Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет химии и высоких технологий

Проректор по учебной работе, качеству образования – первый

_Хагуров Т.А.

2023г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.15 ХИМИЯ

Направление подготовки 11.03.04 Электроника и наноэлектроника

Направленность (профиль) Интегральная электроника, фотоника и

наноэлектроника

Форма обучения очная

Квалификация бакалавр

Краснодар 2023

Рабочая программа дисциплины ХИМИЯ составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.04 Электроника и наноэлектроника (уровень бакалавриата).

Программу составил Офлиди А.И., канд. хим. наук

Рабочая программа дисциплины ХИМИЯ утверждена на заседании кафедры информационно-вычислительных общей, неорганической химии технологий в химии

протокол № 7 «04» апреля 2023 г.

Заведующий кафедрой

Волынкин В.А.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий

протокол № 7 от «17» апреля 2023 г.

Председатель УМК факультета

Беспалов А.В.

Рецензенты:

Фролов В.Ю., канд. хим. наук, директор ООО «Ланэс».

Доценко В.В., д-р хим. наук, заведующий кафедрой органической химии и технологий ФГБОУ ВО «КубГУ».

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Теоретическая и практическая подготовка студентов по основным (фундаментальным) разделам общей и неорганической химии для формирования современного естественнонаучного мировоззрения, овладения базовыми знаниями в области химии, теории химических процессов и свойств неорганических соединений, развитие навыков самостоятельной работы, необходимых для применения химических знаний при изучении специальных дисциплин и дальнейшей практической деятельности.

1.2 Задачи дисциплины

Раскрытие роли химии в познании природы и обеспечении жизни общества; овладение базовыми знаниями в области химии, теории химических процессов и свойств неорганических соединений, развитие навыков самостоятельной работы, необходимых для применения химических знаний при изучении специальных дисциплин и дальнейшей практической деятельности.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "ХИМИЯ" относится к базовой части Блока 1 "Дисциплины (модули)" учебного плана направления подготовки 11.03.04 - Электроника и наноэлектроника. В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе. Вид промежуточной аттестации: зачет.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

обу площимен еледующим компетенции			
Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине		
ОПК-1. Способен использовать положения	, законы и методы естественных наук и математики		
для решения задач инженерной деятельнос	ги		
ИОПК-1.1. Использует положения и	знает основы общей и неорганической химии		
законы естественных наук и математики	умеет применять знания в области химии в		
для решения задач инженерной	профессиональной деятельности		
деятельности	владеет навыками химических исследований		
ИОПК-1.2. Использует методы	знает свойства химических систем,		
естественных наук и математики для	характеристики и закономерности протекания		
решения задач инженерной деятельности	химических процессов, свойства и реакционную		
	способность веществ.		
	умеет применять знания в области химии в		
	исследованиях, связанных с достижением		
	основных профессиональных задач в смежных		
	областях знаний		
	владеет методами естественных наук и математики		
	для решения задач инженерной деятельности		
	ть экспериментальные исследования и использовать		
основные приемы обработки и представлен	ия полученных данных		
ИОПК-2.1. Самостоятельно проводит	знает основы химии элементов, свойства		
экспериментальные исследования	неорганических веществ, комплексных		
	соединений		
	умеет применять знания в области химии		
	элементов и комплексных соединений		
	владеет методами химических исследований		

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ИОПК-2.2. Использует основные приемы обработки и представления полученных	знает приемы обработки и представления экспериментальных данных
данных	умеет применять знания в области химии при обработке и представлении экспериментальных данных
	владеет навыками обработки и представления экспериментальных данных

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебн	Всего часов	Форма обучения очная 3 семестр (часы)	
Контактная работа, в то	м числе:	71,2	71,2
Аудиторные занятия (вс	его):	64	64
Занятия лекционного типа	l	16	16
Лабораторные занятия		32	32
практические занятия		16	16
семинарские занятия		ı	-
Иная контактная работа	:		
Контроль самостоятельно	й работы (КСР)	7	7
Промежуточная аттестаци	я (ИКР)	0,2	0,2
Самостоятельная работа	72,8	72,8	
Курсовая работа	1	-	
Проработка учебного (те	оретического) материала	35	35
Выполнение индивидуальн сообщений, презентаций)		-	-
Реферат		-	-
Подготовка к текущему ко	онтролю	37,8	37,8
Контроль:			
Подготовка к экзамену	-	-	
Общая трудоемкость	час.	144	144
	в том числе контактная работа	71,2	71,2
	зач. ед	4	4

2.2 Содержание дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 4 семестре (очная форма)

		Количество часов				
No	Наименование разделов (тем)	Всего	Аудиторная работа			Внеаудиторная работа
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1.	Основные понятия и законы химии. Классификация неорганических соединений.	18	2	2	4	10
2.	Строение вещества. Периодический закон и периодическая система элементов Д.И. Менделеева. Химическая связь.	12	-	-	-	12
3.	Энергетика химических процессов и пути их протекания.	28	6	6	4	12
4.	Растворы. Реакции в водных растворах.	36	8	8	8	12
5.	Обзор свойств элементов и их важнейших соединений. Комплексные соединения.	42,8			16	26,8
	Итого по дисциплине:	136,8	16	16	32	72,8
	Контроль самостоятельной работы (КСР)	7				
	Промежуточная аттестация (ИКР)	0,2				
	Подготовка к текущему контролю	-				
	Общая трудоемкость по дисциплине	144				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1.	Основные понятия	Предмет химии. Основные понятия химии:	Коллоквиум
	и законы химии.	атом, молекула, относительная атомная и	
	Классификация	молекулярная масса, количество вещества,	

	неорганических	молярная масса, эквивалент. Основные	
	соединений.	законы химии: закон постоянства состава,	
	المانية	закон сохранения массы, закон Авогадро,	
		закон эквивалентов. Развитие химии в	
		междисциплинарных научных областях.	
		Классы неорганических соединений: оксиды,	
		кислоты, основания, соли Основные способы	
		получения и химические свойства.	
2.	Энергетика	Термодинамические системы. Внутренняя	Коллоквиум
	химических	энергия системы, работа, теплота. Первый	
	процессов и пути	закон термодинамики. Теплоты процессов при	
	их протекания.	постоянном объёме и при постоянном	
		давлении. Энтальпия. Экзо- и	
		эндотермические реакции. Термохимические	
		уравнения. Закон Гесса. Следствия из закона	
		Гесса. Стандартные состояния и стандартные	
		теплоты образования веществ. Второй закон	
		термодинамики. Энтропия.	
		Самопроизвольные и несамопроизвольные	
		процессы. Факторы, способствующие росту	
		энтропии. Третий закон термодинамики.	
		Изобарно-изотермический потенциал (энергия	
		Гиббса). Направление протекания	
		химических реакций. Понятие средней и	
		истинной скорости химической реакции.	
		Закон действующих масс и границы его	
		применения. Порядок реакции.	
		Молекулярность реакции. Зависимость	
		скорости химической реакции от	
		температуры. Правило Вант-Гоффа. Энергия	
		активации. Уравнение Аррениуса. Понятие	
		катализа.Обратимые и необратимые	
		химические реакции. Химическое равновесие.	
		Константа равновесия и факторы на нее	
		влияющие. Выход реакции. Сдвиг	
		химического равновесия. Принцип Ле-	
		Шателье.	
3.	Растворы. Реакции	Гомогенные и гетерогенные системы. Фазы.	Коллоквиум
	в водных	Виды растворов. Растворимость.	,
	растворах.	Способы выражения концентрации растворов.	
		Идеальные и реальные растворы.	
		Сольватация. Растворение как физико-	
		химический процесс. Тепловые эффекты	
		процесса растворения. Кристаллогидраты.	
		Промежуточное положение растворов между	
		веществами и смесями. Зависимость	

растворимости от температуры и давления. Закон Генри. Диффузия. Осмос. Закон Вант-Гоффа.

