

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

филиал Федерального государственного бюджетного образовательного учреждения высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

в г. Новороссийске Кафедра информатики и математики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.23 Комплексный анализ

Направление 01.03.02 Прикладная математика и информатика

Направленность (профиль): Математические и информационные технологии в

цифровой экономике

Форма обучения: очная

Квалификация (степень) выпускника: Бакалавр

Краснодар 2023

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.03.02 «Прикладная математика и информатика», утвержденного приказом Министерства образования и науки Российской Федерации № 9 от 10 января 2018 года и ОПОП.

Программу составил(и):

Дьяченко С.В., канд.физ.мат. наук, доцент, доцент кафедры информатики и математики

Рзун И.Г., канд.физ.мат.наук, доцент, доцент кафедры информатики и математики

Маслова Е.Ю. преподаватель кафедры информатики и математики

Рабочая программа дисциплины утверждена на заседании кафедры информатики и математики протокол № 11 от 30.05.2023.

И.о.заведующего кафедрой (выпускающей)

Kerhey

Небылова Я.Г.

Рабочая программа одобрена на заседании Учебно-методической комиссии филиала протокол № 1 от 30.05.2023

fuir

Председатель УМК

С.Е. Ратенко

affet

Рецензенты:

- 1. О.В.Ковалёва директор ООО «Форкода»
- 2. М.К.Кунина директор по развитию ООО «АЙТИ БИЗНЕС ЮГ»

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Целью преподавания и изучения дисциплины «Комплексный анализ» является формирование представлений об обобщениях понятий математического анализа на случай функций комплексных переменных, функциональных рядов, интегралов с параметрами и теории поля, а также их роли в системе математических наук и в приложениях других естественнонаучных дисциплин.

1.2 Задачи дисциплины

	Ш	формирование у	студента	представлении	00	основных	понятиях	И	методах
Теории	и фуні	кций комплексного	перемен	іного;					
		выработка навыко	в исполн	зования методо	ов К	Сомплексно	го анализа	и	Теории
поля дл	ля реп	пения теоретически	их и прик	сладных задач;					

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Комплексный анализ» относится к вариативной части Блока 1 «Дисциплины и модули».

Для изучения дисциплины студент должен владеть знаниями, умениями и навыками по дисциплине «Математический анализ».

Знания, получаемые при изучении дисциплины «Комплексный анализ», формируют профессиональные компетенции студента в области Прикладной математики, используются в естественнонаучных и математических дисциплинах Блока 1.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ОПК-1 Способен применять фундаментальнь естественных наук, и использовать их в проф	ие знания, полученные в области математических и (или) рессиональной деятельности
ИОПК-1.1 (06.016 A/30.6 Зн.3) Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их при анализе предметной области	Знает теоретические положения, лежащие в основе построения теории и методов комплексного анализа Умеет доказывать утверждения, выбирать методы для решения задач комплексного анализа и приложений теории функций комплексного переменного и теории поля

	Владеет основными методами решения типовых задач комплексного анализа, способен применять эти методы для решения конкретных прикладных задач			
ИК-1 Способен решать актуальные и значим ИПК-1.8 (40.001 A/02.5 Др.2) Деятельность,	ые задачи прикладной математики и информатики Знает основные понятия, положения			
направленная на решение задач актуальные и значимые задачи прикладной математики и информатики аналитического характера,	и методы комплексного анализа Умеет использовать полученные знания для решения			
предполагающих выбор и многообразие актуальных способов решения задач	математических и прикладных задач Владеет навыками практического применения знаний			
Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине			
	теории поля и ТФКП.			

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 6 зач.ед. (216 часов), их распределение по видам работ представлено в таблице

Вид уч	гебной работы	Всего часов	Семестры (часы)
			4 семестр
Контактная работа (всег	о), в том числе:		
Аудиторные занятия (все	ero)	112	112
В том числе:			
Занятия лекционного типа		48	48
Лабораторные занятия		64	64
Иная контактная работа			
В том числе:			
Контролируемая самостоя	гельная работа (КСР)	4	4
Промежуточная аттестация (ИКР)			0,5
Самостоятельная работа, в том числе:			
Проработка учебного материала			14,8
Выполнение индивидуальн	ых заданий	30	30
Подготовка к текущему кон	тролю	10	10
Контроль			
Подготовка к экзамену			44,7
Общая трудоемкость	час.	216	216
	в том числе контактная работа	116,5	116,5
	зач. ед	6	6

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины, изучаемые в 4 семестре (очная форма)

		Количество часов				
No	Наименование разделов		Аудиторная		Внеаудиторная	
		Всего	pa	бота	работа	
			Л	ЛР	CPC	
1	2	3	4	6	7	
1.	Элементы теории поля	21,7	4	4	7,7	
2.	Функции комплексной переменной	64,6	18	24	12,7	
4	Основные теоремы теории аналитических функций	50	14	18	10,1	
4	Вычисление интегралов методами теории аналитических функций	34,1	9	12	4,1	
5.	Интегралы, зависящие от параметра	29,1	3	4	18,1	
6.	Обзор пройденного материала	12		2	2,1	
	Всего по разделам дисциплины:	211,5	48	64	54,8	
	Контролируемая работа студента (КСР)	4				
	Промежуточная аттестация (ИКР)	0,5			0,2	
	Итого по дисциплине:	216	48	64	55	

Примечание: Л - лекции, ЛР - лабораторные занятия, СРС - самостоятельная работа студента, КСР - контролируемая работа студента; ИКР - иная контактная работа.

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

No	Наименование		Форма текущего
) 1 <u>2</u>	раздела	Содержание раздела	контроля
1	2	3	4
1.	Элементы	Скалярные и векторные поля, их характеристики.	К
	теории поля	Поток векторного поля. Поток векторного поля	
		через замкнутую поверхность. Формула	
		ГауссаОстроградского. Дивергенция векторного	
		поля.	
		Расчетная формула. Формула Гаусса-	
		Остроградского в терминах теории поля. Основные	
		свойства дивергенции. Физический смысл	
		криволинейного интеграла второго рода.	
		Циркуляция векторного поля. Понятие, физический	
		смысл. Расчетная формула. Ротор векторного поля.	
		Понятие. Расчетная формула. Пример поля с	
		постоянной завихренностью. Формула Стокса.	

		Теорема в развернутом виде. Формулировка в терминах теории поля.	
2.	Функции комплексной переменной	Понятие комплексного числа. Операции над комплексными числами. Операции возведения в степень и извлечение корня п-й степени из комплексного числа. Предел последовательности комплексных чисел. Неограниченно возрастающие последовательности. Бесконечно удаленная точка Множества в С. Функции комплексной переменой. Основные понятия. Предел функции комплексной переменной. Непрерывность функции комплексной переменной. Дифференцируемость функции комплексной переменной. Условие Коши-Римана. Геометрический смысл производной функции комплексной переменной Функция w . Линейная z функция w = az + b . Функции w = z z z z z z z z	K, O
		Дробно-линейная функция. Теорема об определении дробно-линейной функции тремя парами точек. Круговое свойство дробно-линейной функции. Теорема о симметричных точках для дробно-линейной функции Показательная и логарифмическая функции. Функция Жуковского Трансцендентные функции в С.	

3.	Основные	Понятие интеграла в С. Существование. Основные	T,O
	теоремы	свойства.	1,0
	теории	Вычисление интеграла от функции комплексной	
	аналитических	переменной	
	функций	Теорема Коши Теорема Коши для многосвязной	
		области	
		Неопределенный интеграл от функции	
		комплексной переменной. Аналитичность	
		неопределенного интеграла. Первообразная.	
		Интегральная формула Коши. Теорема о среднем.	
		Производные высших порядков для аналитических	
		функций. Теорема Лиувилля. Теорема Морера	
		Понятие функционального ряда. Сходимость.	
		Равномерная сходимость. Признаки Коши и	
		Вейерштрасса равномерной сходимости. Теорема о	
		непрерывности равномерно сходящегося ряда из непрерывных функций. Теорема о почленном	
		интегрировании равномерно сходящегося ряда в С.	
		Теорема о почленном дифференцировании	
		равномерно сходящегося ряда в С. Степенные ряды	
		. Теорема Абеля.	
		Следствия из теоремы Абеля. Ряд Тейлора. Теорема	
		Тейлора	
		Нули аналитической функции.	
		Теорема единственности	
		Ряд Лорана. Область сходимости ряда Лорана.	
		Теорема об однозначном представлении	
		аналитической функции рядом Лорана.	
		Изолированные особые точки аналитической	
		функции. Классификация изолированных особых точек.	
		Поведение аналитической функции в окрестности	
		изолированной особой точки. Определение вычета	
		аналитической функции в изолированной особой	
		точкеРасчетные формулы для полюсов. Основная	
		теорема теории вычетов. Вычет аналитической	
		функции в бесконечно удаленной точке. Теорема о	
		сумме всех вычетов. Следствие из нее	
4.	Вычисление	Вычисление интегралов вида $\int_0^{2\pi} R(\cos\varphi,\sin\varphi)d\varphi$.	T,O
	интегралов	$\int_{0}^{\infty} f(x)dx$	
	методами	Вычисление интегралов вида $\int_{-\infty}^{\infty} f(x) dx$.	
	теории	Лемма Жордана. Вычисление интегралов вида ∞	
	аналитических	$\int_{-\infty}^{\infty} e^{iax} f(x) dx.$	
	функций		

_			
5.	Интегралы,	Интегралы, зависящие от параметра. Понятие	T,O
	зависящие от	равномерной сходимости и предельной функции.	
	параметра	Критерий Коши. Теорема о предельном переходе	
	паратегра	под знаком собственного интеграла, зависящего от	
		параметра. Теорема о непрерывности собственного	
		интеграла, зависящего от параметра. Теорема о	
		дифференцировании, теорема об интегрировании	
		собственного интеграла, зависящего от параметра.	
		Несобственный интеграл, зависящий от параметра.	
		Равномерная сходимость и достаточные условия	
		равномерной сходимости (Вейерштрасса, Абеля,	
		Дирихле).	
		Теорема о предельном переходе под знаком	
		интеграла и теорема о непрерывности интеграла,	
		зависящего от параметра. Теорема об изменении	
		порядка интегрирования для несобственного	
		интеграла, зависящего от параметра.	
		пптеграла, зависящего от параметра.	
		В-функция, её свойства. Г-функция, её свойства.	
		Связь между Г-функцией и В-функцией	
		Понятие интегральных преобразований Лапласа,	
		Фурье и Мелина. Прямые и обратные	
		преобразования. Основные свойства интегральных	
		преобразований и их приложения. Методы	
		вычисления на основе теории вычетов.	

