркина. Слабо нелинейные уравнения. Метод неподвижной точки.	T
3.	Собственные значения эллиптических операторов	Задача на собственные значения для оператора Лапласа в прямоугольной области. Вариационный метод исследования разрешимости задачи на собственные значения. Ряды Фурье по собственным функциям. Минимаксный принцип. Гладкость собственных функций	T
4.	Линейные параболические уравнения	Постановка начально-краевых задач теплопроводности и диффузии. Пространства векторозначных функций. Существование обобщенного параболического уравнения. Единственность обобщенного решения. Гладкость обобщенного решения.	T
5.	Нелинейные параболические уравнения	Параболические уравнения с монотонным оператором. Нелинейные параболические уравнения с монотонной по градиенту главной частью пространственного оператора.	T

2.3.2 Занятия семинарского типа (практические / семинарские занятия/

лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/разбор	Форма текущего контроля
1.	Линейные эллиптические уравнения	Обобщенные решения краевых задач для эллиптических уравнений второго порядка. Исследование разрешимости краевых задач на основе леммы Лакса-Мильграма. Краевые задачи для уравнения Лапласа в прямоугольнике, параллелепипеде. Краевые задачи для уравнений Лапласа и Пуассона в круге, цилиндре, шаре. Гладкость обобщенного решения однородной задачи Дирихле.	
2.	Квазилинейные	Оператор Немыцкого. Уравнения с монотонным	РГ3

	эллиптические	оператором. Метод регуляризации. Уравнения в	
	уравнения	монотонной главной часть. Метод Галеркина. Слабо	
		нелинейные уравнения. Метод неподвижной точки.	
3.		Задача на собственные значения для оператора Лапласа в	РГЗ
	Собственные значения	прямоугольной области. Вариационный метод	
	эллиптических	исследования разрешимости задачи на собственные	
	операторов	значения. Ряды Фурье по собственным функциям.	
		Минимаксный принцип. Гладкость собственных функций	
	Линейные параболические	Постановка начально-краевых задач теплопроводности и диффузии. Пространства векторозначных функций.	РГ3
	уравнения	Существование обобщенного параболического уравнения.	
		Единственность обобщенного решения. Гладкость	
		обобщенного решения.	
5.	Нелинейные	Параболические уравнения с монотонным оператором.	РГ3
	параболические	Нелинейные параболические уравнения с монотонной по	
	уравнения	градиенту главной частью пространственного оператора.	

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и выполнение контрольной работы (КР).

При изучении дисциплины применяется электронное обучение (проектор и ЭВМ), дистанционные образовательные технологии в соответствии с ФГОС BO.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы	
1	Проработка и повторение лекционного материала и материала учебников и учебных пособий	Онлайн-курса «Введение в математические методы физики». — НИУ ВШЭ. — URL: https://www.coursera.org/learn/vvedenie-v-mat-metody#syllabus	
3	Подготовка к коллоквиуму	Методические указания по выполнению лабораторных работ, утвержденные на заседании Совета экономического факультета ФГБОУ ВО «КубГУ», протокол №8 от 29.06.2017 г. Режим доступа: https://www.kubsu.ru/ru/econ/metodicheskie-ukazaniya	
4	Выполнение расчетно- графических заданий и контрольных работ	 <u>пирѕ://www.kuosu.ru/ru/econ/metoaicneskie-икаzantya</u> Методические указания по выполнению расчетно-графических заданий, утвержденные на заседании Совета экономического факультета ФГБОУ ВО «КубГУ», протокол №8 от 29.06.2017 г. Режим доступа: http://docspace.kubsu.ru/docspace/handle/1/1125 	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, разбора конкретных ситуаций) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационноттелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Современная теория эллиптических и параболических уравнений».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме *тестовых заданий, разноуровневых заданий, отчетов по индивидуальным и расчетно-графическим заданиям и промежуточной аттестации в форме вопросов и заданий к зачету.*

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Результаты обучения	Наименование оценочного средства	
п/п	индикатора (в соответствии с п. 1.4)	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИПК-1.4. Имеет навыки решения математических задач, соответствующих квалификации, возникающих при проведении научных и прикладных исследований	Знает схему построения общего подхода к уравнениям в частных производных с использованием аналитических функций многих переменных.	<i>РГ</i> 3, Т	Вопрос на зачете 1-5
2	ИПК-1.4. Имеет навыки решения математических задач, соответствующих квалификации, возникающих при проведении научных и прикладных	Умеет решать эллиптические уравнения, эллиптические квазилинейные уравнения, линейные и нелинейные параболические уравнения.	<i>РГ3,</i> Т	Вопрос на зачете 6– 10