Закон Рауля и следствия из него.

Коллигативные свойства растворов и границы их применения. Теория электролитической диссоциации и ее основные положения. Степень диссоциации. Сильные и слабые электролиты. Константа диссоциации. Закон разбавления Оствальда.

Диссоциация воды. Ионное произведение воды. Водородный показатель. Протолитическая теория. Протолитические равновесия в растворах.

рН кислот, оснований и солей. Гетерогенные равновесия "осадок-раствор". Произведение растворимости. Растворимость труднорастворимых электролитов. Условия осаждения труднорастворимых веществ и их растворения.

Окислительно-восстановительные реакции(ОВР). Редокс-системы. Основные типы ОВР. Стандартный электродный потенциал и факторы на него влияющие. Уравнение Нернста. Водородный электрод. Гальванический элемент (Cu-Zn). ЭДС гальванического элемента. Правила записи гальванических элементов. Отличия гальванического элемента от электролизной ячейки.

Работа, энергия Гиббса, константа равновесия редокс-реакций. Определение направления самопроизвольного протекания редокспроцессов. Электролиз. Законы Фарадея.

Коррозия металлов. Химические и электрохимические методы защиты от коррозии. Гальваническая пара.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

№	Наименование раздела (темы)	Тематика практических занятий	Форма текущего контроля
1	<u>раздела (темві)</u>	3	4
1.	Основные понятия и законы химии. Классификация неорганических соединений.	Расчеты по химическим формулам. Расчеты по химическим уравнениям. Решение задач по основным понятиям и законам химии.	Контрольная работа
2.	Энергетика химических процессов и пути их протекания.	Определение теплового эффекта реакции и ее направления. Нахождение порядка реакции. Изменение скорости реакции. Нахождение константы равновесия и концентраций веществ, участвующих в обратимой реакции. Правила смещения равновесия.	Контрольная работа
3.	Растворы. Реакции в водных растворах.	Расчеты для приготовления растворов. Определение температур кипения и замерзания растворов. Расчет рН растворов. Определение растворимости малорастворимых электролитов. Уравнения электролиза. Расчеты по законам Фарадея.	Контрольная работа

$N_{\underline{0}}$	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1	2	3	4
1.	Основные понятия и законы химии. Классификация неорганических соединений.	Лабораторная работа №1 "Основные классы неорганических соединений". Лабораторная работа №2 "Определение эквивалента металла".	ЛР
2.	Энергетика химических процессов и пути их протекания.	Лабораторная работа №3 "Химическая кинетика. Химическое равновесие".	ЛР
3.	Растворы. Реакции в водных растворах.	Лабораторная работа №4 "Приготовление растворов различной концентрации". Лабораторная работа №5 "Равновесие в растворах электролитов. РН. Буферные растворы." Лабораторная работа № 6 "Окислительновосстановительные реакции".	ЛР
4.	Обзор свойств элементов и их	Лабораторная работа №7 "Химические методы анализа веществ. Качественные	ЛР

важнейших	реакции на катионы и анионы"	
соединений.	Лабораторная работа №8 "Комплексные	
Комплексные	соединения".	
соединения.		

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Наименование раздела (темы)	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Проработка учебного (теоретического) материала	 Общая химия. Теория и задачи: Учебное пособие [Электронный ресурс]: учеб. пособие / Н.В. Коровин [и др.]. — Электрон. дан. — Санкт-Петербург: Лань, 2017. — 492 с. — Режим доступа: https://e.lanbook.com/book/97169. — Загл. с экрана. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. — Краснодар: Кубанский гос. ун-т, 2018. 89 с.
2.	Подготовка к текущему контролю	1. Пуховская, С.Г. Координационные соединения [Электронный ресурс] : учеб. пособие / С.Г. Пуховская, Н.А. Фомина. — Электрон. дан. — Иваново : ИГХТУ, 2011. — 112 с. — Режим доступа:https://e.lanbook.com/book/4528. — Загл. с экрана. 2. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. — Краснодар: Кубанский гос. ун-т, 2018. 89 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ)

предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: метод проблемного изложения материала; самостоятельное чтение студентами учебно-методической и справочной литературы и последующей свободной дискуссии по освоенному использование, иллюстративных видеоматериалов материалу; мультимедийного оборудования. Технологии помощью личностноориентированного обучения, позволяющие создавать индивидуальные образовательные технологии.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины — для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Химия».

Фонд оценочных средств включает контрольные материалы для проведения **текущего контроля** в форме коллоквиумов, контрольных работ и отчетов по лабораторным работам и **промежуточной аттестации** в форме вопросов вопросов и задач к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

),c	Код и наименование	D	Наименование оценочн	юго средства
№ п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
	ИОПК-1.1. Использует положения и законы естественных наук и	знает основы общей и неорганической химии	Коллоквиум	Вопрос на зачете
1	математики для решения задач инженерной деятельности	умеет применять знания в области химии в профессиональной деятельности	Лабораторная работа, контрольная работа	Вопрос на зачете, задача на зачете
		владеет навыками химических исследований	Лабораторная работа	Вопрос на зачете
	ИОПК-1.2. Использует методы естественных наук и математики для решения задач инженерной деятельности	знает свойства химических систем, характеристики и закономерности протекания химических процессов, свойства и реакционную способность веществ.	Коллоквиум, контрольная работа	Вопрос на зачете, задача на зачете
2		умеет применять знания в области химии в исследованиях, связанных с достижением основных профессиональных задач в смежных областях знаний	Лабораторная работа, контрольная работа	Вопрос на зачете, задача на зачете
		владеет методами естественных наук и математики для решения задач инженерной деятельности	Лабораторная работа, контрольная работа	Вопрос на зачете, задача на зачете
	ИОПК-2.1. Самостоятельно проводит экспериментальные исследования	знает основы химии элементов, свойства неорганических веществ, комплексных соединений	Коллоквиум	Вопрос на зачете
3		Умеет применять знания в области химии элементов и комплексных соединений	Лабораторная работа, контрольная работа	Вопрос на зачете задача на зачете
		владеет методами химических	Лабораторная работа	Вопрос на зачете

