министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:
Проректор по учебной работе качеству образования— первый проректор

Т.А. Хатуров

подпись

« 26 » май 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.04.02 ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ

Направление

подготовки/специальность

02.04.01 Математика и компьютерные

науки

Направленность (профиль) /

специализация

Вычислительная математика

Форма обучения

Очная

Квалификация

Магистр

Краснодар 2023

Рабочая программа дисциплины Б1.В.ДВ.04.02 Экстремальные задачи в графах составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.01 Математика и компьютерные науки

Программу составил(и):

О.В. Иванисова, доц. кафедры вычислительной математин	
канд. физмат. н.	Elane -
SO 100	Поличен

И.В. Сухан, ст. препод. кафедры вычислительной математики и информатики

подпись

Рабочая программа дисциплины Б1.В.ДВ.04.01 Экстремальные задачи в графах утверждена на заседании кафедры вычислительной математики и информатики

протокол № 14 «<u>18» апреля</u> 2023 г. Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В. фамилия, инициалы

Утверждена на заседании учебно-методической комиссии факультета Математики и компьютерных наук

протокол № 3 «20» апреля 2023 г.

Председатель УМК факультета Шмалько С.П.

фамилия, инициалы

подпись

Рецензенты:

<u>Уртенов М.Х.</u>, д.-р. физ.-мат.н., профессор, заведующий кафедрой прикладной математики Кубанского государственного университета <u>Луценко Е.В.</u>, д.-р. э.н., канд. тех.н., профессор кафедры компьютерных технологий и систем Кубанского государственного аграрного университета

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Цель освоения дисциплины — курс посвящен изучению классических алгоритмов решения оптимизационных задач на графах и сетях с применением различных приемов программирования; построению новых и модификации и комбинации известных алгоритмов для решения конкретных задач (для конкретных конфигураций компьютеров); оценке эффективности указанных алгоритмов.

1.2 Задачи дисциплины

Задачи дисциплины — дать навыки постановки и решения задач оптимизации на графах; научить выбору адекватных алгоритмов для решения вышеуказанных задач; отработать умения по программной реализации алгоритмов на персональном компьютере.

В результате изучения данной дисциплины студенты должны овладеть навыками постановки и решения задач оптимизации на графах, предусматривающими знание адекватных алгоритмов. Кроме того, студенты должны уметь реализовать эти алгоритмы на персональном компьютере в виде программ.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Экстремальные задачи на графах» относится к части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" учебного плана.

Знания, полученные в этом курсе, используются в распознавании образов, лингвистических основах информатики, интеллектуальных системах и др.

Курс опирается на знания, полученные студентами в рамках дисциплин «Языки и технологии программирования», «Дискретная математика», «Комбинаторные алгоритмы», «Алгоритмы на ориентированных графах».

В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе по очной форме обучения. Вид промежуточной аттестации: экзамен.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций (ОК/ОПК/ПК):

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине
ПК-2 Способность проводить научные исследобласти профессиональной деятельности	ования, на основе существующих методов в конкретной
ИПК-2.1 Демонстрирует практические навыки	Знает основные проблемы своей предметной области,
в проведении научно-исследовательской ра-	требующие использования в математических формули-
боты в профессиональной области	ровках современных научных методов исследования;
	методы разработки и применения алгоритмических и
	программных решений в различных областях, возмож-
	ные сферы приложений результатов теории графов
	Умеет решать задачи теоретического и прикладного ха-
	рактера из различных разделов комбинаторных алго-
	ритмов, доказывать утверждения, строить модели объ-
	ектов и понятий
	Владеет математическим аппаратом комбинаторных ал-
	горитмов, методами доказательства утверждений в этих
	областях, навыками алгоритмизации основных задач;
	методами построения моделей конкретных задач и оцен-
	ки их адекватности;
ИПК-2.2 Составляет план решения, ставит в	Знает основные понятия комбинаторных алгоритмов,
ходе решения промежуточные цели для до-	определения и свойства математических объектов, ис-
стижения основной, критикует предложен-	пользуемых в этой области, формулировки утверждений

