министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.12 МЕТОД БАЗИСНЫХ ПОТЕНЦИАЛОВ

Специальность 01.05.01 Фундаментальные математика и механика

Специализация «Вычислительная механика

и компьютерный инжиниринг»

Форма обучения очная

Квалификация Математик. Механик. Преподаватель

Рабочая программа дисциплины «Метод базисных потенциалов» составлена в соответствии с ФГОС ВО по специальности 01.05.01 Фундаментальные математика и механика (уровень высшего образования: специалитет).

Программу составил: доцент, канд физ. мат. цаук, Бунякин А. В.

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов, протокол N 10 от 18.04.2023.

Заведующий кафедрой математических и компьютерных методов Лежнев А. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук, протокол № 3 от 20.04.2023.

Председатель УМК факультета математики и компьютерных наук Шмалько С. П.

alf

Ahun

Рецензенты:

Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю. Г., доцент кафедры теоретической физики и компьютерных технологий Φ ГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины

1.1 Цель и задачи дисциплины

Цель дисциплины: «Метод базисных потенциалов» состоит в обучении применению современных математических методов для решения задач естествознания (физике, механике жидкости и газа, теории упругости), их технических приложений, так как математические модели, в которых решение находится разложением по базисным потенциалам, являются широко распространенными. Получение высшего образования, позволяющего выпускнику успешно работать в избранной сфере деятельности с применением современных математических методов.

1.2 Задачи дисциплины:

Ознакомление студентов с методологическими подходами, позволяющими строить адекватные математические модели в задачах естествознания, использовать математическое описание физических явлений; ознакомление с некоторыми широко распространенными моделями физики (в основном механики) и основными методами исследования этих моделей.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Метод базисных потенциалов» относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана. Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для решения исследовательских задач.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций.

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине			
	ОПК-2 Способен создавать, анализировать и реализовывать новые математические модели в современном естествознании, технике, экономике и управлении			
ОПК-2.1 — Знает математические модели стандартных задач в области профессио-	Знает основные понятия, методы и проблематику математического моделирования			
нальной деятельности	Умеет проводить выбор отношений и эффектов, учитываемых при составлении математических мо- делей			
	Владеет навыками проверки адекватности математических моделей			
ПК-1 — Способен формулировать и решати прикладной математики	ь актуальные и значимые задачи фундаментальной и			
ПК-1.1 – Знает основные понятия, идеи и методы фундаментальных математиче-	Знает основные понятия, методы и результаты теории базисных потенциалов			
ских дисциплин для решения базовых задач	Умеет численно решать типовые задачи, приводящие к методу базисных потенциалов в задачах естествознания			
	Владеет навыками применения методов базисных потенциалов в задачах естествознания			
ПК-1.2 – Умеет передавать результаты проведенных теоретических и приклад-	Знает основы методологии преподавания метода базисных потенциалов в задачах естествознания			

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
ных исследований в виде конкретных	Умеет систематизированно излагать основные поня-
предметных рекомендаций в терминах	тия и результаты метода базисных потенциалов в
предметной области	задачах естествознания
	Владеет навыками преподавания основ метода ба-
	зисных потенциалов
ПК-1.3 – Самостоятельно и корректно	Знает постановки классических задач, решаемых
решает стандартные задачи фундамен-	методом базисных потенциалов
тальной и прикладной математики	Умеет применять метод базисных потенциалов к
	практически возникающим задачам
	Владеет навыками решения подчинённых задач,
	возникающих в области базисных потенциалов
ПК-1.4 – Имеет навыки решения матема-	Знает о потенциальной эффективности применения
тических задач, соответствующих ква-	математических методов при проведении научных и
лификации, возникающих при проведе-	прикладных исследований
нии научных и прикладных исследова-	Умеет составлять задачи с учётом применимости
ний	метода базисных потенциалов
	Владеет навыками адаптации общего метода базис-
	ных потенциалов к особенностям постановок при-
	кладных задач

 Структура и содержание дисциплины
 Распределение трудоёмкости дисциплины по видам работ
 Общая трудоёмкость дисциплины составляет 2 зач. ед., их распределение по видам работ представлено в таблице.