		исследований		
	ИОПК-2.2. Использует основные приемы обработки и представления	знает приемы обработки и представления экспериментальных	Коллоквиум	Вопрос на зачете
4	полученных данных	данных Умеет применять знания в области химии при обработке и представлении экспериментальных данных	Лабораторная работа, контрольная работа	Вопрос на зачете задача на зачете
		владеет навыками обработки и представления экспериментальных данных	Лабораторная работа	Вопрос на зачете

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы:

Коллоквиум Компетенции проверяемые оценочным средством: ОПК-1, ОПК-2

Вопросы к коллоквиуму № 1

- 1. Предмет химии. Развитие химии в междисциплинарных научных областях.
- 2. Основные понятия химии: атом, молекула, относительная атомная и молекулярная масса, количество вещества, молярная масса
- 3. Эквивалент, фактор эквивалентности, число эквивалентности, молярная масса эквивалента, количество вещества эквивалента.
- 4. Закон постоянства состава. Закон эквивалентов. Закон сохранения массы вещества.
- 5. Газовые законы. Закон Авогадро. Уравнение Клапейрона-Менделеева.
- 6. В чем сущность кислородной классификации неорганических веществ? Составьте схему классификации неорганических веществ.
- 7. Охарактеризуйте положение неметаллических и металлических элементов в периодической системе химических элементов Д. И. Менделеева. Как изменяются неметаллические свойства элементов в периодах и в главных подгруппах?

- 8. Какие соединения называются оксидами? Составьте схему их классификации. Приведите промеры кислотных, основных, амфотерных оксидов.
- 9. Какие вещества составляют класс оснований? Чем объясняется наличие у оснований ряда общих свойств?
- 10. Укажите известные вам общие способы получения щелочей и нерастворимых гидроксидов металлов. Приведите примеры основных и амфотерных гидроксидов металлов и покажите сходство и различие их химических свойств.
- 11. Какие вещества называют кислотами? По каким признакам можно классифицировать кислоты. Как можно доказать присутствие в растворе кислоты?
- 12. Приведите примеры известных вам способов получения кислот.
- 13. Составьте схему, иллюстрирующую химические свойства солей. Напишите уравнения соответствующих реакций.
- 14. Напишите уравнения реакций всех возможных способов получения: а) сульфата аммония, б) хлорида серебра, в) нитрата магния, г) гидрокарбоната кальция.
- 15. Приведите примеры, иллюстрирующие генетическую связь между классами неорганических соединений.

Вопросы к коллоквиуму \mathfrak{N}_{2} 2

- 1. Изложите основные положения теории Бора. Дайте понятие о нормальном и возбужденном состоянии атома.
- 2. На чем основывается квантовомеханическая теория? Изложите ее суть.
- 3. Дайте определение орбитали. Как можно охарактеризовать состояние электрона в атоме?
- 4. Какой физический смысл имеет главное квантовое число? Орбитальное квантовое число? Нарисуйте формы орбиталей.
- 5. Что характеризует магнитное квантовое число? Какие орбитали следует считать вырожденными? Дайте характеристику спиновому квантовому числу.
- 6. Сформулируйте принцип Паули, правило Хунда, энергетический принцип, правило Клечковского.
- 7. Из чего состоит ядро атома? Что называется нуклонами? Изложите основные положения протонно-нейтронной теории
- 8. Как, пользуясь периодической системой, можно охарактеризовать химический элемент?

- 9. Атомные массы элементов в периодической системе непрерывно увеличиваются, тогда как свойства простых тел изменяются периодически. Чем это можно объяснить?
- 10. Как изменяются свойства элементов в периодах и главных подгруппах с возрастанием порядкового номера элемента?
- 11. Перечислите основные типы химической связи. Какая связь называется ионной? Какие свойства характерны для ионных соединений?
- 12. Чем определяется валентность в ионном соединении?
- 13. Охарактеризуйте ковалентную связь. Приведите примеры соединений.
- 14. В чем заключается основное различие между ионной и ковалентной связью?
- 15. Какие молекулы называются полярными? Неполярными?
- 16. Что служит мерой полярности молекул?
- 17. Какой способ образования ковалентной связи называется донорно-акцепторным? Какие химические связи имеются в ионах NH_4^+ и BF_4^- ? Укажите донор и акцептор.
- 18. Как объясняется линейное строение молекулы BeCI₂ и тетраэдрическое CH₄?
- 19. В чем состоит явление гибридизации электронных орбиталей? Какова форма гибридных облаков?
- 20. Укажите основные типы гибридизации электронных орбиталей.
- 21. Из элементов, приведенных ниже, выберите те, которые могут быть донорами электронной пары, и те, которые могут быть акцепторами при образовании донорно-акцепторной связи: *B, Cl, N, S*.
- 22. Дайте характеристику водородной связи. В каких случаях возможно ее образование. Приведите примеры.
- 23. Охарактеризуйте металлическую связь.

Вопросы к коллоквиуму № 3

- 1. Что изучает наука термодинамика?
- 2. Каковы основные понятия, определения термодинамики?
- 3. Сформулируйте I закон термодинамики и дайте его математическое выражение. Почему он имеет несколько формулировок?
- 4. Что изучает термохимия?
- 5. Что называется тепловым эффектом химической реакции? В каких единицах он выражается?
- 6. Дайте определения эндо- и экзотермическим реакциям.
- 7. Дайте определение понятию «энтальпия».
- 8. Что понимают под теплотой (энтальпией) образования сложного вещества?
- 9. Что понимают под стандартной теплотой (энтальпией) образования сложного вещества?

- 10. Для чего необходимы таблицы стандартных термодинамических велечин (ΔH°_{298} , ΔG°_{298} , ΔS°_{298}) различных веществ?
- 11. Сформулируйте закон Гесса.
- 12. Какова формула 1-го следствия из закона Гесса?
- 13. Какова формула 2-го следствия из закона Гесса?
- 14. Каковы особенности записи термодинамического уравнения реакции?
- 15. Понятие о II законе термодинамики.
- 16. Дайте определение самопроизвольным и несамопроизвольным процессам.
- 17. Поясните понятие «энтропия». Как изменяется энтропия при переходе твердого вещества в жидкое и газообразное?
- 18. Что определяет изобарно-изотермический потенциал ΔG°_{298} (энергия Гиббса)?
- 19. Каким образом вычисляют изменение изобарно-изотермического потенциала (энергии Гиббса) в результате химической реакции:
 - а) в стандартных условиях (ΔG°_{298});
 - б) при температуре, отличающейся от стандартной (ΔG°_{T})?
- 20. Как определяют скорость химической реакции?
- 21. В чем отличие понятий «средней» и «истинной» скорости реакций?
- 22. Какова размерность скорости химической реакции?
- 23. Приведите формулировку основного закона химической кинетики (закон действия масс).
- 24. Каков физический смысл константы скорости химической реакции?
- 25. Какие факторы влияют на скорость химической реакции?
- 26. Какова зависимость скорости химической реакции от температуры? Сформулируйте правило Вант-Гоффа.
- 27. Что представляет собой температурный коэффициент скорости реакции? В каких пределах он изменяется?
- 28. Катализ. Гомогенный и гетерогенный катализ.
- 29. Каковы представления о механизме катализа?
- 30. Какие вещества называют катализаторами? С какой целью их используют в химических реакциях?
- 31. Какие вещества называют промоторами и ингибиторами катализа?
- 32. В чем разница между необратимыми и обратимыми реакциями? Какие реакции называют обратимыми?
- 33. Что называется состоянием химического равновесия? Прекращаются ли химические реакции в состоянии равновесия?
- 34. Какими факторами характеризуется состояние химического равновесия?
- 35. Какие факторы влияют на состояние химического равновесия?