Код и наименование индикатора* дости- жения компетенции	Результаты обучения по дисциплине
ный путь решения задачи и прогнозирует возможный результат	Умеет решать задачи теоретического и прикладного характера из различных разделов комбинаторных алгоритмов Владеет способностью ориентироваться в постановке задачи и определять, каким образом следует искать средства ее решения
ИПК-2.3 Анализирует поставленные задачи и выбирает эффективные математические методы при разработке алгоритмов и вычисли-	Знает методы и средства теоретических научных исследований, позволяющие решать конкретные проблемы данной предметной области
тельных программ для решения современных задач естествознания	Умеет обсуждать способы эффективного решения задач; анализировать и синтезировать находящуюся распоряжении информацию и принимать на этой основе адекватные решения; ставить и решать прикладные исследовательские задачи; оценивать результаты исследований
	Владеет способностью ориентироваться в постановке задачи и определять, каким образом следует искать средства ее решения; навыками выбора и использования математических средств научных исследований
ИПК-2.4 Демонстрирует навыки логичного и последовательного изложения материала научного исследования в устной и письменной форме	Знает основные понятия комбинаторных алгоритмов, определения и свойства математических объектов, используемых в этой области, формулировки утверждений, методы их доказательства, Умеет выделять основные методы исследования Владеет методами анализа и синтеза научной информа-
ИПИ 2.5 Панкачаст в профессионал ней тех	ции
ИПК-2.5 Применяет в профессиональной деятельности методику разработки и реализации	Знает основы программирования, основы построения компьютерных моделей
алгоритмов на базе языков высокого уровня и пакетов прикладных программ моделирования	Умеет применять методы разработки и применения алгоритмических и программных решений
D	Владеет навыками разработки алгоритмических и программных решений

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 3 зачетных единицы, (108 часов), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма обучения
	часов	очная
		3 семестр
		(часы)
Контактная работа, в том числе:	20,3	
Аудиторные занятия (всего):	20	20
занятия лекционного типа	10	10
лабораторные занятия	10	10
Иная контактная работа:		
Контроль самостоятельной работы		
(KCP)		
Промежуточная аттестация (ИКР)	0,3	0,3

Самостоятельная ј	работа, в том чис-	52	52
Контрольная работа		2	2
Самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и т.д.)		30	30
Подготовка к текущ	ему контролю	20	20
Контроль:		35,7	35,7
Подготовка к экзаме	ену	35,7	35,7
Общая трудоем-	Общая трудоем- час.		108
кость в том числе кон- тактная работа		20,3	20,3
	зач. ед		3

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины

№	Наименование разделов		Количество часов		
			Аудит Всего рабо		Внеаудиторная работа
			Л	ЛР	CPC
1	1 Задача полного обхода графа Задача вершинного обхода графа Задача определения числа компонент связности		2	2	10
2	•		2	2	10
3	Задача определения внутренней устойчивости графа Задача определения внешней устойчивости графа	14	2	2	10
4	Задача построения максимального потока в сети	14	2	2	10
5	Сетевое планирование	16	2	2	12
	ИТОГО по разделам дисциплины	72	10	10	52
	Контроль самостоятельной работы (КСР)				
	Промежуточная аттестация (ИКР)	0,3			
	Подготовка к экзамену	35,7			
	Общая трудоемкость по дисциплине	108			

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины.

2.3.1 Занятия лекционного типа.

No	Наименование раздела	Содержание раздела (темы)	Форма теку-
	(темы)		щего контроля
1	графа	Представление графов. Гамильтоновы графы. Фундаментальные циклы. Регулярные графы. Эйлеровы графы. Алгоритм Флёри. Задача коммивояже-	Опрос
	хода графа Задача определения числа компонент связ-	ра. Подграфы, операции над графами. Связность. Вершинная связность и реберная связность. Двусвязные графы. Тео-	

	ности	рема Менгера.	
2	Задача минимального покрытия графа цепями Задача нахождения совершенного паросочетания в двудольном графе Задача определения центра в графе	Независимые множества и покрытия. Клика. Двудольные графы. Паросочетания. Паросочетания в двудольном графе. Метрические характеристики графа. Расстояния, радиус, диаметр, центр, периферия.	Опрос
3	Задача определения внутренней устойчивости графа Задача определения внешней устойчивости графа	Характеристики внутренней и внешней устойчивости графа. Характеристики внутренней и внешней устойчивости графа.	Опрос
4	Задача построения максимального потока в сети	Основные определения. Обходы. Пути. База и ядро. Упорядочение элементов ориентированного графа. Алгоритм Фалкерсона. Выявление маршрутов с заданным количеством ребер. Нахождение кратчайших путей в ориентированных графах. Алгоритмы Дейкстры, Беллмана — Мура. Алгоритм нахождения максимального пути. Потоки в сетях, теорема Форда — Фалкерсона. Алгоритм решения задачи о максимальном потоке. Поток минимальной стоимости.	Опрос
5	Сетевое планирование	Сетевое планирование, критические пути, работы, резервы. Сетевые и линейные графики.	Опрос