Примечание: защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т), опрос по знанию теоретического материала (О) и т.д.

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

No	Наименование лабораторных работ	Форма текущего контроля
1	3	4
1.	Скалярное и векторное поле, дифференциальные операторы: градиент, дивергенция и ротор векторного поля	Выполнение практических индивидуальных заданий, контрольная работа
2.	Циркуляция, ротор векторного поля. Формула Стокса	Выполнение практических индивидуальных заданий, контрольная работа

3.	Поток векторного поля	Выполнение практических индивидуальных заданий, контрольная работа
4.	Дивергенция векторного поля. Формула Гаусса- Остроградского	Выполнение практических индивидуальных заданий, контрольная работа
5.	Комплексные числа, операции над ними	Выполнение практических индивидуальных заданий, контрольная работа
6.	перации возведения в степень и извлечения корня n-й степени из комплексного числа	Выполнение практических индивидуальных заданий, контрольная работа
7.	Сходимость последовательностей в С	Выполнение практических индивидуальных заданий, контрольная работа
8.	Сходимость рядов в С	Выполнение практических индивидуальных заданий, контрольная работа
9.	Функция комплексной переменной, непрерывность	Выполнение практических индивидуальных заданий, контрольная работа
10	Дифференцируемость функций комплексной переменной	Выполнение практических индивидуальных заданий, контрольная работа
11.	Линейная функция $w = az + b$	Выполнение практических индивидуальных заданий, контрольная работа
12	Функция $w = \frac{1}{z}$	Выполнение практических индивидуальных заданий, контрольная работа
13	Функции $W=Z^n$ и ${}^n\!\sqrt{Z}$	Выполнение практических индивидуальных заданий, контрольная работа
14.	Дробно-линейная функция: основные свойства	Выполнение практических индивидуальных заданий, контрольная работа
15.	Дробно-линейная функция: отыскание по трем точкам, отображения	Выполнение практических индивидуальных заданий, контрольная работа

16.	Дробно-линейная функция: отображение круга, полуплоскости.	Выполнение практических индивидуальных заданий, контрольная работа
17.	Дробно-линейная функция: отображения луночек.	Выполнение практических индивидуальных заданий, контрольная работа
18.	Показательная и логарифмическая функции. Их отображения, свойства	Выполнение практических индивидуальных заданий, контрольная работа
19.	Функция Жуковского	Выполнение практических индивидуальных заданий, контрольная работа
20.	Трансцедентные функции	Выполнение практических индивидуальных заданий, контрольная работа
21.	Интеграл от функции комплексной переменной	Выполнение практических индивидуальных заданий, контрольная работа
22.	Интегральная формула Коши	Выполнение практических индивидуальных заданий, контрольная работа
23.	Сходимость степенных рядов. Радиус сходимости	Выполнение практических индивидуальных заданий, контрольная работа
24.	Ряд Тейлора. Разложение функций.	Выполнение практических индивидуальных заданий, контрольная работа
25.	Ряд Тейлора. Метод неопределенных коэффициентов, приложения рядов Тейлора	Выполнение практических индивидуальных заданий, контрольная работа
26.	Нули аналитической функции. Порядок нуля. Изолированные особые точки, кратность полюса	Выполнение практических индивидуальных заданий, контрольная работа
27.	Разложение в ряд Лорана в окрестности точки z=0 и z=∞	Выполнение практических индивидуальных заданий, контрольная работа
28.	Разложение в ряд Лорана в окрестности точки z=a	Выполнение практических индивидуальных заданий, контрольная работа
29.	Вычеты в однократных полюсах	Выполнение практических индивидуальных заданий, контрольная работа
		montposibilan paoota

30	Вычеты от кратных полюсов	Выполнение практических индивидуальных заданий, контрольная работа
31.	Вычет в бесконечно удаленной точке	Выполнение практических индивидуальных заданий, контрольная работа
32.	Вычисление интегралов по замкнутому контуру при помощи теории вычетов	Выполнение практических индивидуальных заданий, контрольная работа
33	$\int_0^{2\pi} R(\cos \varphi, \sin \varphi) \Big _{ ext{Вида}}$ $d \varphi$	Выполнение практических индивидуальных заданий, контрольная работа
	Вычисление интегралов $\int_{-\infty}^{\infty} f(x)$ вида dx	Выполнение практических индивидуальных заданий, контрольная работа
35	.Лемма Жордана. Вычисление интегралов вида $\int_{-\infty}^{\infty} e^{iax} f(x) dx$	Выполнение практических индивидуальных заданий, контрольная работа
36	Собственные интегралы, зависящие от параметра	Выполнение практических индивидуальных заданий, контрольная работа
37.	Г-функция и В-функция	Выполнение практических индивидуальных заданий, контрольная работа
38	Несобственные интегралы, зависящие от параметра и равномерная сходимость интегралов.	Выполнение практических индивидуальных заданий, контрольная работа
39.	Интегральное преобразование Лапласа и Фурье. Использование теоремы Коши и Леммы Жордана о вычетах для вычисления обратных преобразований	Выполнение практических индивидуальных заданий, контрольная работа

Примечание: Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с $\Phi\Gamma$ OC BO.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Nº	Вид самостоятельной работы	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	повторение лекционного материала,	Методические указания для подготовки к лекционным и семинарским занятиям, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
2	Подготовка к лабораторным занятиям	Методические указания по выполнению лабораторных работ, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
3	Подготовка к решению	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.
4	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании кафедры прикладной математики факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ», протокол №7 от 18.04.2018 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа, Для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

С точки зрения применяемых методов используются как традиционные информационно-объяснительные *лекции*, так и интерактивная подача материала с мультимедийной системой и др. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематический обзор понятий и методов Комплексного анализа с подачей материала в форме презентаций и с использованием других интерактивных технологий: проблемное обучение, моделирование, дискуссия.

Занятия, проводимые с использованием интерактивных технологий

No	Наименование разделов (тем)	Количество часов	
		всего ауд. часов	интерактивные часы
1	2	3	4
1.	Элементы теории поля	8	2
2.	Функции комплексной переменной	42	6
3.	Основные теоремы теории аналитических функций	32	6
4.	Вычисление интегралов методами теории аналитических функций	21	6
5.	Интегралы, зависящие от параметра	7	1
6.	Обзор пройденного материала	2	0
	Итого по дисциплине:	112	21

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач, развить математическую интуицию и творческое мышление. Разбор конкретных ситуаций, математическое моделирование задач, встречающихся на практике (проблемное обучение), командная работа, визуализация и обсуждение результатов анализа широко используется при проведении лабораторных, а также самостоятельных работ.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием возможностей средств удаленного доступа (электронная почта, видеоконференция).

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Комплексный анализ».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме:

□ тестовых заданий (контрольных и самостоятельные работы); □ контроля за выполнением групповых домашних заданий.

и промежуточной аттестации в форме вопросов и заданий к зачету и экзамену.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Danver more a of the course (n	Наименование оценочного средства	
п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИОПК-1.1 (06.016 A/30.6 3н.3) Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их при анализе предметной области	Знает теоретические положения, лежащие в основе построения теории и методов комплексного анализа	Вопросы на коллоквиуме 1-36,	Вопросы на экзамене 1-70
2	ИОПК-1.1 (06.016 A/30.6 3н.3) Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их при анализе предметной области	Умеет доказывать утверждения, выбирать методы для решения задач комплексного анализа и приложений теории функций комплексного переменного и теории поля	Вопросы на коллоквиуме 4,8, 9, 12,13,15, 18, 19, 20, 30, 31, 32, 33	Вопросы на экзамене, требующие доказательства и/или вывод расчётных формул: 4-10,12-15,18-20, 32, 33, 34, 37-40, 46, 47, 49, 51, 53, 55, 56, 58, 59, 62, 65, 66, 67, 70
3	ИОПК-1.1 (06.016 A/30.6 3н.3) Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их при анализе предметной области	Владеет основными методами решения типовых задач комплексного анализа, способен применять эти методы для решения конкретных прикладных задач	Задания для контрольных и самостоятельных работ	Практические задачи на экзамене

4	ИПК-1.8 (40.001 A/02.5 Др.2) Деятельность, направленная на решение задач актуальные и значимые задачи прикладной математики и информатики аналитического	Знает основные понятия, положения и методы комплексного анализа	Вопросы на коллоквиуме 1-36, текущие опросы на лекциях и лабораторных занятиях	Вопросы на экзамене 1-70
	характера, предполагающих выбор и многообразие			
5	ИПК-1.8 (40.001 A/02.5 Др.2) Деятельность, направленная на решение задач актуальные и значимые задачи прикладной математики и информатики аналитического характера, предполагающих выбор и многообразие	Умеет использовать полученные знания для решения математических и прикладных задач	Задания для контрольных и самостоятельных,, текущие опросы на лабораторных занятиях	Практические задачи на экзамене
6	ИПК-1.8 (40.001 A/02.5 Др.2) Деятельность, направленная на решение задач актуальные и значимые задачи прикладной математики и информатики аналитического характера, предполагающих выбор и многообразие	Владеет навыками практического применения знаний теории поля и ТФКП.	Задания для лабораторных работ	Практические задачи на экзамене

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Задания по темам лабораторных занятий

Лабораторное занятие 1. Скалярное и векторное поле, дифференциальные операторы: градиент, дивергенция и ротор векторного поля **Контрольные**

вопросы:

- 1. Определение скалярного и векторного поля
- 2. Вычисление градиента
- 3. Формула дивергенции
- 4. Формула ротора Задачи:

Используется учебник [5], §12

В аудитории: 1(a), 6(2), 8(1), 15(2,5), 38(1,4), 41(1), 51(1)

На дом: 1(б), 6(1,4), 8(2,3), 15(1,3,4,6), 38, 41(2,4-6), 51(2), 53

Лабораторное занятие 2. Циркуляция, ротор векторного поля. Формула Стокса

- 1. Определение работы векторного поля
- 2. Определение циркуляции векторного поля
- 3. Связь ротора и циркуляции векторного поля

4. Формула Стокса Задачи:

Используется учебник [5], §12

В аудитории: 90(1,2), 91(2), 92(2), 94(1), 69(1,3)

На дом: 90(3), 91(1,3), 93(1), 94(2-5), 95, 96

Лабораторное занятие 3. Поток векторного поля

Контрольные вопросы:

- 1. Определение потока векторного поля через поверхность
 - 2. Методы вычисления потока Задачи:

Используется учебник [5], §12

В аудитории: 68(1-3), 69(2,4)

На дом: 68(4-7), 69(1,5,6)

Лабораторное занятие 4. Дивергенция векторного поля. Формула ГауссаОстроградского

Контрольные вопросы:

- 1. Определение дивергенции через поток векторного поля
- 2. Формула Гаусса-Остроградского Задачи:

Используется учебник [5], §12

В аудитории: 70(2,3,8), 103

На дом: 70(5,6), 106

Лабораторное занятие 5. Комплексные числа, операции над ними **Контрольные**

вопросы:

- 1. Алгебраическая форма комплексного числа
- 2. Операция сложения и умножения комплексных чисел
- 3. Тригонометрическая форма комплексного числа
- 4. Произведение, возведение в степень комплексных чисел в тригонометрической форме
- 5. Извелечение корня из комплексного числа Задачи:

1.04. Найти действительную и мнимую части следующих комплексных чисел:

1.
$$\frac{1}{1-i}$$
. 2. $\left(\frac{1-i}{1+i}\right)^3$. 3. $\left(\frac{1}{2}-i\frac{\sqrt[4]{3}}{2}\right)^3$. 4. $\left(\frac{i^5+2}{l^{19}+1}\right)^2$. 5. $\frac{(1+i)^5}{(1-i)^3}$.