- 36. Сформулируйте закон действия масс для обратимой химической реакции.
- 37. Каков физический смысл константы химического равновесия? От каких факторов она зависит?
- 38. Сформулируйте правило Ле Шателье.
- 39. Каково влияние катализатора на равновесную систему?

Вопросы к коллоквиуму № 4

- 1. Гомогенные и гетерогенные системы. Фазы. Виды растворов. Растворимость.
- 2. Что называется концентрацией раствора? Дайте определение понятию «растворы». Какие компоненты раствора считаются растворителем? Растворенным веществом?
- 3. Сольватация. Растворение как физико-химический процесс. Тепловые эффекты процесса растворения.
- 4. Дайте определение понятиям «массовая доля», «мольная доля» растворенного вещества. Что такое молярность, моляльность, нормальность раствора?
- 5. Тепловые эффекты процесса растворения. Кристаллогидраты. Промежуточное положение растворов между веществами и смесями.
- 6. Зависимость растворимости от температуры и давления. Закон Генри. Диффузия. Осмос. Закон Вант-Гоффа.
- 7. Чем отличается давление пара раствора от давления пара чистого растворителя? Приведите различные формулировки закона Рауля и его математические выражения.
- 8. В чем отличие температур кипения и замерзания растворов неэлектролитов от тех же величин для чистых растворителей (неэлектролитов)?
- 9. Почему растворы кислот, оснований, солей не подчиняются законами идеальных растворов?
- 10. Дайте определение электролитиче6ской диссоциации. Каков механизм электролитической диссоциации?
- 11. Что представляют собой амфотерные электролиты (амфолиты)?
- 12. Какие электролиты относятся к сильным, а какие к слабым? От каких факторов она зависит? Что называется степенью диссоциации электролита? От каких факторов она зависит?
- 13. В каких случаях реакции обмена в растворах электролитов протекают практически до конца?
- 14. Что такое водородный показатель? Как его вычисляют? Как с помощью рН характеризуется реакция раствора: а) кислая; б) нейтральная; в) щелочная?
- 15. Протолитическая теория. Протолитические равновесия в растворах.
- 16. Гетерогенные равновесия "осадок-раствор". Произведение

- растворимости.
- 17. Растворимость труднорастворимых электролитов. Условия осаждения труднорастворимых веществ и их растворения.
- 18. Дайте определение понятиям «электроотрицательность», «относительная электроотрицательность», «степень окисления». Как рассчитывают степень окисления элементов в нейтральной молекуле? В сложном ионе?
- 19. Какие реакции называются окислительно-восстановительными (OBP)? Чем они отличаются от других типов реакций? На какие типы подразделяются окислительно-восстановительные реакции?
- 20. В чем сущность теории окислительно-восстановительных процессов?
- 21. Какие вещества называют окислителями, а какие восстановителями? Какой процесс называют окислением, а какой восстановлением?
- 22. Как меняются степени окисления восстановителя и окислителя в процессе окислительно-восстановительных реакций? Может ли окислительно-восстановительный процесс протекать только между окислителями? Только между восстановителями?
- 23. Чем определяются окислительно-восстановительные способности простых веществ? Пользуясь Периодической системой элементов Д. И. Менделеева, назовите из числа простых веществ:
- 24. а) важнейшие окислители;
- 25. б) важнейшие восстановители.
- 26. Назовите по 5 типичных окислителей и восстановителей из числа сложных веществ.
- 27. Сформулируйте метод электронного баланса.
- 28. Как рассчитываются эквиваленты и эквивалентные массы окислителя и восстановителя?
- 29. Дайте определение понятию «электрохимическая система». Каким образом подразделяют электрохимические системы?
- 30. Что называется электродом? Дайте определение понятию «электродный потенциал».
- 31. Что представляет собой стандартный водородный электрод? Что называется стандартным электродным потенциалом? Какие условия приняты в качестве стандартных? Каким образом вычисляют равновесный потенциал в условиях, отличных от стандартных?
- 32. Что представляет собой гальванический элемент?
- 33. Дайте определение ЭДС гальванического элемента. Каким образом вычисляют ЭДС в стандартных условиях? В нестандартных условиях?
- 34. Дайте определение понятию «электролиз». Какие процессы протекают на аноде и катоде при электролизе?
- 35. Каковы правила электролиза для анода? Для катода?

- 36. В какой последовательности будут восстанавливаться катионы металлов при электролизе растворов солей этих металлов в одинаковых концентрациях?
- 37. Каково практическое значение электролиза?
- 38. Сформулируйте законы, описывающие количественные соотношения при электролизе.
- 39. Что называется коррозией металла? Какие типы коррозии металлов вам известны?
- 40. В чем смысл электрохимической коррозии металлов?
- 41. Каковы основные методы защиты металлов от коррозии?
- 42. Что представляют собой электрохимические методы защиты?

Вопросы к коллоквиуму № 5

- 1. Классификация и распространенность химических элементов.
- 2. Водород. Вода. Общая характеристика, строение и свойства.
- 3. Галогены. Общая характеристика, свойства простых веществ и их соединений.
- 4. Кислород. Халькогены. Общая характеристика, свойства простых веществ и их соединений.
- 5. Подгруппа азота и фосфора. Общая характеристика, свойства простых веществ и их соединений.
- 6. Подгруппа углерода и кремния. Общая характеристика, свойства простых веществ и их соединений.
- 7. Металлы и их общие свойства.
- 8. Химия переходных металлов. Комплексные соединения.
- 9. Координационная теория Вернера.
- 10. Лиганды. Типы комплексов. Дентатность.
- 11. Хелаты. Природа химических связей в комплексных соединениях.
- 12. Номенклатура комплексных соединений. Магнитные свойства соединений.