Вид учебной работы		Всего		Сем	естры	
		часов		(ча	асы)	
Контактная работа, в т	ом числе:	34,2	34,2			
Аудиторные занятия (в	сего):	30	30			
Занятия лекционного тип	a	10	10	-	-	-
Лабораторные занятия		20	20	-	-	-
Иная контактная работ	a:	4,2	4,2			
Контроль самостоятельно	ой работы (КСР	4	4			
Промежуточная аттестац	ия (ИКР)	0,2	0,2			
Самостоятельная работ	а, в том числе:	37,8	37,8			
Проработка учебного (те	оретического) материала	10	10	-	-	-
Выполнение индивидуал		11	11	-	_	-
(подготовка сообщений,	презентации)	1.0	1.0			
Реферат		10	10	-	-	-
Контроль:		_	_			
Подготовка к зачёту	6,8	6,8				
Общая трудоемкость	час.	72	72	•	-	-
	в том числе контактная работа	34,2	34,2			
	зач. ед	2	2			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

No				Количес	тво час	ОВ
pas-	Наименование разделов		Аудиторная			Самостоятельная
дела	тинителериние ризденер	Всего		работа	r	работа
дола			Л	ЛР	П3	
	Задачи естествознания.					
1	Математическое моделирование физических процессов. Задачи математической физики (задача распространения тепла, задачи колебаний струны или мембраны).	16	2	4	_	10
2	Элементы теории потенциала. Полные системы потенциалов. Постановка краевых задач. Алгоритмы решения задач математической физики.	25	4	8	_	13
3	Моделирование физических процессов. Стационарные и нестационарные процессы. Типы дифференциальных уравнений в частных производных второго порядка и специфика методов, применяемых для нахождения множеств их решений.	26,8	4	8	_	14,8
	Итого по дисциплине:		10	20		37,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1	Задачи естествознания. Математическое моделирование физических процессов. Задачи математической физики (задача распространения тепла, задачи колебаний струны или мембраны).	 Математическая физика. Постановка краевых задач. Существование и единственность решения. Корректность и некорректность. Обратные задачи. Классификация дифференциальных уравнений в частных производных. Уравнение теплопроводности и волновое уравнение. Стационарные процессы и эллиптические уравнения. 	Опрос
2	потенциала. Полные системы потенциалов. Постановка краевых задач. Алгоритмы задач	 1.1 Интегральные операторы теории потенциала. Фундаментальное решение уравнения Лапласа. 1.2 Потенциалы простого и двойного слоя, объемный потенциал. 1.3 Потенциал Робена. Интегральные операторы. 1.4 Представление функций потенциалами. Лемма Новикова. 	Опрос
3	Моделирование физических процессов. Стационарные и нестационарные про-	3.1 Полнота сдвигов фундаментального решения уравнения Лапласа в подпространстве гармонических функций. 3.2 Системы потенциалов полные на границе	Экзамен

цессы. Типы диффе-	области. Полнота модифицированных	
ренциальных урав-	систем, полученных из фундаментально-	
нений в частных	го решения.	
производных второго	3.3 Алгоритм задачи Робена. Внутренняя и	
порядка и специфика	внешняя задача Дирихле для уравнения	
методов, применяе-	Лапласа и Пуассона.	
мых для нахождения	3.4 Внутренняя задача и внешняя задача	
множеств их реше-	Неймана для уравнения Лапласа и урав-	
ний.	нения Пуассона. Бигармоническое урав-	
	нение.	
	3.5 Граничное управление температурой.	

2.3.2 Занятия семинарского типа УП не предусмотрены.

2.3.3 Лабораторные занятия

№ разд- дела	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
1	См. таблицу	Задачи математической физики (задача рас-	Опрос
	2.3.1	пространения тепла, задачи колебаний стру-	
		ны или мембраны).	
2 - 3	См. таблицу	Фундаментальное решение уравнения	Опрос
	2.3.1	Лапласа. Потенциалы простого и двойного	
		слоя, объемный потенциал. Фундаменталь-	
		ное решение уравнения теплопроводности.	
4	См. таблицу	Численные методы решения задач со стар-	Опрос
	2.3.1	шим оператором Лапласа, гиперболические	
		системы 2х2 первого порядка, задачи, сво-	
		дящиеся к бигармоническому уравнению.	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы УП не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа студентов по дисциплине включает следующие виды деятельности:

- проработку и анализ лекционного материала;
- изучение учебной литературы;
- поиск информации в сети Интернет по различным вопросам;
- решение задач по темам курса;
- работу с вопросами для самопроверки;
- подготовку к контрольной работе;
- подготовку к зачёту.

Перечень учебно-методического обеспечения дисциплины представлен в таблице.