1.06. Найти модули и аргументы следующих комплексных чисел:

1.
$$i$$
. 2. -3 . 3. $1+i^{123}$.

4.
$$-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$
. 5. $\frac{1-i}{1+i}$. 6. $-\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}$.

7.
$$(-4+3i)^3$$
. 8. $(1+i)^8(1-i\sqrt{3})^{-6}$. 9. $1+\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}$.

В аудитории: 1.04(1,2), 1.06(1,3,6,7)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 6. Операции возведения в степень и извлечения корня n-й степени из комплексного числа Контрольные вопросы:

- 1. Возведение в степень комплексных чисел в тригонометрической форме
- 2. Извлечение корня из комплексного числа
- 3. Экспоненциальная форма комплексного числа Задачи:

1.58. Найти все решения следующих уравнений:

1. $z^2 = l$. 2. $z^2 = 3 - 4l$. 3. $z^3 = -1$. 4. $z^6 = 64$.

5. $z^7 + 1 = 0$. 6. $z^8 = 1 + i$. 7. $\bar{z} = z^3$. 8. |z| - z = 1 + 2i.

В аудитории: 1.58(1,2, 8)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 7. Множества в С **Контрольные**

вопросы:

- 1. Определение множества
- 2. Операции над множествами
- 3. Граничные и предельные точки

Задачи:

- 1.13. Дать геометрическое описание множеств всех точек комплексной плоскости, удовлетворяющих следующим неравенствам:

 - 1. Re z > 0. 2. Im $z \le 1$. 3. |Re z| < 1. 4. |Im z| < 1, 0 < Re z < 1. 5. $|z| \le 1$. 6. |z i| > 1. 7. 0 < |z + i| < 2. 8. 1 < |z 1| < 3. 9. $0 < \arg z < \pi/4$.
 - 10. $|\pi \arg z| < \pi/4$.
- 1.20. Выяснить, какие линии на плоскости записаны следующими уравнениями:
 - 1. Re $\frac{1}{z} = \frac{1}{a}$ (a > 0). 2. Re $\frac{z-1}{z+1} = 0$.
 - 3. Im $\frac{z-1}{z+1} = 0$. 4. Re $\frac{z-a}{z+a} = 0$ (a > 0).
- **1.21.** Выяснить, какие множества точек z комплексной плоскости удовлетворяют неравенствам:
 - 1. |z-t|+|z+t| < 4. 2. Re $\frac{1}{z} < \frac{1}{2}$. 3. |z-2|-|z+2| < 2.
 - 4. |1+z| < |1-z|. 5. $0 < \arg \frac{i-z}{z+i} < \frac{\pi}{2}$. 6. $\operatorname{Re}(z(1-i)) < \sqrt{2}$.
 - 7. $\frac{\pi}{4} < \arg(z+i) < \frac{\pi}{2}$. 8. |z| > 1 Re z. 9. Re $z^4 > \text{Im } z^4$.

В аудитории: 1.13 (1, 4, 8,9), 1.20 (1,3), 1.21 (1,2, 3,5)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 8. Сходимость последовательностей в С Контрольные

вопросы:

- 1. Определение последовательности и ее предела
- 2. Методы вычисления пределов последовательностей
- 3. Признак Коши Задачи:
- **2.09.** Выяснить, при каких значениях комплексного параметра *а* сходятся последовательности:

1.
$$\{a^n\}$$
. 2. $\{\frac{a^n}{n}\}$. 3. $\{na^n\}$. 4. $\{\frac{a^n}{1+a^n}\}$.

5.
$$\{1+a+\ldots+a^n\}$$
. 6. $\{\frac{a}{1^2}+\frac{a^2}{2^2}+\ldots+\frac{a^n}{n^2}\}$.

2.10. Доказать сходимость следующих последовательностей и найти их пределы:

1."
$$\left\{\frac{a^n}{1+a^{2n}}\right\}$$
, $|a| < 1$. 2. $\left\{\frac{a^n}{1+a^{2n}}\right\}$, $|a| > 1$.

3.
$$\left\{\frac{a}{1^4} + \frac{a^2}{2^4} + \dots + \frac{a^n}{n^4}\right\}$$
, $|a| > 1$. 4. $\left\{\frac{1}{n}\left(1 + e^{i\varphi} + \dots + e^{in\varphi}\right)\right\}$, $0 < \varphi < 2\pi$.

5.
$$\left\{ \frac{1}{\sqrt{n}} \left(1 - e^{i\varphi} + e^{2i\varphi} - \ldots + (-1)^n e^{in\varphi} \right) \right\}, -\pi < \varphi < \pi.$$

В аудитории: 2.09 (1,2,5), 2.10(1,2)

На дом: остальные задачи из приведенных номеров

Пабораторное занятие 9. Сходимость рядов в С

Контрольные вопросы:

- 1. Определение числового ряда
- 2. Признаки сходимости ряда из комплексных чисел

Задачи:

2.20. Доказать абсолютную сходимость следующих рядов:

1.
$$\sum_{n=1}^{\infty} n^{\alpha} z^n$$
, $|z| < 1$, $-\infty < \alpha < \infty$. 2. $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$, $|z| < e$.

3.
$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{(n!)^{3}} \frac{z^n}{1+z^n}, |z| \leq \frac{1}{4}.$$

4.
$$\sum_{n=2}^{\infty} \frac{1}{(n+z) \ln^2 n}, \quad z \neq -2, -3, -4, \dots$$

5.
$$\sum_{n=1}^{\infty} \frac{z(z+1)\dots(z+n)}{n!}$$
, Re $z < -1$.

6.
$$\sum_{n=1}^{\infty} \left[\frac{z(z+n)}{n} \right]^{[n^{\alpha}]}, |z| < 1, 0 < \alpha < 1.$$

7.
$$\sum_{n=1}^{\infty} \frac{n!}{(z+2)(z+4)\dots(z+2n)}, \quad z \neq -2, \quad -4, \quad -6\dots$$

8.
$$\sum_{n=1}^{\infty} \frac{2^n n!}{(z+1)(z+3)\dots(z+2n+1)}, \quad \text{Re } z > \frac{1}{2}.$$

2.25. Найти все значения действительного параметра α, при которых сходятся следующие ряды:

$$1. \sum_{n=1}^{\infty} n^{-\alpha} e^{in}.$$

Контрольные вопросы:

$$2. \quad \sum_{n=1}^{\infty} n^{-\alpha} e^{\pi i/n}.$$

3.
$$\sum_{n=1}^{\infty} (n^2+1)^{-\alpha} (e^{\pi i/n}-1).$$

3.
$$\sum_{n=1}^{\infty} (n^2+1)^{-\alpha} (e^{\pi i/n}-1). \qquad 4. \quad \sum_{n=1}^{\infty} \frac{(\alpha+1)(\alpha+2)\dots(\alpha+n)}{n!} i^n.$$

В аудитории: 2.20(1,2, 5,6), 2.25(1,4)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие Функция комплексной переменной, непрерывность

19

- Примеры функций комплексной переменной
 - 2. Предел функции комплексной переменной в точке
 - 3. Определение непрерывности в точке Задачи:

- 3.23. Выяснить, какие кривые определяются следующими параметрическими уравнениями (указать множество точек плоскости и порядок их прохождения):

 - 1. z = a + (b a)t, $0 \le t \le 1$. 2. $z = Re^{it}$, $0 \le t \le \pi$; (R > 0).

 - 3. $z=t+it^2$, $0 \le t < \infty$. 4. $z=t+\frac{i}{t}$, $1 \le t < \infty$.
- 5. $z = ae^{it} + \frac{1}{a}e^{-it}$, $0 \le t \le 2\pi$, (a > 1). 6. $z = 1 + e^{-it}$, $0 \le t \le 2\pi$.
- 7. $z = e^{2it} 1$, $0 \le t \le 2\pi$. 8. $z = \begin{cases} e^{\pi it}, & 0 \le t < 1, \\ t 2, & 1 \le t \le 3. \end{cases}$
- 9. $z = l \cos t$, $0 \le t \le 2\pi$.
- 10. $z=1+i\cos^2 t$, $0 \le t \le 2\pi$.
- **1.58.** Пользуясь определением e^z , доказать, что:
- 1) $e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$; 2) $e^{z + 2\pi i} = e^z$;
- 3) если $e^{z+\omega}=e^z$ при всяком z, то

$$\omega = 2\pi ki \quad (k = 0, \pm 1, \pm 2, ...).$$

- 1.64. Исходя из определения соответствующих функций, дока-
 - 1) $\sin^2 z + \cos^2 z = 1$; 2) $\sin z = \cos \left(\frac{\pi}{2} z\right)$;
 - 3) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$;
 - 4) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$;
 - 5) $\operatorname{tg} 2z = \frac{2 \operatorname{tg} z}{1 \operatorname{tg}^2 z}$; 6) $\operatorname{ch} (z_1 + z_2) = \operatorname{ch} z_1 \operatorname{ch} z_2 + \operatorname{sh} z_1 \operatorname{sh} z_2$.
- 1.68. Найти действительные и мнимые части следующих значений функций:
 - 1) $\cos(2+i)$; 2) $\sin 2i$; 3) tg(2-i);
 - 4) ctg $\left(\frac{\pi}{4} i \ln 2\right)$; 5) cth (2+i); 6) th $\left(\ln 3 + \frac{\pi i}{4}\right)$.
- 3.48. Выяснить, будут ли следующие функции равномерно непрерывны в области 0 < |z| < 1:

1.
$$f = e^{-1/|z|}$$
. 2. $f = \frac{\operatorname{Re} z}{|z|}$. 3. $f = \frac{(\operatorname{Re} z^2)^2}{z^2}$. 4. $f = e^{-1/z^2}$.