Критерии оценки

Критерии	Оценка	Уровень
1) полное раскрытие вопроса;	«отлично»	повышенный (продвинутый)
2) указание точных названий и определений;		уровень
3) правильная формулировка понятий и		

категорий;		
4) самостоятельность ответа, умение		
вводить и использовать собственные		
классификации и квалификации,		
анализировать и делать собственные		
выводы по рассматриваемой теме;		
5) использование дополнительной		
литературы и иных материалов и др.		
1) недостаточно полное, по мнению	«хорошо»	базовый уровень
преподавателя, раскрытие темы;		
2) несущественные ошибки в		
определении понятий и категорий и т.		
п., кардинально не меняющих суть		
изложения;		
3) использование устаревшей учебной		
литературы и других источников.		
1) ответ отражает общее направление	«удовлетворит	пороговый
изложения лекционного материала и	ельно»	уровень
материала современных учебников;		
2) наличие достаточного количества		
несущественных или одной-двух		
существенных ошибок в определении		
понятий и категорий и т. п.;		
3) использование устаревшей учебной		
литературы и других источников;		
4) неспособность осветить		
проблематику учебной дисциплины и		
др.		
~r·		

Контрольные работы

Компетенции проверяемые оценочным средством: ОПК-1, ОПК-2.

Контрольная работа № 1

Вариант 1

- **1.** Сколько граммов карбоната кальция образуется при реакции 42 г оксида кальция с порцией углекислого газа, которая при температуре 27°C и давлении 113,5 кПа занимает объем 19768 мл? Сколько молекул содержится в данной порции газа?
- **2.** Некоторое количество металла, эквивалентная масса которого равна 27,9 г/моль, вытесняет из кислоты 1400 мл водорода, измеренного при н.у. Определите массу металла.
- **3.** Определите молекулярную формулу соединения, содержащего 38,61% калия, 13,86% азота, 47,53% кислорода. Молекулярная масса этого соединения равна 101.

Вариант 2

- 1. Сколько граммов карбоната кальция образуется при взаимодействии 37 г гидроксида кальция с порцией углекислого газа, которая при температуре 25°C и давлении 111,457 кПа занимает объем 8887 мл? Сколько молекул содержится в данной порции газа?
- **2.** Некоторое количество металла, эквивалентная масса которого равна 28 г/моль, вытесняет из кислоты 0,7 л водорода, измеренного при н.у. Определите массу металла.
- **3.** Определите молекулярную формулу соединения, содержащего 33,3% натрия, 20,29% азота, 46,38% кислорода. Молекулярная масса этого соединения равна 69.

Контрольная работа № 2

Вариант 1

- 1. При стандартных условиях теплота полного сгорания черного фосфора равна 722,1 кДж/моль, а теплота полного сгорания белого фосфора 760,1 кДж/моль. Чему равна теплота превращения черного фосфора в белый при стандартных условиях?
- **2.** Установить, возможно ли в стандартных условиях при 25°C протекание реакции:

$$Pb(\kappa) + NiO(\kappa) = PbO(\kappa) + Ni(\kappa)$$

Найти тепловой эффект реакции, если в результате образовалось 111,5 г РьО.

- 3. Во сколько раз нужно увеличить давление, чтобы скорость элементарной одностадийной реакции $2A + B_2 = 2AB$ в закрытом сосуде возросла в **1000** раз? Определите порядок реакции по веществу A, по веществу B и суммарный (общий) порядок реакции.
- **4.** Обратимая экзотермическая реакция описывается уравнением $A(\Gamma.) + B(\Gamma.) = 2C(\Gamma.)$ Смешали по 1 моль всех веществ. После установления равновесия

смеси обнаружено 1,5 моль вещества С. Найти константу равновесия (объем реакционной системы считать постоянным и равным 1л).

Как сместится равновесие при:

- а) Увеличении давления
- б) Уменьшении температуры
- в) Увеличении концентрации вещества С
- д) Уменьшении концентрации вещества А

Вариант 2

- 1. При стандартных условиях теплота полного хлорирования графита равна 103,3 кДж/моль, а теплота полного хлорирования алмаза равна 105,6 кДж/моль. Чему равна теплота превращения графита в алмаз при стандартных условиях?
- **2.** Установить, возможно ли в стандартных условиях при 25°C протекание реакции:

$$N_2(\Gamma) + 1/2O_2(\Gamma) = N_2O(\Gamma)$$

Найти тепловой эффект реакции, если в результате образовалось 220 г $N_2 O$.

- **3.** Во сколько раз нужно увеличить давление, чтобы скорость элементарной одностадийной реакции 2A + 2B = 2AB в закрытом сосуде возросла в **256** раз? Определите порядок реакции по веществу A, по веществу B и суммарный(общий) порядок реакции.
- **4.** Обратимая эндотермическая реакция описывается уравнением $A(\Gamma) + 2B(\Gamma) = C(\Gamma)$

Смешали по 2 моль всех веществ. После установления равновесия смеси обнаружено 2,5 моль вещества С. Найти константу равновесия.

(объем реакционной системы считать постоянным и равным 1л)

Как сместится равновесие при:

- а) Увеличении давления
- б) Уменьшении температуры
- в) Уменьшении концентрации вещества С
- д) Увеличении концентрации вещества В

Контрольная работа № 3

Вариант 1

- **1.** Сколько миллилитров концентрированного раствора HC1 *(плотность* = 1,19 г/мл), содержащего 38% (масс.) HC1, нужно взять для приготовления 1л 2H раствора?
- **2.** При 315 К давление насыщенного пара над водой равно 8,2 кПа. На сколько понизится давление пара при указанной температуре, если в 540 г воды растворить 36 г глюкозы $C_6H_{12}O_6$? При какой температуре начнет замерзать полученный раствор? (глюкоза нелетуча)
- **3.** Рассчитать концентрацию ионов СН3СОО в растворе, 1 л которого содержит 1 моль СН3СООН и 0,1 моль НС1, считая диссоциацию последней полной.
- **4.** Во сколько раз растворимость AgBr в 0,001M растворе NaBr меньше, чем в воде?
- **5.** Вычислить массу серебра, выделившегося на катоде при пропускании тока силой 6 А через раствор нитрата серебра в течение 30 мин. Запишите катодные и анодные процессы и общее уравнение электролиза.

Вариант 2

- **1.** Сколько миллилитров 96%-ного (по массе) раствора H_2SO_4 (плотность = 1,84 г/мл) нужно взять для приготовления 1л 0,25H раствора?
- **2.** При 293 К давление насыщенного пара над водой равно 2,34 кПа. Сколько граммов глицерина $C_3H_5(OH)_3$ надо растворить в 180 г воды, чтобы понизить давление пара на 133,3 Па? При какой температуре начнет замерзать полученный раствор? (глицерин нелетуч)
- **3.** Рассчитать концентрацию ионов водорода в 0.5 M растворе муравьиной кислоты HCOOH, если к 1 л этого раствора добавить 0.1

- моль соли HCOONa? Считать, что соль полностью диссоциирована. Объем раствора после добавления соли считать неизменным.
- **4.** Во сколько раз растворимость ZnS в 0,005 M растворе Na₂S меньше, чем в воде?
- **5.** Сколько времени потребуется для полного разложения 2 молей воды током силой 2 A? Запишите катодные и анодные процессы и общее уравнение электролиза.

Опенка

По результатам проверки рассчитывается коэффициент успешности как отношение числа правильно сделанных заданий к общему числу заданий (выражается в процентах).