	исследований			
3	ИПК-1.4. Имеет навыки решения математических задач, соответствующих квалификации, возникающих при проведении научных и прикладных исследований	Владеет теоретическими и практическими знаниями о вариационном методе; использованием на практике теоретические знания, полученные в результате изучения дисциплины.	<i>РГ</i> 3, Т	Вопрос на зачете 11–15
4	ИПК-2.2 Разрабатывает новые математические модели в естественных науках	Знает понятия и гипотезы для предметной области и исследуемых моделей.	РГ3, Т	Вопрос на зачете 16–20
5	ИПК-2.2 Разрабатывает новые математические модели в естественных науках	Умеет использовать современные методы и подходы для изучения рассматриваемых процессов и явлений, грамотно использовать и развивать математическую теорию и физикоматематические модели, лежащие в их основе.	РГ3, Т	Вопрос на зачете 21–36
6	ИПК-2.2 Разрабатывает новые математические модели в естественных науках	Владеет навыками применения классических и современных методов анализа математических моделей формализованных материальных объектов и процессов.	РГ3, Т	Вопрос на зачете 21–36

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Расчетно-графическая работа

- 1) Решить внутреннюю задачу Дирихле для уравнения Лапласа $\Delta u = 0$ в круге $0 \le r \le 1$, $0 \le \varphi \le 2\pi$ при следующих граничных условиях:
 - a) $(1, \varphi) = 10 \cos \varphi + 17 \cos 5\varphi$.
 - b) $(1, \varphi) = 8\cos 2\varphi + 17\cos 4\varphi$.
 - c) $(1, \varphi) = 10 \sin 8\varphi + 17 \sin 3\varphi$.
 - d) $(1, \varphi) = 1 + 38 \cos \varphi$.
 - *e*) $(1, \varphi) = 10 + 32 \sin 5\varphi$.
- 2) Решить внутреннюю задачу Дирихле для уравнения Лапласа $\Delta u = 0$ в кольце $1 \le r \le 2$, $0 \le \varphi \le 2\pi$ при следующих граничных условиях:
 - a) $u(1,\varphi) = 8\cos 2\varphi$; $u(2,\varphi) = 17\cos 2\varphi$.
 - b) $u(1, \varphi) = 20 \cos 3\varphi$; $u(2, \varphi) = 34 \cos 3\varphi$.
 - c) $u(1, \varphi) = 20 \sin \varphi$; $u(2, \varphi) = 34 \sin 2\varphi$.
 - d) $u(1,\varphi) = 24 \sin 2\varphi$; $u(2,\varphi) = 6 + 33 \sin 2\varphi$.

- e) $u(1,\varphi) = 10 + 32.5 \sin 5\varphi$; $u(2,\varphi) = 17 \sin 5\varphi$.
- 3) Решить внутреннюю задачу Дирихле для уравнения Лапласа $\Delta u = 0$ в круговом секторе $0 \le r \le 1$, $0 \le \varphi \le \alpha$ при следующих граничных условиях:

 - a) $u(1,\varphi) = \sin 12\varphi$; $u(r,0) = u(r,\frac{\pi}{6}) = 0$. b) $u(1,\varphi) = 5\sin 3\varphi$; $u(r,0) = u(r,\frac{\pi}{2}) = 0$.
 - c) $u(1,\varphi) = 11\cos 24\varphi$; $u_{\varphi}(r,0) = u_{\varphi}(r,\frac{\pi}{6}) = 0$. d) $u(1,\varphi) = 9\sin 10\varphi$; $u_{\varphi}(r,0) = u_{\varphi}(r,\frac{7\pi}{6}) = 0$. e) $u(1,\varphi) = 17\cos 7\varphi$; $u_{\varphi}(r,0) = u_{\varphi}(r,\frac{\pi}{2}) = 0$.
- 4) Решить краевую задачу для одномерного уравнения теплопроводности с однородными граничными условиями методом Фурье:
 - a) $u_t = u_{xx}$; $u(x,0) = 10 \sin 3\pi x + \sin 4\pi x$; u(0,t) = u(1,t) = 0.
 - b) $u_t = 2u_{xx}$; $u(x,0) = 9\cos 3\pi x + 10\cos 5\pi x$; u(0,t) = u(2,t) = 0.
 - c) $u_t = 3u_{xx}$; $u(x, 0) = 8 \sin \pi x + 11 \sin 2\pi x$; u(0, t) = u(3, t) = 0.
 - d) $u_t = 4u_{xx}$; $u(x,0) = 7 + 12\cos 4\pi x$; u(0,t) = u(4,t) = 0.
 - e) $u_t = 7u_{xx}$; $u(x,0) = 7\sin 3\pi x + 15\sin 5\pi x$; u(0,t) = u(1,t) = 0.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