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

No	Наименование раздела	Тематика занятий/работ	Форма текущего
	(темы)	_	контроля
1	Задача полного обхода графа Задача вершинного обхода графа Задача определения числа компонент связности	Алгоритм решения задачи полного обхода графа Алгоритм решения задачи определения числа компонент связности	ЛР
2	Задача минимального покрытия графа цепями Задача нахождения совершенного паросочетания в двудольном графе Задача определения центра в графе	Алгоритм решения задачи минимального покрытия графа цепями Алгоритм решения задачи нахождения совершенного паросочетания в двудольном графе Алгоритм решения задачи определения центра в графе	ЛР
3	Задача определения внутренней устойчивости графа Задача определения внешней устойчивости графа	Алгоритм решения задачи определения внутренней и внешней устойчивости графа	ЛР
4	Задача построения максимального потока в сети	Алгоритм решения задачи построения максимального потока в сети	ЛР
5	Сетевое планирование	Алгоритм решения задачи сетевого планирования	ЛР

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), колло-квиум (К), тестирование (Т) и т.д.

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с $\Phi \Gamma OC$ BO.

2.3.4 Примерная тематика курсовых работ (проектов).

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.
2	Изучение теоретического материала к лабораторным занятиям	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.
3	Подготовка к заче- ту/экзамену	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, лабораторные занятия, проблемное обучение, модульная технология, подготовка письменных аналитических работ, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проектных методик, мозгового штурма, разбора конкретных ситуаций, анализа педагогических задач, педагогического эксперимента, иных форм) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование ОСМДО КубГУ; использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Экстремальные задачи на графах».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме перечня вопросов для устного опроса, типовых заданий к самостоятельной работе, и **промежуточной аттестации** в форме вопросов и заданий к зачету/экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Возун топу сбутому	Наименование оцен	очного средства
п/п	индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИПК-2.1 Демонстрирует практические навыки в проведении научно-исследовательской работы в профессиональной области	Знает основные проблемы своей предметной области, требующие использования в математических формулировках современных научных методов исследования; методы разработки и применения алгоритмических и программных решений в различных областях, возможные сферы приложений результатов теории графов Умеет решать задачи теоретического и прикладного характера из различных разделов	Вопросы для устного (письменного) опроса по теме, разделу Контрольная работа	Вопросы и задания к экзамену

		комбинаторных алго-	
		ритмов, доказывать	
		утверждения, строить	
		модели объектов и поня-	
		тий	
		Владеет математическим	
		аппаратом комбинатор-	
		ных алгоритмов, мето-	
		дами доказательства	
		утверждений в этих об-	
		ластях, навыками алго-	
		ритмизации основных	
		задач;	
		методами построения	
		моделей конкретных за-	
		дач и оценки их адек-	
	ишк ээ С	ватности	
	ИПК-2.2 Составляет	Знает основные понятия	
	план решения, ставит в	комбинаторных алго-	
	ходе решения промежу-	ритмов, определения и	
	точные цели для дости-	свойства математиче-	
	жения основной, крити-	ских объектов, исполь-	
	кует предложенный	зуемых в этой области,	
	путь решения задачи и	формулировки утвер-	
	прогнозирует возмож-	ждений	
	ный результат	Умеет решать задачи	
		теоретического и при-	
2		кладного характера из	
		различных разделов	
		комбинаторных алго-	
		ритмов	
		Владеет способностью	
		ориентироваться в по-	
		становке задачи и опре-	
		*	
		делять, каким образом	
		следует искать средства	
	HILLS 2.2	ее решения	
	ИПК-2.3 Анализирует	Знает методы и средства	
	поставленные задачи и	теоретических научных	
	выбирает эффективные	исследований, позволя-	
	математические методы	ющие решать конкрет-	
	при разработке алго-	ные проблемы данной	
	ритмов и вычислитель-	предметной области	
	ных программ для ре-	Умеет обсуждать спосо-	
	шения современных	бы эффективного реше-	
	задач естествознания	ния задач; анализировать	
		и синтезировать нахо-	
		дящуюся распоряжении	
		информацию и прини-	
		мать на этой основе	
3		адекватные решения;	
		ставить и решать при-	
		кладные исследователь-	
		ские задачи; оценивать	
		результаты исследова-	
		ний	
		Владеет способностью	
		ориентироваться в по-	
		становке задачи и опре-	
		делять, каким образом	
		следует искать средства	
		ее решения; навыками	
1		выбора и использования	