Шкала перевода значений коэффициента успешности в традиционную оценку

91 – 100 % «отлично»

74 – 90 % «хорошо»

61 – 73 % «удовлетворительно»

0-60 % «неудовлетворительно»

Отчеты по лабораторным работам

Компетенции проверяемые оценочным средством: ОПК-1, ОПК-2

Перечень лабораторных работ

Лабораторная работа №1 "Основные классы неорганических соединений".

Лабораторная работа №2 "Определение эквивалента металла".

Лабораторная работа №3 "Химическая кинетика. Химическое равновесие".

Лабораторная работа №4 "Приготовление растворов различной концентрации".

Лабораторная работа №5 "Равновесие в растворах электролитов. PH. Буферные растворы."

Лабораторная работа № 6 "Окислительно-восстановительные реакции".

Лабораторная работа №7 "Химические методы анализа веществ. Качественные реакции на катионы и анионы"

Лабораторная работа №8 "Комплексные соединения".

Указания к составлению отчётов о выполнении работы

Все наблюдения и выводы по экспериментальной работе следует заносить в рабочий журнал, отражающий всю работу студента. На обложке

или на первой странице журнала должны быть написаны фамилия студента, его инициалы, номер группы и название практикума. Записи в журнале производят только чернилами, лаконично, аккуратно, непосредственно после проведения опыта. Запись должна содержать:

- 1. Дату выполнения работы.
- 2. Название темы и название опыта
- 3. Последовательность проведения операций опыта.
- 4. Описание условий проведения опыта.
- 5. Рисунок или схему используемого прибора.
- 6. Уравнения всех происходящих в опытах реакций.
- 7. Изменение окраски веществ, выделение и характер осадка.
- 8. Расчеты, проводимые при выполнении работы.
- 9. Ответы на поставленные в руководстве вопросы.
- 10. Выводы.

Рекомендуется для рабочего журнала взять общую тетрадь в клетку. Отчет по лабораторной работе оформляется на двух развернутых листах тетради по следующей форме:

Лабораторная работа № Тема:

N	<u>o</u>	Название	Условия	Наблюде	Уравнения	Вывод
		опыта	опыта	ния	реакций	Ы

Отчеты должны быть аккуратными, краткими, отображать наиболее существенные моменты и выводы опыта.

Критерии оценки

Критерии	Оценка	Уровень
Владение навыками планирования,	зачтено	повышенный
прогнозирования и проведения		(продвинутый)
химического эксперимента, безопасной		уровень
работы в химической лаборатории;		
владение приемами разработки и		
реализации методов синтеза		
координационных соединений;		
владение техникой эксперимента,		
приемами измерения физических		
величин с заданной точностью;		
владение навыками работы на		

прибором ополнос и интерротогнии		
приборах, анализа и интерпретации		
полученных экспериментальных		
результатов.		, , , , , , , , , , , , , , , , , , ,
Владение навыками проведения	зачтено	базовый уровень
химического эксперимента, безопасной		
работы в химической лаборатории;		
владение методами синтеза		
координационных соединений;		
владение техникой эксперимента,		
приемами измерения физических		
величин с заданной точностью;		
владение навыками работы на		
приборах, анализа и интерпретации		
полученных экспериментальных		
результатов.		
Отсутствие владения навыками	не зачтено	уровень
химического эксперимента, безопасной		не сформирован
работы в химической лаборатории;		
невладение методами синтеза		
координационных соединений;		
отсутствие владения техникой		
эксперимента, приемами измерения		
физических величин с заданной		
точностью; отсутствие владения		
навыками работы на приборах, анализа		
и интерпретации полученных		
экспериментальных результатов.		

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Вопросы для подготовки к зачету Компетенции проверяемые оценочным средством: ОПК-1, ОПК-2

- 1. Предмет химии. Развитие химии в междисциплинарных научных областях.
- 2. Основные понятия и законы химии.
- 3. Эквивалент. Законы эквивалентов.
- 4. Оксиды, основания: основные способы получения и химические свойства.
- 5. Кислоты, соли: основные способы получения и химические свойства.
- 6. Строение атома. Модели атома. Протоны. Нейтроны. Электроны
- 7. Квантовые числа

- 8. Волновая функция. Виды орбиталей
- 9. Принцип Паули. Правило Хунда. Правила Клечковского.
- 10. Энергия ионизации, сродство к электрону, электроотрицательность.
- 11. Ковалентная связь, свойства ковалентной связи. Дипольный момент. σ и π связь.
- 12. Гибридизация орбиталей.
- 13. Донорно-акцепторная связь. Ионная связь.
- 14. Металлическая связь. Межмолекулярные взаимодействия
- 15. Термодинамические системы. Внутренняя энергия системы, работа, теплота.
- 16. Первый закон термодинамики. Теплоты процессов при постоянном объёме и при постоянном давлении. Энтальпия.
- 17. Экзо- и эндотермические реакции. Термохимические уравнения. Закон Гесса.
- 18. Следствия из закона Гесса. Стандартные состояния и стандартные теплоты образования веществ.
- 19. Второй закон термодинамики. Энтропия. Самопроизвольные и несамопроизвольные процессы.
- 20. Факторы, способствующие росту энтропии. Третий закон термодинамики.
- 21. Изобарно-изотермический потенциал (энергия Гиббса). Направление протекания химических реакций.
- 22. Понятие средней и истинной скорости химической реакции. Закон действующих масс и границы его применения.
- 23. Порядок реакции. Молекулярность реакции. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа.
- 24. Энергия активации. Уравнение Аррениуса. Понятие катализа.
- 25. Обратимые и необратимые химические реакции. Химическое равновесие.
- 26. Константа равновесия и факторы на нее влияющие. Выход реакции.
- 27. Сдвиг химического равновесия. Принцип Ле-Шателье.
- 28. Гомогенные и гетерогенные системы. Фазы. Виды растворов. Растворимость.
- 29. Способы выражения концентрации растворов.
- 30. Идеальные и реальные растворы. Сольватация. Растворение как физико-химический процесс.
- 31. Тепловые эффекты процесса растворения. Кристаллогидраты. Промежуточное положение растворов между веществами и смесями.
- 32. Зависимость растворимости от температуры и давления. Закон Генри.