В аудитории: 3.23 (1, 2, 4), 1.58(1), 1.64(1), 1.68(1,3), 3.48(1,2) На дом: остальные задачи из приведенных номеров

Пабораторное занятие 11. Дифференцируемость функций комплексной переменной

- 1. Определение производной функции комплексной переменной
 - 2. Условие Коши-Римана Задачи:

8.01. Найти все точки, в которых дифференцируемы функции:

- 1. Re z. 2. $x^2y^2(z=x+iy)$. 3. $|z|^2$. 4. $x^2+iy^2(z=x+iy)$. 5. $z \operatorname{Re} z$. 6. $2xy-i(x^2-y^2)$ (z=x+iy).

8.08. Найти, где дифференцируемы следующие функции, и написать формулы для их производных:

- 1. $e^{\operatorname{ch} z}$. 2. $\sin(2e^z)$. 3. $\sin z \operatorname{ch} z i \cos z \operatorname{sh} z$.
- 4. ze^{-z} . 5. $\frac{e^z}{z}$. 6. $\frac{z\cos z}{1+z^2}$.

8.09. Выяснить, где дифференцируемы следующие функции и найти их производные:

- 1. $\lg z$. 2. $\operatorname{ctg} z$. 3. $\frac{e^z + 1}{e^z 1}$. 4. $\frac{1}{\lg z + \operatorname{ctg} z}$.
- 5. $(e^z e^{-z})^{-2}$. 6. $\frac{\cos z}{\cos z \sin z}$.

В аудитории: 8.01 (1,3,4), 8.07 (1,3), 8.08 (1,2), 8.09 (1,5) На

дом: остальные задачи из приведенных номеров

Лабораторное занятие 12. Линейная функция w = az + b

Контрольные вопросы:

- 1. Определение линейной функции комплексной переменной
- 2. Свойства образа линейной функции Задачи:
- 2.1. Найти целую линейную функцию, отображающую треугольник с вершинами в точках 0, 1, i на подобный ему треугольник с вершинами 0, 2, 1 + i.
- 2.2. Найти целое линейное преобразование с неподвижной точкой 1+2i, переводящее точку i в точку -i.
- 2.3. Для указанных преобразований найти конечную неподвижную точку z_0 (если она существует), угол поворота вокруг нее ϑ и коэффициент растяжения к. Привести эти преобразования к каноническому виду $w-z_0=\lambda(z-z_0)$:
 - 1) w = 2z + 1 3i; 2) w = iz + 4; 3) w = z + 1 2i; 4) $w w_1 = a(z z_1)$ ($a \neq 0$); 5) w = az + b ($a \neq 0$).
- 2.4. Найти общую форму целого линейного преобразования, переводящего:
 - 1) верхнюю полуплоскость на себя;
 - 2) верхнюю полуплоскость на нижнюю полуплоскость;
 - 3) верхнюю полуплоскость на правую полуплоскость;
 - 4) правую полуплоскость на себя.
- 2.5. Найти общую форму целого линейного преобразования, переводящего:
 - 1) полосу 0 < x < 1 на себя;
 - 2) полосу -2 < y < 1 на себя;
 - 3) полосу, ограниченную прямыми y = x и y = x 1, на себя.

В аудитории: 2.1, 2.2, 2.3 (1,2), 2.4 (1,2), 2.5(1)

На дом: остальные задачи из приведенных номеров Лабораторное

занятие 13. Функция w = 1

z

Контрольные вопросы:

Определение конформного отображения

- 2. Производная функции
- 3. Образ функции 1/z Задачи:

2.8. Для функции w=1/z найти образы следующих линий: 1) семейства окружностей $x^2+y^2=ax;$ 2) семейства окружностей $x^2+y^2=by;$

- 3) пучка параллельных прямых y = x + b;
- 4) пучка прямых y = kx;
- 5) пучка прямых, проходящих через заданную точку $z_0 \neq 0$;
- 6) параболы $y = x^2$.

В аудитории: 2.8(1-3), 3.2 (а,г, e, ж)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 15. Дробно-линейная функция: основные свойства

Контрольные вопросы:

- 1. Определение дробно-линейной функции
- 2. Принципы построения отображений дробно-линейной функции Задачи:
- **2.9.** Выяснить, во что функция $w = \frac{1}{z-z_0} + h$ переводит:
- 1) прямоугольную сетку x = C, y = C;
- 2) полярную сетку $|z z_0| = R$, $\arg(z z_0) = \alpha$.

В задачах 2.11-2.15 выяснить, во что преобразуются указанные области при заданных отображающих функциях.

2.11. Квадрант
$$x > 0$$
, $y > 0$; $w = \frac{z-i}{z+i}$.

2.12. Полукруг
$$|z| < 1$$
, Im $z > 0$; $w = \frac{2z - i}{2 + iz}$.

2.13. Yron
$$0 < \varphi < \frac{\pi}{4}$$
; $w = \frac{z}{z-1}$.

2.14. Полоса
$$0 < x < 1$$
: 1) $w = \frac{z-1}{z}$; 2) $w = \frac{z-1}{z-2}$.

2.15. Кольцо
$$1 < |z| < 2$$
; $w = \frac{z}{z-1}$.

Лабораторное занятие 16. Дробно-линейная функция: отыскание по трем точкам, отображения

- 1. Определение дробно-линейной функции
- 2. Круговое свойство дробно-линейной функции Задачи:
- **2.17.** Найти дробно-линейные функции, переводящие точки -1, i,1+i соответственно в точки: 1) 0, 2i, 1-i; 2) $i, \infty, 1$.
- 2.18. Найти дробно-линейные функции, переводящие точки -1, ∞ , *i* соответственно в точки:
 - 1) i, 1, 1+i; 2) $\infty, i, 1;$ 3) $0, \infty, 1.$
 - 2.19. Найти дробно-линейные функции по следующим условиям:
 - 1) точки 1 и i неподвижны, а точка 0 переходит в точку -1;
 - 2) точки $\frac{1}{2}$ и 2 неподвижны, а точка $\frac{5}{4}+\frac{3}{4}\,i$ переходит в ∞ ; 3) точка i является двойной неподвижной точкой, а точка 1 пере-
- ходит в ∞ .

В аудитории: 2.17(1), 2.18(1,2), 2.19(1,2)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 17. Дробно-линейная функция: отображение круга, полуплоскости

- 1. Определение дробно-линейного отображения
- 2. Точки, симметричные относительно окружности
- 3. Круговое свойство Задачи:
- **2.24.** Найти точки, симметричные с точкой 2+i относительно окружностей: 1) |z| = 1; 2) |z - i| = 3.

2.28. Отобразить верхнюю полуплоскость ${\rm Im}\,z>0$ на единичный круг |w|<1 так, чтобы:

1)
$$w(i) = 0$$
, $\arg w'(i) = -\frac{\pi}{2}$; 2) $w(2i) = 0$, $\arg w'(2i) = 0$;

3)
$$w(a+bi) = 0$$
, $\arg w'(a+bi) = \theta$ $(b > 0)$.

- **2.29.** Отобразить верхнюю полуплоскость $\operatorname{Im} z > 0$ на круг $|w w_0| < R$ так, чтобы точка i перешла в центр круга, а производная в этой точке была положительной.
- **2.30.** Отобразить круг |z| < 2 на полуплоскость ${\rm Re}\, w > 0$ так, чтобы $w(0) = 1, \ \arg w'(0) = \pi/2.$
 - **2.37.** Отобразить круг |z| < 1 на круг |w| < 1 так, чтобы:

1)
$$w(\frac{1}{2}) = 0$$
, $\arg w'(\frac{1}{2}) = 0$; 2) $w(\frac{1}{2}) = 0$, $\arg w'(\frac{i}{2}) = \frac{\pi}{2}$;

3)
$$w(0) = 0$$
, $\arg w'(0) = -\frac{\pi}{2}$; 4) $w(a) = a$, $\arg w'(a) = \alpha$.

- **2.38.** Отобразить круг $|z| < R_1$ на круг $|w| < R_2$ так, чтобы $w(a) = b, \ \arg w'(a) = \alpha \ (|a| < R_1, \ |b| < R_2).$
- **2.39.** Отобразить круг |z|<1 на круг |w-1|<1 так, чтобы w(0)=1/2 и w(1)=0.
- **2.40.** Отобразить круг |z-2|<1 на круг |w-2i|<2 так, чтобы w(2)=i и $\arg w'(2)=0.$

В аудитории: 2.24(1), 2.28(1,2), 2.30, 2.38

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 18. Дробно-линейная функция: отображения луночек

24

- 1. Определение дробно-линейного отображения
- 2. Принцип соответствия границ Задачи:
- **2.86.** 1) Отобразить угол $0 < \arg z < \pi \alpha \ (0 < \alpha \leqslant 2)$ на верхнюю полуплоскость.
- 2) Отобразить угол $-\frac{\pi}{4}<\arg z<\frac{\pi}{2}$ на верхнюю полуплоскость так, чтобы $w(1-i)=2,\ w(i)=-1,\ w(0)=0.$
- **2.87.** Найти функцию w(z), отображающую полукруг |z| < 1, ${\rm Im} \ z > 0$, на верхнюю полуплоскость при условиях:

1)
$$w(-1) = 0$$
, $w(0) = 1$, $w(1) = \infty$;

2)
$$w(\pm 1) = \mp 1$$
, $w(0) = \infty$;

3)
$$w\left(\frac{i}{2}\right) = i$$
, $\arg w'\left(\frac{i}{2}\right) = -\frac{\pi}{2}$.