		математических средств
		научных исследований
	ИПК-2.4 Демонстрирует	Знает основные понятия
	навыки логичного и по-	комбинаторных алго-
	следовательного изло-	ритмов, определения и
	жения материала науч-	свойства математиче-
	ного исследования в	ских объектов, исполь-
	устной и письменной	зуемых в этой области,
	форме	формулировки утвер-
4		ждений, методы их до-
		казательства,
		Умеет выделять основ-
		ные методы исследова-
		ния
		Владеет методами анали-
		за и синтеза научной
		информации
	ИПК-2.5 Применяет в	Знает основы програм-
	профессиональной дея-	мирования, основы по-
	тельности методику	строения компьютерных
	разработки и реализа-	моделей
	ции алгоритмов на базе	Умеет применять методы
5	языков высокого уровня	разработки и примене-
	и пакетов прикладных	ния алгоритмических и
	программ моделирова-	программных решений
	ния	Владеет навыками разра-
		ботки алгоритмических
		и программных решений
		ii iipoi pammiibix pemelinn

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

Вопросы для устного опроса

- 1. Сформулируйте определение графа. Как задается граф?
- 2. Сформулируйте лемму о рукопожатиях.
- 3. Сформулируйте и докажите утверждения о степенях вершин в графе.
- 4. Что означает изоморфизм графов? Почему это понятие важно для теории графов?
- 5. Докажите, что отношение изоморфизма является отношением эквивалентности.
- 6. Что такое помеченный и абстрактный граф?
- 7. Сформулируйте гипотезу реконструируемости.
- 8. Перечислите локальные и алгебраические операции над графами.
- 9. Докажите, что отношение гомеоморфизма является отношением эквивалентности.
- 10. Как определяются п-мерные кубы?
- 11. Опишите два способа обхода вершин графа (поиск в ширину и глубину).
- 12. Сформулируйте алгоритм установления двудольности графа.
- 13. Сформулируйте определение дерева.
- 14. Сформулируйте признаки дерева.
- 15. Перечислите свойства центральных вершин графа.
- 16. Назовите способы обхода вершин в графе.
- 17. Назовите способы поиска остова в графе.
- 18. Сформулируйте теорему Кирхгофа.
- 19. Сформулируйте и докажите теорему Кэли.

- 20. Как построить матрицу фундаментальных циклов?
- 21. Укажите отличия алгоритмов Краскала и Прима поиска минимальных остовов.
- 22. Что называют разрезающим множеством, разрезающим ребром, разрезающей вершиной?
- 23. Перечислите свойства двусвязных графов.
- 24. Перечислите критерии двусвязности графа.
- 25. Что называют блоками графа?
- 26. Для каких графов справедлива формула Эйлера о числе вершин, ребер и граней?
- 27. Что такое сегмент? Какие виды сегментов участвуют в алгоритме?
- 28. Какие вершины называют контактными?
- 29. Опишите шаги работы гамма-алгоритма.
- 30. Как применить гамма-алгоритм к графу с точками сочленения или мостами?
- 31. Как ставится задача обхода графа?
- 32. Сформулируйте критерий существования в графе эйлерова цикла.
- 33. Сформулируйте алгоритм Флери.
- 34. Как определить количество цепей, покрывающих граф?
- 35. Приведите примеры гамильтоновых графов.
- 36. Сформулируйте достаточные условия гамильтоновости графа.
- 37. Сформулируйте задачу коммивояжера.
- 38. Какие существуют подходы к решению задачи коммивояжера?
- 39. В чем заключается проблема четырех красок?
- 40. Что называют правильной вершинной к-раскраской?
- 41. Чем различаются понятия k-раскрашиваемого и k-хроматического графа?
- 42. Что называют хроматическим числом графа?
- 43. Приведите различные алгоритмы раскрашивания вершин графа.
- 44. Сформулируйте теоремы, используемые при конструировании хроматического полинома.
- 45. Покажите, что раскраска карты сводится к раскраске вершин двойственного графа.
- 46. Что называют числом независимости графа, числом паросочетания, числом доминирования, ядром графа, числом вершинного и реберного покрытия?
- 47. Что характеризую понятия плотности и неплотности графа?
- 48. Что такое кликовое число и чсло кликового покрытия?
- 49. Как строится матрица клик?
- 50. Как строится граф клик?
- 51. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов
- 52. Выявление маршрутов с заданным количеством ребер.
- 53. Определение экстремальных путей. Метод Шимбелла.
- 54. Нахождение кратчайших путей. Алгоритм Дейкстры.
- 55. Алгоритм Беллмана-Мура.
- 56. Алгоритм нахождения максимального пути.
- 57. Теорема Форда-Фалкерсона. Поток минимальной стоимости.
- 58. Элементы сетевого планирования. Сетевые и линейные графики.
- 59. Транспортная задача по критерию времени.
- 60. Задача об оптимальном назначении.