- Диффузия.
- 33. Осмос. Закон Вант-Гоффа.
- 34. Закон Рауля и следствия из него. Коллигативные свойства растворов и границы их применения.
- 35. Теория электролитической диссоциации и ее основные положения. Степень диссоциации. Сильные и слабые электролиты.
- 36. Константа диссоциации. Закон разбавления Оствальда.
- 37. Диссоциация воды. Ионное произведение воды. Водородный показатель.
- 38. Протолитическая теория. Протолитические равновесия в растворах.
- 39. Расчет рН кислот, оснований и солей.
- 40. Гетерогенные равновесия "осадок-раствор". Произведение растворимости. Растворимость труднорастворимых электролитов.
- 41. Условия осаждения труднорастворимых веществ и их растворения.
- 42. Окислительно-восстановительные реакции(OBP). Редокс-системы. Основные типы OBP.
- 43. Стандартный электродный потенциал и факторы на него влияющие. Уравнение Нернста. Водородный электрод.
- 44. Гальванический элемент(Cu-Zn). ЭДС гальванического элемента.
- 45. Правила записи гальванических элементов. Отличия гальванического элемента от электролизной ячейки.
- 46. Работа, энергия Гиббса, константа равновесия редокс-реакций. Определение направления самопроизвольного протекания редокспроцессов.
- 47. Электролиз. Законы Фарадея.
- 48. Коррозия металлов. Химические и электрохимические методы защиты от коррозии. Гальваническая пара.
- 49. Классификация и распространенность химических элементов.
- 50. Водород. Вода. Общая характеристика, строение и свойства.
- 51. Галогены. Общая характеристика, свойства простых веществ и их соединений.
- 52. Кислород. Халькогены. Общая характеристика, свойства простых веществ и их соединений.
- 53. Подгруппа азота и фосфора. Общая характеристика, свойства простых веществ и их соединений.
- 54. Подгруппа углерода и кремния. Общая характеристика, свойства простых веществ и их соединений.
- 55. Металлы и их общие свойства.
- 56. Химия переходных металлов. Комплексные соединения.
- 57. Координационная теория Вернера.
- 58. Лиганды. Типы комплексов. Дентатность.

- 59. Хелаты. Природа химических связей в комплексных соединениях.
- 60. Номенклатура комплексных соединений. Магнитные свойства соединений.

Задачи на зачет

Компетенции проверяемые оценочным средством: ОПК-1, ОПК-2

- 1. Сколько граммов карбоната бария образуется при взаимодействии 50 г гидроксида бария с порцией углекислого газа, которая при температуре 26°C и давлении 112 кПа занимает объем 9500 мл? Сколько молекул содержится в данной порции газа?
- **2.** Сколько граммов карбоната бария образуется при реакции 60 г оксида бария с порцией углекислого газа, которая при температуре 30°С и давлении 115,5 кПа занимает объем 20428 мл? Сколько молекул содержится в данной порции газа?
- **3.** При взаимодействии 6,75 г металла с серой образовалось 18,75 г сульфида. Рассчитайте молярную массу эквивалентов металла.
- **4.** Сколько молей эквивалентов цинка вступило в реакцию с кислотой, если при этом выделилось 2,8 л водорода при н.у.
- **5.** Определите простейшую формулу химического соединения, если массовые доли (%) составляющих его элементов равны: H 5,88%, O 94,12%.
- **6.** Определите молекулярную формулу химического соединения, если массовые доли (%) составляющих его элементов равны: H 3,66%, P 37,80%, O 58,54%. Молекулярная масса этого соединения равна 82.
- 7. Рассчитайте теплоту перехода графита в алмаз, если известно, что теплота образования CO_2 из графита равна -393,5 кДж/моль , а из алмаза равна 395,4 кДж/моль.
- 8. При стандартных условиях теплота полного хлорирования черного фосфора равна 512,1 кДж/моль, а теплота полного хлорирования белого фосфора 550,1 кДж/моль. Чему равна теплота превращения черного фосфора в белый при стандартных условиях?
- **9.** Установить, возможно ли в стандартных условиях при 25°C протекание реакции:

$$Pb(\kappa) + CuO(\kappa) = PbO(\kappa) + Cu(\kappa)$$

Найти тепловой эффект реакции, если в результате образовалось 669 г РьО.

10. Установить, возможно ли в стандартных условиях при 25°C протекание реакции:

$$Fe_2O_3(\kappa) + 3CO(\kappa) = 2Fe(\kappa) + 3CO_2(\Gamma)$$

Найти тепловой эффект реакции, если в результате образовалось 264 г CO₂.

- **11.** Во сколько раз нужно увеличить давление, чтобы скорость элементарной одностадийной реакции $2A + B = A_2B$ в закрытом сосуде возросла в **81** раз? Определите порядок реакции по веществу A, по веществу B и суммарный (общий) порядок реакции.
- **12.** Во сколько раз нужно увеличить давление, чтобы скорость элементарной одностадийной реакции $A_2 + B_2 = 2AB$ в закрытом сосуде возросла в **100** раз? Определите порядок реакции по веществу A, по веществу B и суммарный (общий) порядок реакции.
- 13. Обратимая эндотермическая реакция описывается уравнением $2A(\Gamma) + 2B(\Gamma) = C(\Gamma)$ Смешали по 1,5 моль всех веществ. После установления равновесия смеси обнаружено 2 моль вещества С. Найти константу равновесия. (объем реакционной системы считать постоянным и равным 1л)

Как сместится равновесие при:

- а) Увеличении давления
- б) Уменьшении температуры
- в) Уменьшении концентрации вещества С
- д) Увеличении концентрации вещества В
- **14.** Обратимая экзотермическая реакция описывается уравнением $A(\Gamma) + B(\Gamma) = 3C(\Gamma)$ Смешали по 1 моль всех веществ. После установления равновесия смеси обнаружено 1,6 моль вещества С. Найти константу равновесия (объем реакционной системы считать постоянным и равным 1л). Как сместится равновесие при:
 - а) Увеличении давления
 - б) Уменьшении температуры
 - в) Увеличении концентрации вещества С
 - д) Уменьшении концентрации вещества А
- **15.** Сколько миллилитров концентрированного раствора HCl (*плотность* = 1,21 г/мл), содержащего 30% (масс.) HCl, нужно взять для приготовления 700 мл 0,5H раствора?
- **16.** Сколько миллилитров 80%-ного (по массе) раствора H_2SO_4 (плотность = 1,7 г/мл) нужно взять для приготовления 800 мл 1H раствора?
- 17. При 300 К давление насыщенного пара над водой равно 7,6 кПа. На сколько понизится давление пара при указанной температуре, если в 320 г воды растворить 18 г глюкозы $C_6H_{12}O_6$? При какой температуре начнет замерзать полученный раствор? (глюкоза нелетуча) Криоскопическая константа воды K = 1,86.