- 1) Линейное уравнение переноса:
 - Описание линейного многомерного уравнения переноса. Постановка начальной задачи (задачи Коши) для уравнения переноса.
 - Метод характеристик построения явной формулы для решения уравнения переноса в однородном и неоднородном случаях.
- Нелинейное дифференциальное уравнение с частными производными первого порядка:
 - Описание общего нелинейного уравнение с частными производными первого порядка.
 - Определение полного интеграла. Симметричен ли тензор истинных напряжений, почему?
 - Построение полного интеграла для уравнения Эйконала, и уравнения Гамильтона -Якоби.
 - 3) Метод продолжения уравнения по параметру для построения нового класса решений: -Описание метода продолжения по параметру.
 - Основная теорема о продолжении уравнения первого порядка по параметру. -Примеры построения решений для уравнения Эйконала и уравнения Гамильтона - Якоби.
- 4) Метод характеристик решения нелинейных уравнений с частными производными первого порядка:
 - Основные определения.
 - Построение характеристических систем обыкновенных дифференциальных уравнений.
 - Теорема о структуре характеристических систем.
- 5) Граничные задачи для нелинейных уравнений с частными производными первого порядка:
 - Построение и анализ граничных задач различных типов.
 - Выпрямление границы.
 - Согласованные граничные условия.
 - Нехарактеристические граничные данные.
 - Локальные теоремы существования решений граничных задач.
- 6) Элементы теории уравнений Гамильтона Якоби:
 - Вычисление вариации уравнений Гамильтона Якоби.

- Система обыкновенных дифференциальных уравнений Гамильтона.
- Уравнения Эйлера Лагранжа.
- Основная теорема об уравнениях Эйлера Лагранжа.
- 7) Преобразования Лежандра для функций Лагранжа:
 - Определение преобразования Лежандра в случае выпуклого лагранжиана.
 - Основная теорема о преобразовании Лежандра (выпуклая двойственность).
 - Формулы Хопфа Лакса.
 - Применение формулы Хопфа Лакса к решению задачи минимизации лагранжиана.
- 8) Слабое решение задачи Коши для уравнения Гамильтона Якоби:
 - Условия полувогнутости.
 - Основные леммы о полувогнутости.
 - Определение слабого решения.
 - Теорема о единственности слабого решения задачи Коши для уравнения Гамильтона
 - Якоби.
- 9) Введение в теорию законов сохранения:
 - Функциональные пространства.
 - Слабые решения дифференциальных законов сохранения.
 - Условия на поверхностях разрыва слабого решения и их физическая интерпретация.
 - Ударные волны. Возрастание энтропии.
- 10) Метод Лакса Олейник построения слабого решения задачи Коши для уравнения консервативного течения:
 - Описание метода Лакса Олейник.
 - Вывод формулы Лакса Олейник.
 - Доказательство основных теорем о свойствах формулы Лакса Олейник.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по данному разделу, знает вопросы основного учебно-программного материала, допускает незначительные ошибки; студент умеет обоснованно применять и правильно реализовывать современные методы решения задач математической физики и уравнений в частных производных; справился с выполнением заданий, предусмотренных программой дисциплины.

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется реализовывать современные методы решения задач математической физики и уравнений в частных производных, довольно ограниченный объем выполненных заданий, предусмотренных программой дисциплины.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий 5.1. Учебная литература

- 1. Карчевский, М. М. Уравнения математической физики. Дополнительные главы: учебное пособие / М. М. Карчевский, М. Ф. Павлова. 2-е изд., доп. Санкт-Петербург: Лань, 2021. 276 с. ISBN 978-5-8114-2133-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168915
- 2. Ибрагимов, Н. Х. Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические модели. Симметрия и принципы инвариантности: учебник / Н. Х. Ибрагимов; перевод с английского И. С. Емельяновой. 2-е изд., доп. и испр. Москва: ФИЗМАТЛИТ, 2012. 332 с. ISBN 978-5-9221-1377-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/5268
- 3. Емельянов, В. М. Уравнения математической физики. Практикум по решению задач: учебное пособие / В. М. Емельянов, Е. А. Рыбакина. 2-е изд., стер. Санкт-Петербург: Лань, 2016. 216 с. ISBN 978-5-8114-0863-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/71748

5.2. Периодическая литература

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. "Лекториум ТВ" http://www.lektorium.tv/
- 7. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Ресурсы свободного доступа:

1. КиберЛенинка (http://cyberleninka.ru/);

- 2. Курсы ведущих вузов России" http://www.openedu.ru/;
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
 - 4. Онлайн-курсы и сертификаты от ведущих вузов мира https://ru.coursera.org/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Российская система прочностного анализа на основе метода спектральных конечных элементов Fidesys http://www.cae-fidesys.com/ru/about/info

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Общие рекомендации по самостоятельной работе обучающихся.

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение о самостоятельной работе студентов (утверждено приказом № 272 $Ky6\Gamma Y$ от 03 марта 2016 г.).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения

Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows
проведения занятий лекционного	Технические средства обучения:	Microsoft Office Professional Plus
типа	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	MatLab
проведения занятий	Технические средства обучения:	Fortran
семинарского типа, групповых и	Компьютеры	
индивидуальных консультаций,		
текущего контроля и		
промежуточной аттестации		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (читальный	Комплект специализированной	
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду	
	образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	
работы обучающихся (ИС 6,	Комплект специализированной	
ИС 7)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную информационно-	
	образовательную среду образовательной организации,	
	веб-камеры, коммуникационное	
	оборудование, обеспечивающее	
	доступ к сети интернет	
	(проводное соединение и	
	беспроводное соединение по	
	технологии Wi-Fi)	
	10/110/10/1 HH 1111/	