Задачи для самостоятельных работ

В общем виде постановка типичной экстремальной задачи такова: задан граф с некоторыми известными значениями каких-либо параметров (например, известно число вершин и рёбер в графе). Спрашивается, в каком диапазоне может лежать некоторый другой параметр этого графа (например, хроматическое или кликовое число и т. д.). Например, сколь велико

может быть число рёбер в графе, у которого n вершин, а размер максимальной клики равен k? Задачу оценки чисел Рамсея тоже можно переформулировать подобным образом: «как много вершин может быть в графе с числом независимости p и кликовым числом q?».

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен)

Вопросы к экзамену

- 1. Задача полного обхода графа
- 2. Задача вершинного обхода графа
- 3. Задача определения числа компонент связности
- 4. Задача минимального покрытия графа цепями
- 5. Задача нахождения совершенного паросочетания в двудольном графе
- 6. Задача определения центра в графе
- 7. Задача определения внутренней устойчивости графа
- 8. Задача определения внешней устойчивости графа
- 9. Задача построения максимального потока в сети
- 10. Задача сетевого планирования

Билеты для экзамена

БИЛЕТ №1 по дисциплине **ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ** для направления подготовки 02.04.01 Математика и компьютерные науки

- 1. Задача полного обхода графа
- 2. Задача определения центра в графе

Заведующий КВМИ

Гайденко С.В.

БИЛЕТ №2

по дисциплине **ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ** для направления подготовки 02.04.01 Математика и компьютерные науки

- 1. Задача вершинного обхода графа
- 2. Задача определения внутренней устойчивости графа

БИЛЕТ №3

по дисциплине **ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ** для направления подготовки 02.04.01 Математика и компьютерные науки

- 1. Задача определения числа компонент связности
- 2. Задача определения внешней устойчивости графа

Заведующий КВМИ

Гайденко С.В.

БИЛЕТ №4

по дисциплине **ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ** для направления подготовки 02.04.01 Математика и компьютерные науки

- 1. Задача минимального покрытия графа цепями
- 2. Задача построения максимального потока в сети

Заведующий КВМИ

Гайденко С.В.

БИЛЕТ №5

по дисциплине **ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ГРАФАХ** для направления подготовки 02.04.01 Математика и компьютерные науки

- 1. Задача нахождения совершенного паросочетания в двудольном графе
- 2. Задача сетевого планирования

Заведующий КВМИ

Гайденко С.В.

Критерии оценивания результатов обучения в соответствии с уровнем освоения дисциплины.

Критерии оценки качества освоения студентами дисциплины:

• пороговый (оценка «удовлетворительно»)

- стандартный (оценка «хорошо»)
- эталонный (оценка «отлично»)

Критерий	В рамках формируемых компетенций студент демонстрирует	
пороговый	Знание и понимание теоретического содержания курса с незначи-	
	тельными пробелами; отсутствие некоторых практических умений при	
	решении задач.	
стандартный	стандартный Полное знание и понимание теоретического содержания курса, бе	
	пробелов; недостаточную сформированность некоторых практических	
	умений при применении знаний в конкретных ситуациях; достаточное	
	качество выполнения всех предусмотренных программой обучени	
	учебных заданий.	
эталонный	Полное знание и понимание теоретического содержания курса, без	
	пробелов; сформированность необходимых практических умений при	
	применении знаний в конкретных ситуациях; высокое качество выпол-	
	нения всех предусмотренных программой обучения учебных заданий.	