- **18.** При 280 К давление насыщенного пара над водой равно 1,67 кПа. Сколько граммов глицерина $C_3H_5(OH)_3$ надо растворить в 108 г воды, чтобы понизить давление пара на 100 Па? При какой температуре начнет замерзать полученный раствор? (глицерин нелетуч) Криоскопическая константа воды K = 1,86.
- **19.** Рассчитать концентрацию ионов СН3СОО в растворе, 0,5 л которого содержит 0,05 моль СН3СООН и 0,5 моль НС1, считая диссоциацию последней полной. Константа диссоциации уксусной кислоты равна 1,8*10⁻⁵
- **20.** Рассчитать концентрацию ионов водорода в 0,1 *М* растворе муравьиной кислоты HCOOH, если к 1 л этого раствора добавить 1 моль соли HCOONa? Считать, что соль полностью диссоциирована. Объем раствора после добавления соли считать неизменным. Константа диссоциации муравьиной кислоты равна 1,4*10⁻⁴
- **21.** Во сколько раз растворимость AgI в 0,01M растворе NaI меньше, чем в воде? $\Pi P(AgI) = 1,1*10^{-16}$
- **22.** Во сколько раз растворимость MnS в 0,005 M растворе Na₂S меньше, чем в воде? $\Pi P(MnS) = 2.5*10^{-10}$
- **23.** Вычислить массу серебра, выделившегося на катоде при пропускании тока силой 5 А через раствор нитрата серебра в течение 1 часа. Запишите катодные и анодные процессы и общее уравнение электролиза.
- **24.** Вычислить массу меди, выделившейся на катоде при пропускании тока силой 3 А через раствор сульфата меди в течение 40 мин. Запишите катодные и анодные процессы и общее уравнение электролиза.
- **25.** Вычислить массу воды, разложившуюся при пропускании тока силой 0,5 A через раствор сульфата натрия в течение 1,5 часов. Запишите катодные и анодные процессы и общее уравнение электролиза.
 - 4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Критерии оценивания по зачету:

Ответ оценивается «зачтено», если студент:

полно раскрыл содержание материала в области, предусмотренной программой; изложил материал грамотным языком в определенной логической последовательности, точно использовал терминологию; показал умения иллюстрировать теоретические положения конкретными примерами из практики; продемонстрировал усвоение изученных сопутствующих вопросов, сформированность и устойчивость знаний; отвечал самостоятельно

без наводящих вопросов; возможны одна – две неточности при освещении второстепенных вопросов.

Ответ оценивается «незачтено» в следующих случаях:

не раскрыто основное содержание учебного методического материала; обнаружено незнание и непонимание студентом большей или наиболее важной части дисциплины; допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов преподавателя; допускает ошибки в освещении основополагающих вопросов дисциплины.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Учебная литература

- 1. Общая химия. Теория и задачи: Учебное пособие [Электронный ресурс]: учеб. пособие / Н.В. Коровин [и др.]. Электрон. дан. Санкт-Петербург: Лань, 2017. 492 с. Режим доступа: https://e.lanbook.com/book/97169. Загл. с экрана.
- 2. Пуховская, С.Г. Координационные соединения [Электронный ресурс]: учеб. пособие / С.Г. Пуховская, Н.А. Фомина. Электрон. дан. Иваново : ИГХТУ, 2011. 112 с. Режим доступа: https://e.lanbook.com/book/4528. Загл. с экрана.

5.2. Периодическая литература

- 1. Журнал общей химии
- 2. Журнал неорганической химии
- 3. Координационная химия

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. <u>Национальная электронная библиотека</u> (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. <u>База данных CSD Кембриджского центра кристаллографических данных (CCDC)</u> https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods: https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/

- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

1. **Консультант Плюс** - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. <u>Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--</u>273--84d1f.xn--p1ai/voprosy i otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «Химия» требует от студентов регулярного посещения лекций, а также активной работы на практических занятиях, выполнения и защиты лабораторных работ, выполнения

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал слово в слово.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

При подготовке к практическому занятию рекомендуется:

- 1) ознакомиться с темой и планом занятия, чтобы выяснить круг вопросов, которые будут обсуждаться на занятии;
- 2) поработать с конспектом лекции по теме занятия, а также ознакомиться с рекомендуемой литературой и (при необходимости) дополнительными источниками информации в виде периодических изданий и Интернет-ресурсов.

При выполнении практической работы студентам необходимо отмечать те вопросы и разделы, которые вызывают у них затруднения. с целью последующей консультации у преподавателя. Каждый студент должен стремиться активно работать на практических занятиях и успешно выполнять контрольные работы.

При подготовке к коллоквиуму рекомендуется:

- 1) ознакомиться с темой и планом занятия, чтобы выяснить круг вопросов, которые будут обсуждаться на занятии;
- 2) поработать с конспектом лекции по теме занятия, а также ознакомиться с рекомендуемой литературой и (при необходимости) дополнительными источниками информации в виде периодических изданий и Интернет-ресурсов.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, НО без его непосредственного участия. Самостоятельная работа предназначена ДЛЯ не только овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование	Оснащенность	Перечень лицензионного
специальных помещений	специальных помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения занятий	Технические средства	Microsoft Office
лекционного типа	обучения:	
	экран, проектор, компьютер	
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения занятий	Технические средства	Microsoft Office
семинарского типа,	обучения:	
групповых и	экран, проектор, компьютер	
индивидуальных		
консультаций, текущего		
контроля и промежуточной		
аттестации		
Учебные аудитории для	Учебная лаборатория,	Microsoft Windows;
проведения лабораторных	укомплектованная	Microsoft Office
работ. Лаборатория 430С.	специализированной	
	мебелью, вытяжной	
	системой вентиляции,	
	меловыми досками,	
	средствами пожарной	
	безопасности и оказания	
	первой медицинской	
	помощи, лабораторным	
	оборудованием: весы	
	технохимические,	

	электрические плитки,	
	наборы химической посуды	
	и реактивов, магнитные	
	мешалки с подогревом	
	ММ-135Н «Таглер», рН-	
	метр «Эксперт-001-3.04»,	
	спектрофотометр В-1100	
	ЭКОВЬЮ, лабораторный	
1	источник питания	
1	ПРОФКИП Б5-71/1М, весы	
	аналитические Adventurer	
1	Pro AV114C	
Учебные аудитории для	Курсовая работа не предусмотрена учебным планом.	
курсового проектирования		
(выполнения курсовых работ)		
(BBITOSITICITIES RYPCOBBIA PROOF)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений	Оснащенность помещений	Перечень лицензионного
для самостоятельной	для самостоятельной	программного обеспечения
работы обучающихся	работы обучающихся	
Помещение для	Мебель: учебная мебель	Microsoft Windows;
самостоятельной работы	Комплект	Microsoft Office
обучающихся (читальный	специализированной	
зал Научной библиотеки)	мебели: компьютерные	
	столы	
	Оборудование:	
	компьютерная техника с	
	подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную	
	информационно-	
	образовательную среду	
	образовательной	
	организации, веб-камеры,	
	коммуникационное	
	оборудование,	
	обеспечивающее доступ к	
	сети интернет (проводное	
	соединение и беспроводное	
	соединение по технологии	_

	Wi-Fi)	
Помещение для	Мебель: учебная мебель	Microsoft Windows;
самостоятельной работы	Комплект	Microsoft Office
обучающихся (ауд. 431С)	специализированной	
	мебели: компьютерные	
	столы	
	Оборудование:	
	компьютерная техника с	
	подключением к	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную	
	информационно-	
	образовательную среду	
	образовательной	
	организации, веб-камеры,	
	коммуникационное	
	оборудование,	
	обеспечивающее доступ к	
	сети интернет (проводное	
	соединение и беспроводное	
	соединение по технологии	
	Wi-Fi)	