- 2.90. Отобразить на верхнюю полуплоскость:
- 1) СЕКТОР |z| < R, $0 < \arg z < \pi \alpha$ $(0 < \alpha \le 2)$;
- 2) область |z| > R, $0 < \arg z < \pi \alpha$ $(0 < \alpha \le 2)$.
- 2.91. Отобразить на верхнюю полуплоскость следующие круговые луночки (двуугольники):
 - 1) |z| < 1, |z i| < 1; 2) |z| < 1, |z i| > 1;
 - 3) |z| > 1, |z i| < 1; 4) |z| > 1, |z i| > 1;
 - 5) |z| > 2, $|z \sqrt{2}| < \sqrt{2}$.

В задачах 2.93-2.105 отобразить указанные области на верхнюю полуплоскость.

- **2.93.** Плоскость с разрезом по отрезку [-1, 1].
- **2.94.** Плоскость с разрезом по отрезку [-i,i].
- **2.95.** Плоскость с разрезом по отрезку $[z_1, z_2]$.
- **2.96.** Плоскость с разрезами по лучам $(-\infty, -R]$, $[R, \infty)$ (R > 0).

В аудитории: 2.86(1), 2.87(1,2), 2.90(1), 2.91(1), 2.93, 2.94

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 22. Интеграл от функции комплексной переменной Контрольные вопросы:

- 1. Определение интеграла от функции комплексной переменной
- 2. Свойства интеграла
- 3. Способы вычисления интеграла от функции комплексной переменной

Задачи:

- **3.63.** Вычислить интеграл $\int\limits_{C} |z| \, dz$ в случаях, когда кривая C является:
- 1. Прямолинейным отрезком, идущим из точки z=-i в точ-Ky z=i:
- 2. Полуокружностью |z|=1, $\operatorname{Re} z \geqslant 0$, идущей из точки z=-iв точку z=i.

25

- **3.64.** Вычислить интеграл $\int\limits_{|z|=1} |z-1| |dz|$. **3.65.** Вычислить интеграл $\int\limits_{z} z \sin z \, dz$, где C прямолинейный отрезок, идущий из точки z=0 в точку z=i.
- 3.84. Вычислить интегралы

1.
$$\int_{|z| < 1} \int_{|z| < 1} z^2 dx dy$$
. 2. $\int_{|z| < \rho} \int_{|z| < \rho} \frac{dx dy}{1 + z^2}$, $0 < \rho < 1$.

3.
$$\int_{\rho < |z-a| < r} \frac{dx \, dy}{z-a} \cdot 4. \int_{|z| < 1} z^m \bar{z}^n \, dx \, dy, \quad m, \ n = 0, 1, 2, \dots$$

В аудитории: 3.63(1), 3.65, 3.84(1,2)

На дом: остальные задачи из приведенных номеров Лабораторное

занятие 23. Интегральная формула Коши

Контрольные вопросы:

1. Теорема Коши

2. Формула Коши Задачи:

3.27. Вычислить интеграл $\int \frac{dz}{z^2 + 9}$, если:

- 1) точка 3i лежит внутри контура C, а точка -3i вне его; 2) точка -3i лежит внутри контура C, а точка 3i вне его; 3) точки $\pm 3i$ лежат внутри контура C.

3.28. Вычислить все возможные значения интеграла $\int \frac{dz}{z(z^2-1)}$ при различных положениях контура C. Предполагается, что контур C не проходит ни через одну из точек 0, 1 и -1.

10.23. С помощью интегральной формулы Коши вычислить интегралы (все окружности обходятся против часовой стрелки):

1.
$$\int_{|z+i|=3} \sin z \, \frac{dz}{z+i}. \quad 2. \int_{|z|=2} \frac{dz}{z^2+1}. \quad 3. \int_{|z|=2} \frac{e^z}{z^2-1} \, dz.$$
4.
$$\int_{|z|=4} \frac{\cos z}{z^2-\pi^2} \, dz. \quad 5. \int_{|z+1|=1} \frac{dz}{(1+z)(z-1)^3}. \quad 6. \int_{|z-i|=1} \frac{\cos z}{(z-i)^3} \, dz.$$

7.
$$\int_{\partial D} \frac{e^z dz}{z(1-z)^3}$$
 (D: a) $|z| < 1/2$; 6) $|z| < 3/2$; B) $|z-1| < 1/2$).

8.
$$\int_{|z|=r} \frac{dz}{(z-a)^n (z-b)} (|a| < r < |b|, n = 1, 2, ...).$$

В аудитории: 3.27(1), 3.28, 10.23(1-3). На дом: остальные задачи из приведенных номеров **Лабораторное занятие** 29. Разложение в ряд Лорана в окрестности точки z=a

- 1. Ряд Лорана
- 2. Методы разложения функций в ряды Задачи:

20.08. Следующие функции разложить в ряд Лорана по степеням z в кольце 1 < |z| < 2:

1.
$$\frac{1}{(z+1)(z-2)}$$
. 2. $\frac{z^4+1}{(z-1)(z+2)}$. 3. $\frac{z}{(z^2+1)(z+2)}$.

4.
$$\frac{1}{(z-1)^2(z+2)}$$
. 5. $\frac{1}{(z^2+1)(z^2-4)}$. 6. $\frac{1}{(z^2-1)^2(z^2+4)}$.

20.09. Следующие функции разложить в ряд Лорана по степеням z-a в кольце D (точка a и кольцо D указаны в скобках):

1.
$$\frac{1}{z(z-3)^2}$$
 $(a=1, D: 1 < |z-1| < 2)$.

2.
$$\frac{1}{(z^2-9)z^2}$$
 $(a=1, D: 1 < |z-1| < 2)$.

3.
$$\frac{z+i}{z^2}$$
 $(a=i, -i \in D)$. 4. $\frac{z^2-1}{z^2+1}$ $(a=1, 2i \in D)$.

5.
$$\frac{1}{z(z-1)(z-2)}$$
 $(a=0, -\frac{3}{2} \in D)$. 6. $\frac{2z}{z^2-2i}$ $(a=1, -1 \in D)$.

7.
$$\frac{z^3}{(z+1)(z-2)}$$
 $(a=-1, D: 0 < |z+1| < 3)$.

8.
$$\frac{1}{(z^2-1)(z^2+4)}$$
 $(a=0, D: |z|>2)$.

В аудитории: 20.08 (1, 3), 20.09 (1, 2,3,8)

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 30. Вычеты в однократных полюсах Контрольные

вопросы:

- 1. Определение вычета
- 2. Вычет на бесконечности Задачи:

В задачах 4.23-4.58 найти особые точки функций, выяснить их характер и исследовать поведение функций на бесконечности 1).

4.23.
$$\frac{1}{z-z^3}$$
. 4.24. $\frac{z^4}{1+z^4}$. 4.25. $\frac{z^5}{(1-z)^2}$. 4.26. $\frac{1}{z(z^2+4)^2}$.

4.27.
$$\frac{e^z}{1+z^2}$$
. **4.28.** $\frac{z^2+1}{e^z}$. **4.29.** ze^{-z} . **4.30.** $\frac{1}{e^z-1}-\frac{1}{z}$.

4.31.
$$\frac{e^z}{z(1-e^{-z})}$$
. **4.32.** $\frac{1-e^z}{2+e^z}$. **4.33.** $\frac{1}{z^3(2-\cos z)}$. **4.34.** th z.

В задачах 4.79-4.99 требуется найти вычеты указанных функций

4.79.
$$\frac{1}{z^3-z^5}$$
. 4.80. $\frac{z^2}{(z^2+1)^2}$. 4.81. $\frac{z^{2n}}{(1+z)^n}$ (n — натуральное число). 4.82. $\frac{1}{z(1-z^2)}$. 4.83. $\frac{z^2+z-1}{z^2(z-1)}$. 4.84. $\frac{\sin 2z}{(z+1)^3}$. 4.85. $\frac{e^z}{z^2(z^2+9)}$. 4.86. $\lg z$. 4.87. $\frac{1}{\sin z}$. 4.88. $\operatorname{ctg}^2 z$. 4.89. $\operatorname{ctg}^3 z$. 4.90. 1) $\cos \frac{1}{z-2}$; 2) $z^3 \cos \frac{1}{z-2}$. 4.91. $e^{z+1/z}$. 4.92. $\sin z \sin \frac{1}{z}$. 4.93. $\sin \frac{z}{z+1}$. 4.94. $\cos \frac{z^2+4z-1}{z+3}$. 4.95. $\frac{1}{z(1-e^{-hz})}$ ($h \neq 0$). 4.96. $z^n \sin \frac{1}{z}$ (n — целое число). 4.97. $\frac{1}{\sin(1/z)}$. 4.98. $\frac{\sqrt{z}}{\sin\sqrt{z}}$.

В аудитории: 4.23-4.34

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 33. Вычисление интегралов по замкнутому контуру при помощи теории вычетов

Контрольные вопросы:

1. Теорем о вычетах Задачи:

В задачах 4.115-4.124 вычислить интегралы, считая, что обход замкнутых контуров происходит в положительном направлении.

4.115.
$$\int_C \frac{dz}{z^4+1}, \text{ где } C \longrightarrow \text{ окружность } x^2+y^2=2x.$$
4.116.
$$\int_C \frac{z\,dz}{(z-1)(z-2)^2}, \text{ где } C \longrightarrow \text{ окружность } |z-2|=\frac{1}{2}.$$
4.117.
$$\int_C \frac{dz}{(z-3)(z^5-1)}, \text{ где } C \longrightarrow \text{ окружность } |z|=2.$$
4.118.
$$\int_C \frac{z^3\,dz}{2z^4+1}, \text{ где } C \longrightarrow \text{ окружность } |z|=1.$$
4.119.
$$\int_C \frac{e^z}{z^2(z^2-9)}\,dz, \text{ где } C \longrightarrow \text{ окружность } |z|=1.$$
4.120.
$$\frac{1}{2\pi i}\int_C \sin\frac{1}{z}\,dz, \text{ где } C \longrightarrow \text{ окружность } |z|=r.$$
4.121.
$$\frac{1}{2\pi i}\int_C \sin^2\frac{1}{z}\,dz, \text{ где } C \longrightarrow \text{ окружность } |z|=r.$$
4.122.
$$\frac{1}{2\pi i}\int_C z^n e^{2/z}\,dz, \text{ где } n \longrightarrow \text{ целое число, a } C \longrightarrow \text{ окружность } |z|=r.$$
4.123.
$$\int_C (1+z+z^2)(e^{1/z}+e^{1/(z-1)}+e^{1/(z-2)})dz.$$

В аудитории: 4.115-4.120

На дом: остальные задачи из приведенных номеров

Контрольные вопросы:

1. Методы приведения интегралов к контурным в комплексной плоскости Задачи:

В задачах 4.131—4.138 найти определенные интегралы. В случае, если интеграл несобственный и расходится, найти его главное значение (если оно существует).