№		Перечень учебно-методического обеспечения дисципли	
	работы	по выполнению самостоятельной работы	
1.	Подготовка к текуще-	Методические указания для подготовки к занятиям лекци-	
	му контролю	онного и семинарского типа. Утверждены на заседании	
		Совета факультета математики и компьютерных наук	
		ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.	
		-	

		Методические указания по выполнению самостоятельной работы обучающихся. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
		Методические указания по использованию интерактивных методов обучения. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.
		Методические указания по подготовке эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.
2.	Выполнение лабора- торных работ и рас- четно-графических заданий	Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
		Методические указания по выполнению расчетнографических заданий. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
3.	Подготовка и оформ- ление отчетов по практике	1. Методические указания по подготовке и оформлению отчета по практике. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.
4.	Выполнение и защита выпускной квалифи- кационной работы	1. Методические указания по выполнению и защите выпускной квалификационной работы (бакалавриат, магистратура, специалитет). Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла;
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме;
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии:

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Используемые интерактивные образовательные технологии:

Ce-	Вид занятия	Используемые интерактивные образовательные	Кол-во
мест		технологии	часов
p			
	Лабораторные	Дискуссия на тему: «Задачи математической физи-	6
9	занятия	ки (задача распространения тепла, задачи колеба-	
		ний струны или мембраны)»	
		Дискуссия на тему: «Фундаментальное решение	8
		уравнения Лапласа. Потенциалы простого и двой-	
		ного слоя, объемный потенциал. Фундаментальное	
		решение уравнения теплопроводности»	
		Дискуссия на тему: «Численные методы решения	8
		задач со старшим оператором Лапласа, гиперболи-	
		ческие системы 2х2 первого порядка, задачи, сво-	
		дящиеся к бигармоническому уравнению»	
Итог	Итого:		

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Контрольные вопросы (к зачету):

- 1. Задачи естествознания. Математическое моделирование физических процессов.
- 2. Математическая физика. Постановка краевых задач. Существование и единственность решения. Корректность и некорректность.
- 3. Обратные задачи. Классификация дифференциальных уравнений в частных производных.
- 4. Уравнение теплопроводности и волновое уравнение.
- 5. Стационарные процессы и эллиптические уравнения.
- 6. Элементы теории потенциала. Интегральные операторы теории потенциала
- 7. Фундаментальное решение уравнения Лапласа. Потенциалы простого и двойного слоя, объемный потенциал.
- 8. Потенциал Робена. Интегральные операторы.

Представление функций потенциалами. Лемма Новикова. Полные системы потенциалов

- 9. Полнота сдвигов фундаментального решения уравнения Лапласа в подпространстве гармонических функций.
- 10. Системы потенциалов полные на границе области. Полнота модифицированных систем, полученных из фундаментального решения.
- 11. Алгоритмы задач математической физики. Алгоритм задачи Робена.
- 12. Внутренняя и внешняя задача Дирихле для уравнения Лапласа и Пуассона.
- 13. Внутренняя задача и внешняя задача Неймана для уравнения Лапласа и уравнения Пуассона.
- 14. Граничное управление температурой. Бигармоническое уравнение.
- 15. Моделирование физических процессов. Задачи математической физики.
- 16. Примеры задач математической физики. Задача распространения тепла.

- 17. Задача колебаний струны или мембраны. Стационарные процессы.
- 18. Основные типы дифференциальных уравнений в частных производных второго порядка. Постановка краевых задач.
- 19. Алгоритмы расчета плоскопараллельных течений идеальной несжимаемой жидкости.
- 20. Алгоритмы решения задач об управлении температурой.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 5.1.1. Дзержинский, Р.И. Уравнения математической физики: курс лекций / Р.И. Дзержинский, В.А. Логинов; Министерство транспорта Российской Федерации, Московская государственная академия водного транспорта. Москва: Альтаир: МГАВТ, 2015. 67 с.: ил. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429675
- 5.1.2. Динамические системы и модели биологии / А.С. Братусь, А.С. Новожилов, А.П. Платонов. М.: ФИЗМАТЛИТ, 2010. 400 с.- ISBN 978-5-9221-1192-8, 600 экз. [Электронный ресурс]. URL http://znanium.com/catalog/product/397222 (06.04.2018).
- 5.1.3. Емельянов В.М. Уравнения математической физики. Практикум по решению задач: учеб. пособие / В.М. Емельянов, Е.А. Рыбакина. Электрон. дан. Санкт-Петербург: Лань, 2016. 216 с. ISBN 978-5-8114-0863-4 [Электронный ресурс]. URL: https://e.lanbook.com/book/71748 (06.04.2018).