4.131.
$$\int\limits_0^{2\pi} \frac{d\varphi}{a+\cos\varphi} \; (a>1).$$
 Указание. Положить $e^{i\varphi}=z.$

4.132.
$$\int_{0}^{2\pi} \frac{d\varphi}{(a+b\cos\varphi)^2} \ (a>b>0).$$

4.133.
$$\int_{0}^{2\pi} \frac{d\varphi}{(a+b\cos^{2}\varphi)^{2}} \ (a>0, \ b>0).$$

4.134.
$$\int_{0}^{2\pi} \frac{d\varphi}{1 - 2a\cos\varphi + a^2}$$
 (a — комплексное число и $a \neq \pm 1$).

4.135.
$$\int\limits_0^{2\pi} \frac{\cos^2 3\varphi \, d\varphi}{1 - 2a\cos \varphi + a^2} \; (a$$
 — комплексное число и $a \neq \pm 1).$

4.136.
$$\int\limits_{0}^{2\pi}e^{\cos\varphi}\cos\left(n\varphi-\sin\varphi\right)d\varphi\ (n$$
 — целое число).

4.137.
$$\int\limits_0^\pi {\mathop{\rm tg}} \left({x + ia} \right) dx$$
 (a — действительное число).

4.138.
$$\int_{0}^{2\pi} \cot(x+a) dx$$
 (а — комплексное число и $\text{Im } a \neq 0$).

В аудитории: 4.131-4. 135

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 35. Вычисление интегралов вида $\int_{-\infty}^{\infty} f(x) dx$ Контрольные вопросы:

1. Замыкание контура в комплексную плоскость Задачи:

4.140.
$$\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 4x + 13)^2}.$$
 4.141.
$$\int_{0}^{\infty} \frac{x^2 \, dx}{(x^2 + a^2)^2} \ (a > 0).$$

4.142.
$$\int_{0}^{\infty} \frac{dx}{(x^2+1)^n}$$
 (n — натуральное число).

4.143.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \ (a > 0, b > 0). \quad \textbf{4.144.} \int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1} \ dx.$$

4.145.
$$\int_{0}^{\infty} \frac{dx}{1+x^{n}}$$
 ($n \ge 2$ — натуральное число).

4.154.
$$\int_{-\infty}^{\infty} \frac{e^{itx}}{x} dx.$$
 4.155.
$$\int_{-\infty}^{\infty} \frac{x \cos x dx}{x^2 - 5x + 6}.$$

4.156.
$$\int_{-\infty}^{\infty} \frac{\sin x \, dx}{(x^2+4)(x-1)}.$$
 4.157.
$$\int_{-\infty}^{\infty} \frac{\cos tx}{1+x^3} \, dx.$$
 4.158.
$$\int_{-\infty}^{\infty} \frac{\cos tx}{1-x^4} \, dx.$$

В аудитории: 4.140-4. 143

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 35. Вычисление интегралов вида $\int_{-\infty}^{\infty} f(x) dx$ Контрольные вопросы:

1. Замыкание контура в комплексную плоскость и Лемма Жорадана

4.149. 1)
$$\int_{-\infty}^{\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}$$
; 2) $\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 - 2x + 10}$.

4.150.
$$\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 + 4x + 20}.$$

4.151.
$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + b^2} dx$$
 (a и b — положительные числа).

28.07. Вычислить интегралы:

1.
$$\int_{-\infty}^{\infty} \frac{(x+1)\sin 2x}{x^2+2x+2} \, dx.$$

$$2. \int_{-\infty}^{\infty} \frac{x^3 \sin x}{x^4 + 5x^2 + 4} dx.$$

3.
$$\int_{-\infty}^{\infty} \frac{(x^3 + 5x) \sin x}{x^4 + 10x^2 + 9} dx$$

1.
$$\int_{-\infty}^{\infty} \frac{(x+1)\sin 2x}{x^2 + 2x + 2} dx.$$
2.
$$\int_{-\infty}^{\infty} \frac{x^3 \sin x}{x^4 + 5x^2 + 4} dx.$$
3.
$$\int_{-\infty}^{\infty} \frac{(x^3 + 5x)\sin x}{x^4 + 10x^2 + 9} dx.$$
4.
$$\int_{-\infty}^{\infty} \frac{(2x^3 + 13x)}{x^4 + 13x^2 + 36} \sin x dx.$$

5.
$$\int_{-\infty}^{\infty} \frac{(x-1)\cos 2x}{x^2-4x+5} dx.$$
 6.
$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2+2x+10} dx.$$

$$6. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2x + 10} dx$$

В аудитории: 4.149-4.150

На дом: остальные задачи из приведенных номеров

Лабораторное занятие 37. Собственные интегралы, зависящие от параметра Контрольные вопросы:

- 1. Определение интеграла, зависящего от параметра
- 2. Особенности интегрирования интегралов, зависящих от параметра

Задачи:

Используется учебник [5], §13

В аудитории: 13(1), 14(1), 18(1,2) На дом: 13,14,18 (др. задачи)

Лабораторное занятие 38. Г-функция и В-функци

Контрольные вопросы:

- 1. Определение и свойства Г-функция
- 2. Определение и свойства В -функция

Задачи:

Используется учебник [5], §15

В аудитории: 5(1-3), 6(1), 15(1,2), 16(1,2)

На дом: 5(3,4), 6(2-3), 15(3,4)

Лабораторное занятие 39. Несобственные интегралы, зависящие от параметра и равномерная сходимость интегралов

Контрольные вопросы:

- 1. Определение несобственного интеграла, зависящего от параметра
- 2. Равномерная сходимость интегралов, зависящих от параметра

Задачи:

Используется учебник [5],

В аудитории: §14 1(1,2,6), 2(1,2), §16: 6(1-3), 13(1-2)

На дом: Остальные номера из приведенного списка

Лабораторное занятие 40. Интегральное преобразование Лапласа и Фурье **Контрольные вопросы:**

- 1. Определение и свойства интегрального преобразования Лапласа
- 2. Определение и свойства интегрального преобразования Фурье

Задачи:

Используется учебник [5]

В аудитории: §17: 1(1,2), 2(1,2), 5(1), 6(1), 17(1),

Дополнительное задание: выполнить обратное преобразование с помощью теории вычетов. На

дом: Остальные номера из приведенного списка

Образцы вопросов к коллоквиуму Перечень компетенций (части компетенции), проверяемых оценочным средством: ОПК-1.

- 1. Скалярные и векторные поля, их характеристики..
- 2. Поток векторного поля.
- 3. Поток векторного поля через замкнутую поверхность.
- 4. Формула Гаусса-Остроградского.
- 5. Дивергенция векторного поля. Расчетная формула. Формула Гаусса-Остроградского в терминах теории поля. Основные свойства дивергенции.
- 6. Физический смысл криволинейного интеграла второго рода.
- 7. Циркуляция векторного поля. Понятие, физический смысл. Расчетная формула.
- 8. Ротор векторного поля. Понятие. Расчетная формула. Пример поля с постоянной завихренностью.
- 9. Формула Стокса. Теорема в развернутом виде. Формулировка в терминах теории поля.
- 10. Интегралы, зависящие от параметра. Понятие.
- 11. Понятие равномерной сходимости и предельной функции. Критерий Коши.
- 12. Теорема о предельном переходе под знаком собственного интеграла, зависящего от параметра.
- 13. Теорема о непрерывности собственного интеграла, зависящего от параметра.
- 14. Теорема о дифференцировании собственного интеграла, зависящего от параметра.
- 15. Теорема об интегрировании собственного интеграла, зависящего от параметра.
- 16. Несобственный интеграл, зависящий от параметра. Равномерная сходимость. Понятие, примеры
- 17. Достаточные условия равномерной сходимости несобственного интеграла, зависящего от параметра. (Вейерштрасса, Абеля, Дирихле)
- 18. Теорема о предельном переходе под знаком интеграла для несобственных интегралов, зависящих от параметра.
- 19. Теорема о непрерывности несобственного интеграла, зависящего от параметра.
- 20. Теорема об изменении порядка интегрирования для несобственного интеграла, зависящего от параметра. 21. В-функция, её свойства.
- 22. Г-функция, её свойства
- 23.Связь между Г-функцией и В-функцией.
- 24. Понятие комплексного числа. Операции над комплексными числами.
- 25. Операции возведения в степень и извлечения корня п-й степени из комплексного числа
- 26. Предел последовательности комплексных чисел.
- 27. Неограниченно возрастающие последовательности. Бесконечно удаленная точка.
- 28. Множества в С.
- 29. Функции комплексной переменной. Основные понятия.
- 30. Предел функции комплексной переменной.
- 31. Непрерывность функции комплексной переменной.
- 32. Дифференцируемость функции комплексной переменной. Условие Коши-Римана.
- 33. Геометрический смысл производной функции комплексной переменной. 34.

Функция $w = \frac{1}{2}$.

35. Функция w = az + b.

36. Функции $w=z^n$, $w=\sqrt[n]{z}$.

4.1.2 Образцы заданий для контрольных и самостоятельных работ. Перечень компетенций (части компетенции), проверяемых оценочным средством: ПК-2.

- 1. Найти поток векторного поля $\overline{a} = 9z \cdot \overline{i} + 7xy \cdot \overline{j} xz \cdot \overline{k}$ через замкнутую $\begin{cases} x^2 + y^2 = 9 \\ z = 1, z = 3 \end{cases}$ (нормаль внешняя), используя формулу Гаусса-Остроградского и выбрав сторону поверхности, найти непосредственно поток через поверхность $Si: x^2 + y^2 = 9$, являющуюся частью поверхности $Si: x^2 + y^2 = 9$
- 2.. Вычислить по формуле Стокса и непосредственно циркуляцию векторного

поля $\bar{a} = (y-x) \cdot \bar{i} + (y-x) \cdot \bar{j} + (2-z) \cdot \bar{k}$ вдоль контура Γ : $\begin{cases} x^2 + y^2 + z^2 = 25 \\ z = 9 \end{cases}$, указав на чертеже направление обхода.

- 3. Доказать потенциальность заданного векторного поля и найти его потенциал, используя $\bar{a} = \left(y^2z\cos xz\right)\cdot\bar{i} + 2y\sin xz\cdot\bar{j} + \left(xy^2\cos xz + 2\right)\cdot\bar{k}$ криволинейный интеграл:
- 4. Найти модуль и аргумент комплексного числа $\mathbf{z} \stackrel{\int}{=} \mathbf{z} \stackrel{\int}{=} \mathbf{i} \ \mathbf{6}$. Записать это число в тригонометрической форме и в показательной форме.
- 5. Решить уравнение $2\Box z^3\Box\Box\Box 1^i$ и изобразить на комплексной плоскости его корни.
- 6. Пусть z^0 \Box 1 i . Найти пересечение множеств заданных неравенствами: z^0 $\Box_0 z_0$, Rez \Box Rez $_0$.

9. Найти образы областей: $D_1 \square \square Z_z : \square 1 \square$, $D_2 \square \square Z : \operatorname{Rez} \square \square 2 \square$ при отображении $w \square z \square 1$
10. Найти образ области D \square :Im z z \square 0 , z \square \square 4 i 1 \square при отображении w \square z \square 3 i .
$D\square\square$:Rez $z\square\square 2$, Imz \square 2 \square при отображении $^{w}\square$ z $\square 2^i$.
11. Найти образ области D \square \square :Rez z \square 4 , Imz \square -2 \square при отображении
12. Найти образ области $w \square \square \square \square z$ 4 2 4 $2ii$ (считая, что $1 1 \square$).
$\sqrt{i\Box z}$ $\sqrt{i\Box z}$ $D\Box\Box$:Re $z=z\Box 0$, Im $z\Box 0$ \Box при отображении $v\Box i\Box z$
рыы .кед ды о , пп ды о ы при отооражении 13. Найти образ области
$$ (считая, что 1 1 \square). $D\square\square$:Rez $z\square\square\square\square\square$ 1, 1 Im $z\square 0$ \square при отображении $w \ e\square$
14. Найти образ области
d□ 15. Используя интегральную формулу Коши, □ □вычи2□Зслить интеграл
00102
$f_z \square \square \square __$
16. Разложить функцию $1^{\Box z}$ в ряд:
а). по неотрицательным степеням $^{\mathcal{Z}}$;
в).по отрицательным степеням $^{\mathcal{Z}}$.
Определить область сходимости полученного ряда. $fz \square \square \square 1 $
17. Разложить функцию $z \square 1 z \square 3^i$ в ряд по степеням z в области:
а).содержащей точку $z \square^0$;

с). содержащей точку $z \square \square 2$.
Определить область сходимости полученного ряда.
$fz\Box \Box\Box\Box z\Box 1\Box z \exp\Box\Box = z1\Box$
18. Найти особые точки функции 🔲 🖺 🖺 🗎 🗎 , определить их тип и
вычислить вычеты в этих точках.
fz \square \square \square \square \square \square \square \square
$\square_{Z}\square 1 \square \square_{Z}\square 3i\square$ 19. Вычислить вычеты функции во всех особых точках (включая
точку z □□).
20. Используя вычеты, вычислить интеграл \square
21. Вычислить интеграл □ x□1 □2dx □
□ _{x2□4} □ .
22. Вычислить интеграл □ xsinx □2 dx
$ \square_{\mathbf{x}2} \square 4 \square . $
23. Исследовать на сходимость интеграл на множествах E_1 и E_2 1) $\int_0^\infty e^{-(x-a)^2} dx$, $E_1=[0;$

в). содержащей точку z \Box \Box ;

1], $E_2=(0; \infty)$.

2)
$$\int_{1}^{\infty} \ln_{x} x^{ax} \sin x dx$$
, $E_1 = [0; 1], E_2 = [1; \infty)$

24. Доказать непрерывность функции F(a) на множестве E

1)
$$F(a) = \int 0^{\infty} \frac{1}{|\sin^{e} - x^{i}|} dx, \quad E = (0; 1);$$

2)
$$F(a) = \int_0^{\pi} a^{\sin(\pi - x_x)a} dx$$
, $E = (0; 2)$.

25. Вычислить с помощью эйлеровых интегралов:

26. Найти производную от несобственного интеграла по параметру а:

1)
$$\int_{1}^{\infty} \frac{1}{\sin ax} x_2 dx$$
; 2) $\int_{0}^{\infty} \frac{1-\cos ax}{\cos ax} - x e^{-ax} dx$; 4) $\int_{0}^{\infty} e^{-ax^2} \cos x dx$.

27. Доказать равномерную сходимость интегралов при $a \in E$:

1)
$$\int_{2}^{\infty} \int_{1}^{\infty} \int_{0}^{\infty} e^{-ax^{2}} dx$$
, $E=[2;\infty)$; 2) $\int_{0}^{\infty} e^{-ax^{2}} dx$, $E=[1;\infty)$;

3)
$$\int \frac{\ln x}{2^{\infty} x^{2} + a^{2} 2 dx}$$
, $E = (-\infty; \infty)$; 4) $\int_{0}^{\infty} \frac{x dx}{1 + (x - a)^{6}}$, $E = (-\infty; 1)$.

Примерный перечень вопросов для подготовки к экзамену.

Перечень компетенций (части компетенции), проверяемых оценочным средством: ОПК-1, ПК-1.

- 1.Скалярные и векторные поля, их характеристики..
- 2.Поток векторного поля.
- 3. Поток векторного поля через замкнутую поверхность.
- 4. Формула Гаусса-Остроградского.
- 5. Дивергенция векторного поля. Расчетная формула. Формула Гаусса-Остроградского в терминах теории поля. Основные свойства дивергенции.
- 6. Физический смысл криволинейного интеграла второго рода.
- 7. Циркуляция векторного поля. Понятие, физический смысл. Расчетная формула.
- 8. Ротор векторного поля. Понятие. Расчетная формула. Пример поля с постоянной завихренностью.
- 10. Формула Стокса. Теорема в развернутом виде. Формулировка в терминах теории поля.
- 10. Интегралы, зависящие от параметра. Понятие.
- 11. Понятие равномерной сходимости и предельной функции. Критерий Коши.
- 12. Теорема о предельном переходе под знаком собственного интеграла, зависящего от параметра.
 - 13. Теорема о непрерывности собственного интеграла, зависящего от параметра.

- 14. Теорема о дифференцировании собственного интеграла, зависящего от параметра.
- 15. Теорема об интегрировании собственного интеграла, зависящего от параметра.
- 16. Несобственный интеграл, зависящий от параметра. Равномерная сходимость.

Понятие, примеры

- 17. Достаточные условия равномерной сходимости несобственного интеграла, зависящего от параметра. (Вейерштрасса, Абеля, Дирихле)
- 18. Теорема о предельном переходе под знаком интеграла для несобственных интегралов, зависящих от параметра.
- 19. Теорема о непрерывности несобственного интеграла, зависящего от параметра.
- 20. Теорема об изменении порядка интегрирования для несобственного интеграла, зависящего от параметра. 21. В-функция, её свойства.
- 22. Г-функция, её свойства
- 23.Связь между Г-функцией и В-функцией.
- 24. Понятие комплексного числа. Операции над комплексными числами.
- 25. Операции возведения в степень и извлечения корня п-й степени из комплексного числа
- 26. Предел последовательности комплексных чисел.
- 27. Неограниченно возрастающие последовательности. Бесконечно удаленная точка.
- 28. Множества в С.
- 29. Функции комплексной переменной. Основные понятия.
- 30. Предел функции комплексной переменной.
- 31. Непрерывность функции комплексной переменной.
- 32. Дифференцируемость функции комплексной переменной. Условие Коши-Римана.
- 33. Геометрический смысл производной функции комплексной переменной. 34. Функция $w = \frac{1}{2}$.

7

- 35. Функция w = az + b.
- 36. Функции $w=z^n$, $w=\sqrt[n]{z}$.
- 37. Дробно-линейная функция.
- 38. Теорема об определении дробно-линейной функции тремя парами точек.
- 39. Круговое свойство дробно-линейной функции.
- 40. Теорема о симметричных точках для дробно-линейной функции.
- 41. Показательная и логарифмическая функции.
- 42. Функция Жуковского.
- 43. Трансцедентные функции.
- 44 Понятие интеграла в С. Существование. Основные свойства.
- 45. Вычисление интеграла от функции комплексной переменной.
- 46. Теорема Коши для односвязной области.
- 47. Теорема Коши для многосвязной области.
- 48. Неопределенный интеграл от функции комплексной переменной. Аналитичность неопределенного интеграла. Первообразная.
- 49. Интегральная формула Коши. Теорема о среднем.
- 50. Производные высших порядков для аналитических функций.
- 51. Теорема Морера.
- 52. Понятие функционального ряда. Сходимость. Равномерная сходимость. Признаки Коши и Вейерштрасса равномерной сходимости ряда.
- 53. Теорема о непрерывности суммы равномерно сходящегося ряда.
- 54. Теорема о почленном интегрировании почленно сходящегося ряда.
- 55. Теорема о почленном дифференцировании равномерно сходящегося ряда.

- 56. Степенные ряды. Теорема Абеля.
- 57. Следствия из теоремы Абеля.
- 58. Ряд Тейлора. Теорема Тейлора.
- 59. Нули аналитической функции. Теорема единственности.
- 60. Принцип максимума модуля.
- 61. Ряд Лорана. Область сходимости ряда Лорана.
- 62. Теорема об однозначном представлении аналитической функции рядом Лорана.
- 63. Изолированные особые точки аналитической функции. Их классификация.
- 64. Поведение аналитической функции в окрестности изолированных особых точек.
- 65. Определение вычета аналитической функции в изолированной особой точке. Расчетные формулы для вычета в полюсе.
- 66. Основная теорема теории вычетов.
- 67. Вычет аналитической функции в бесконечно удаленной точке. Теорема о сумме всех вычетов. Следствие из нее.
- 68. Вычисление интегралов вида $\int_0^{2\pi} R(\cos\varphi,\sin\varphi)\,d\varphi$
- 69. Вычисление интегралов вида $\int_{-\infty}^{\infty} f(x) dx$.
- 70. Лемма Жордана. Вычисление интегралов вида $\int_{-\infty}^{\infty} e^{iax} f(x) dx$.

Критерии оценивания результатов обучения

Зачет по практике выставляется по результатам выполненных контрольных работ, индивидуальных заданий и текущей работы на лабораторных занятиях. Отметка «зачтено» выставляется при более, чем 60% выполнении индивидуальных заданий.