5.2 Дополнительная литература:

- 1. Присекин, В.Л. Основы метода конечных элементов в механике деформируемых тел: учебник / В.Л. Присекин, Г.И. Расторгуев. НГТУ, 2009. 240 с. ISBN 978-5-7782-1287-9. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_red&id=436040
- 2. Александров, Д.В. Введение в гидродинамику: учебное пособие / Д.В. Александров, А.Ю. Зубарев, Л.Ю. Искакова. Екатеринбург: Издательство Уральского университета, 2012. 112 с. ISBN 978-5-7996-0785-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=239521
- 3. Митрофанова, О.В. Гидродинамика и теплообмен закрученных потоков в каналах ядерно-электрических установок / О.В. Митрофанова. Москва : Физматлит, 2010. 286 с. ISBN 978-5-9221-1223-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=68969

5.3. Периодические издания:

- 1. Bunyakin A.V., Chernyshenko S.I., Stepanov G.Yu. Invisid Batchelor model flow past an airfoil with a vortex trapped in a cavity // J.Fluid Mech. 1996. Vol. 323. P. 367 376. http://dx.doi.org/10.1017/S002211209600095X
- 2. Bunyakin A.V., Chernyshenko S.I., Stepanov G.Yu. High Reynolds number Prandtl Batchelor model flow past an aerofoil with a vortex trapped in a cavity // J.Fluid Mech. 1998. Vol. 358. P. 283 297. http://dx.doi.org/10.1017/S0022112097008203
- 3. Бунякин А.В. Ламинарный пограничный слой при обтекании крылового профиля с круговой выемкой // Изв. РАН Мех. жидк. и газа 1998. №2. С. 52 57.
- 4. Бунякин А.В. Вихревая ячейка с вращающимся внутри цилиндром на поверхности крылового профиля при больших числах Рейнольдса // Изв. РАН Мех. жидк. и газа. -2001. № 4. C. 87-92.

5. Sandoval M., Chernyshenko S. Extension of the Prandtl - Batchelor theorem to three-dimensional flows slowly varying in one direction // Journal of Fluid Mechanics 2010. V. 654. P. 351-361

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», *необходимых* для освоения дисциплины (модуля): Wikipedia

7. Методические указания для обучающихся по освоению дисциплины (модуля)

В процессе самостоятельной работы каждый обучающийся получает задания по каждому из трех разделов дисциплины (см. табл. 2.2), которые принимаются по согласованию с преподавателем (в специально назначаемое время).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения:

Лицензированные программы не используются, а только авторские.

8.2 Перечень необходимых информационных справочных систем: Wikipedia

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

Распределение видов материально-технического обеспечения по видам занятий представлено в таблице.

Наименование	Оснащенность	Перечень лицензионного
специальных помещений	специальных помещений	программного обеспечения
Учебные аудитории для про-	Мебель: учебная мебель.	средство подготовки презен-
ведения занятий лекционного	Технические средства обуче-	таций MS PowerPoint;
типа	ния: экран, проектор, компью-	математический пакет
(302Н, 303Н, 308Н, 309Н,	тер	MathCAD
505A, 507A)		
Учебные аудитории для про-	Мебель: учебная мебель.	Интернет-браузеры для про-
ведения лабораторных работ,	Технические средства обуче-	смотра сайтов в сети Интер-
групповых и индивидуальных	ния: экран, проектор, компью-	нет;

консультаций (301H, 309H, 316H, 320H)	тер с доступом к сети «Интернет» и в электронную информационно-образовательную	средство подготовки презентаций MS PowerPoint; математический пакет
	среду организации	MathCAD
Учебные аудитории для про-	Мебель: учебная мебель.	Математический пакет
ведения текущей и промежу-	Технические средства обуче-	MathCAD
точной аттестации	ния: экран, проектор, компью-	
(301Н, 302Н, 303Н, 307Н,	тер	
308Н, 308На, 309Н, 310Н,		
312H, 314H, 316H, 318H,		
320H)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений	Оснащенность помещений	Перечень лицензионного
для самостоятельной работы	для самостоятельной работы	программного обеспечения
обучающихся	обучающихся	
Помещение для самостоя-	Мебель: учебная мебель	Интернет-браузеры для про-
тельной работы обучающихся	Комплект специализирован-	смотра сайтов в сети Интер-
(читальный зал Научной биб-	ной мебели: компьютерные	нет;
лиотеки)	столы	средство подготовки презен-
	Оборудование: компьютерная	таций MS PowerPoint
	техника с подключением к	
	информационно-	
	коммуникационной сети «Ин-	
	тернет» и доступом в элек-	
	тронную информационно-	
	образовательную среду обра-	
	зовательной организации, веб-	
	камеры, коммуникационное	
	оборудование, обеспечиваю-	
	щее доступ к сети интернет	
	(проводное соединение и бес-	
	проводное соединение по тех-	
	нологии Wi-Fi)	
Помещение для самостоя-	Мебель: учебная мебель.	Интернет-браузеры для про-
тельной работы обучающихся	Подключение к информаци-	смотра сайтов в сети Интер-
(301Н, 302Н, 303Н, 307Н,	онно-коммуникационной сети	нет;
308H, 308Ha, 309H, 310H,	«Интернет» и доступом в	средство подготовки презен-
312H, 314H, 316H, 318H,	электронную информационно-	таций MS PowerPoint
320H)	образовательную среду обра-	
	зовательной организации	