Оценка	Критерии оценивания на экзамене		
отлично	 систематизированные, глубокие и полные знания по 		
	всем разделам дисциплины, а также по основным вопросам,		
	выходящим за пределы учебной программы;		
	– точное использование научной		
	терминологии систематически грамотное и логически		
	правильное изложение ответа на вопросы;		
	 безупречное владение инструментарием 		
	учебной дисциплины, умение его эффективно использовать в		
	постановке научных и практических задач;		
	 выраженная способность самостоятельно и творчески 		
	решать сложные проблемы и нестандартные ситуации;		
	 полное и глубокое усвоение основной и 		
	дополнительной литературы, рекомендованной учебной программой		
	по дисциплине;		
	 умение ориентироваться в теориях, 		
	концепциях и направлениях дисциплины и давать им		
	критическую оценку, используя научные достижения других		
	дисциплин;		
	-творческая самостоятельная работа на		
	практических/семинарских/лабораторных занятиях, активное		

	участие в групповых обсуждениях, высокий уровень культуры исполнения заданий; — высокий уровень сформированности заявленных в рабочей программе компетенций.
хорошо	 достаточно полные и систематизированные знания по дисциплине; умение ориентироваться в основном теориях, концепциях и направлениях дисциплины и давать им критическую оценку; использование научной терминологии, лингвистически и логически правильное изложение ответа на вопросы, умение делать обоснованные выводы; владение инструментарием по дисциплине, умение его использовать в постановке и решении научных и профессиональных задач; усвоение основной и дополнительной литературы, рекомендованной учебной программой по дисциплине; самостоятельная работа на практических занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий; средний уровень сформированности заявленных в рабочей программе компетенций.

удовлетворител	 достаточный минимальный объем знаний по 			
ьно	дисциплине;			
	 усвоение основной литературы, рекомендованной 			
	учебной программой;			
	 умение ориентироваться в основных теориях, 			
	концепциях и направлениях по дисциплине и давать им оценку;			
	 использование научной терминологии, стилистическое 			
	и логическое изложение ответа на вопросы, умение делать выводы без			
	существенных ошибок;			
	 владение инструментарием учебной дисциплины, 			
	умение его использовать в решении типовых задач;			
	– умение под руководством			
	преподавателя решать стандартные задачи;			
	 работа под руководством преподавателя на 			
	практических занятиях, допустимый уровень культуры исполнения			
	заданий;			
	 достаточный минимальный уровень сформированности 			
	заявленных в рабочей программе компетенций.			
неудовлетворит	фрагментарные знания по дисциплине;			
ельно	 отказ от ответа (выполнения письменной 			
	работы);			
	знание отдельных источников,			
	рекомендованных учебной программой по дисциплине;			
	 неумение использовать научную терминологию; 			
	наличие грубых ошибок;			
	 низкий уровень культуры исполнения заданий; 			
	-низкий уровень сформированности заявленных в рабочей			
	программе компетенций.			

Для успешного выполнения лабораторной работы обучающемуся следует ознакомиться с теоретической частью дисциплины по теме лабораторной работы, изложенной в лекциях. Для углубленного понимания теоретического материала могут быть использованы источники, указанные в списке основной литературы [1-8].

Критерием должной подготовки студентов к выполнению лабораторных работ являются приобретенные знания, позволяющие безошибочно ответить на вопросы, сформулированные по каждой теме лабораторных работ. Для приобретения должных навыков к решению задач предполагается решение задач на лабораторных занятиях в учебных аудиториях под руководством преподавателя. Закрепление приобретенных навыков осуществляется внеаудиторным самостоятельным решением студентом задач. Номера задач для решения в аудитории и дома указаны к каждой лабораторной работе.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

в печатной форме увеличенным шрифтом, – в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Учебная литература

- 1. Далингер, Виктор Алексеевич. Комплексный анализ : учебное пособие для вузов / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. Москва : Юрайт, 2022. 143 с. (Высшее образование). URL: https://urait.ru/bcode/492726 (дата обращения: 08.09.2022). Режим доступа: для авториз. пользователей. ISBN 978-5-534-08399-6. Текст : электронный.
- 2. Привалов, Иван Иванович. Введение в теорию функций комплексного переменного : учебник для вузов / И. И. Привалов. Москва : Юрайт, 2022. 402 с. (Высшее образование). URL: https://urait.ru/bcode/490112 (дата обращения: 13.09.2022). Режим доступа: для авториз. пользователей. ISBN 978-5-534-01450-1. Текст : электронный.
- 3. Исаченко, Н. А. Комплексный анализ в примерах и упражнениях: интегралы и вычеты : учебное пособие : [16+] / Н. А. Исаченко ; Омский государственный университет им. Ф. М. Достоевского. Омск : Омский государственный университет им. Ф.М. Достоевского (ОмГУ), 2019. 120 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=575792. Библиогр. в кн. ISBN 978-5-7779-2370-7. Текст : электронный.

5.2. Периодическая литература

<u>Вестник Санкт-Петербургского университета. Прикладная</u> математика. Информатика. Процессы управления. - URL: https://dlib.eastview.com/browse/publication/71227</u>

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

ЭБС «ЮРАЙТ» https://urait.ru/

ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/

ЭБС «BOOK.ru» https://www.book.ru

ЭБС «ZNANIUM.COM» www.znanium.com

ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

Scopus http://www.scopus.com/

ScienceDirect https://www.sciencedirect.com/

Журналы издательства Wiley https://onlinelibrary.wiley.com/

Научная электронная библиотека (НЭБ) http://www.elibrary.ru/

Полнотекстовые архивы ведущих западных научных журналов на Российской

платформе научных журналов НЭИКОН http://archive.neicon.ru

Springer Journals: https://link.springer.com/

Springer Journals Archive: https://link.springer.com/

Nature Journals: https://www.nature.com/ Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

Springer Materials: http://materials.springer.com/

Nano Database: https://nano.nature.com/

Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/

"Лекториум ТВ" http://www.lektorium.tv/

Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

Консультант Плюс

Ресурсы свободного доступа

КиберЛенинка http://cyberleninka.ru/;

Министерство науки и высшего образования Российской Федерации

https://www.minobrnauki.gov.ru/;

Федеральный портал "Российское образование" http://www.edu.ru/;

Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;

Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.

Проект Государственного института русского языка имени А.С. Пушкина

"Образование на русском" https://pushkininstitute.ru/;

Справочно-информационный портал "Русский язык" http://gramota.ru/;

Служба тематических толковых словарей http://www.glossary.ru/;

Словари и энциклопедии http://dic.academic.ru/;

Образовательный портал "Учеба" http://www.ucheba.com/;

Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273-84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web

Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6

Среда модульного динамического обучения http://moodle.kubsu.ru

База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/

Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru; Электронный архив документов КубГУ http://docspace.kubsu.ru/

Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, лабораторных занятий, позволяющих студентам в полной мере ознакомиться с понятиями и методами Комплексного анализа и навыками их применением в решении практических задач.

Важнейшим этапом является самостоятельная работа по дисциплине. Целью самостоятельной работы бакалавра является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

Самостоятельная работа студентов в ходе изучения дисциплины состоит в выполнении индивидуальных заданий, задаваемых преподавателем, ведущим лабораторные занятия, подготовки теоретического материала к лабораторным занятиям, на основе конспектов лекций и учебной литературы, согласно календарному плану и подготовки теоретического материала к тестовому опросу, зачету и экзамену, согласно вопросам к экзамену.

Указания по оформлению работ:

- работа на лабораторных занятиях и конспекты лекций могут выполняться на отдельных листах либо непосредственно в рабочей тетради;
 - оформление индивидуальных заданий желательно на отдельных листах.

Проверка индивидуальных заданий по темам, разобранным на лабораторных занятиях, осуществляется через неделю на текущем лабораторном занятии, либо в течение недели после этого занятия на консультации.

Для разъяснения непонятных вопросов лектором и ассистентом еженедельно проводятся консультации, о времени которых группы извещаются заранее.

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме

изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список задач и вопросов коллоквиума) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7 Материально-техническое обеспечение по дисциплине (модулю)

№	Наименование специальных помещений и помещений для самостоятельной работы	Номера аудиторий / кабинетов
1.	учебные аудитории для проведения занятий лекционного типа	501,502,503,505,506,507,508, 509, 510,513,514
2.	учебные аудитории для проведения занятий семинарского типа	501,502,503,505,506,507,508, 509, 510,513,514
3.	Компьютерные классы с выходом в Интернет	503,509,510
4.	учебные аудитории для выполнения научно — исследовательской работы (курсового проектирования)	Кабинет курсового проектирования (выполнения курсовых работ) - № 503, №509, № 510 Оборудование: мультимедийный проектор, экран, персональные компьютеры, учебная мебель, доска учебная, выход в Интернет, учебно-наглядные пособия (тематические иллюстрации), принтер, презентации на электронном носителе, сплитсистема
5.	учебные аудитории для самостоятельной работы, с рабочими местами, оснащенными компьютерной техникой с подключением к сети «Интернет» и обеспечением неограниченного	Кабинет для самостоятельной работы - № 504, № 509, №510 Оборудование: персональные компьютеры, учебная мебель,

	доступа в электронную информационно-образовательную среду организации для каждого	доска учебная, выход в Интернет
	обучающегося, в соответствии с объемом	
	изучаемых дисциплин	70 70 710
6.	Исследовательские лаборатории (центров),	Компьютерный класс № 510 :
	оснащенные лабораторным оборудованием	мультимедийный проектор,
		экран, персональные
		компьютеры, учебная мебель,
		доска учебная, выход в
		Интернет, наглядные пособия.
		Сетевое оборудование CISCO
		(маршрутизаторы, коммутаторы,
		19-ти дюймовый сетевой шкаф)
		сплит-система, стенд
		«Архитектура ПЭВМ»
7.	учебные аудитории групповых и индивидуальных	№508
	консультаций	Оборудование: персональный
		компьютер, учебная мебель,
		доска учебная, учебно-
		наглядные пособия
		(тематические иллюстрации),
		сканер, доска магнитно-
		маркерная, стеллажи с учебной и
		периодической литературой
8.	Помещение для хранения и профилактического	Помещение № 511, Помещение
	обслуживания учебного оборудования	№ 516, Помещение № 517,
		Помещение № 518
0		501 502 502 505 506 507 509
9.	учебные аудитории для проведения текущей и	501,502,503,505,506,507,508,
	промежуточной аттестации	509, 510,513,514