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

1. Бабичева И. В. Дискретная математика. Контролирующие материалы к тестированию : учебное пособие / Бабичева, Ирина Владимировна ; И. В. Бабичева. - Изд. 2-е, испр. - Санкт-Петербург [и др.] : Лань, 2013. - 159 с.

Бабичева, И.В. Дискретная математика. Контролирующие материалы к тестированию [Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-Петербург : Лань, 2013. — 160 с. — Режим доступа: https://e.lanbook.com/book/30193

2. Микони, Станислав Витальевич. Дискретная математика для бакалавра: множе-

ства, отношения, функции, графы : учебное пособие для студентов инженерных специальностей и направлений вузов / Микони, Станислав Витальевич ; С. В. Микони. - Санкт-Петербург [и др.] : Лань, 2012. - 186 с.

Микони, С.В. Дискретная математика для бакалавра: множества, отношения, функции, графы [Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-Петербург : Лань, 2012. — 192 с. — Режим доступа: https://e.lanbook.com/book/4316

- 3. Сухан И.В. Ориентированные графы: уч. пос./ И.В.Сухан. Краснодар: КубГУ, 2016.– 124 с.
- 4. Шевелев Ю. П. Сборник задач по дискретной математике (для практических занятий в группах): учебное пособие для студентов / Шевелев, Юрий Павлович, Писаренко, Людмила Анатольевна, Шевелев, Михаил Юрьевич; Ю. П. Шевелев, Л. А. Писаренко, М. Ю. Шевелев. Санкт-Петербург [и др.]: Лань, 2013. 523 с.

Шевелев, Ю.П. Сборник задач по дискретной математике (для практических занятий в группах) [Электронный ресурс] : учеб. пособие / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев. — Электрон. дан. — Санкт-Петербург : Лань, 2013. — 528 с. — Режим доступа: https://e.lanbook.com/book/5251

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Университетская библиотека ONLINE».

Собственные электронные образовательные и информационные ресурсы КубГУ: Среда модульного динамического обучения http://moodle.kubsu.ru

6. Методические указания для обучающихся по освоению дисциплины (модуля).

Текущая самостоятельная работа студента, направленная на углубление и закрепление знаний студента, развитие практических умений, осуществляется при проработке материалов лекций и соответствующей литературы, подготовке к промежуточному и итоговому контролям, подготовке к выполнению лабораторных работ и написанию отчетов.

Для улучшения качества и эффективности самостоятельной работы студентов предлагаются методические указания к лабораторным работам, списки основной и дополнительной литературы. Все методические материалы предоставляются как в печатном, так и в электронном видах.

Текущая и опережающая СРС заключается в:

- работе студентов с лекционным материалом, поиске и анализе литературы и электронных источников информации по заданной проблеме;
 - изучение теоретического материала к лабораторным занятиям;
 - подготовке к промежуточному контролю.

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Формы контроля со стороны преподавателя включают:

- проверочные работы по результатам изучения некоторых разделов курса;
- отчет по лабораторным занятиям;
- экзамен.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными

возможностями здоровья.

Для подготовки к экзамену необходимо использовать указания и рекомендации, данные преподавателем в ходе занятий. Если студент испытывает какие-либо затруднения с пониманием материала, он всегда может получить консультацию преподавателя.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебные аудитории для проведе-	Мебель: учебная мебель	1. Microsoft Windows 10
ния занятий лекционного типа	Технические средства обучения:	2. Microsoft Office PowerPoint
	экран, проектор, компьютер	Professional Plus.
Учебные аудитории для проведе-	Мебель: учебная мебель	
ния занятий семинарского типа,		
групповых и индивидуальных		
консультаций, текущего кон-		
троля и промежуточной аттеста-		
ции		
Учебные аудитории для проведе-	Мебель: учебная мебель	
ния лабораторных работ.		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного про-
самостоятельной работы обуча-	самостоятельной работы обуча-	граммного обеспечения
ющихся	ющихся	
Помещение для самостоятельной	Мебель: учебная мебель	1. Microsoft Windows 10
работы обучающихся (читальный	Комплект специализированной	2. Microsoft Office PowerPoint
зал Научной библиотеки)	мебели: компьютерные столы	Professional Plus.
	Оборудование: компьютерная	
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	
	рудование, обеспечивающее доступ к сети интернет (проводное	
	соединение и беспроводное со-	
	единение и осепроводное со- единение по технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	1. Microsoft Windows 10
работы обучающихся (ауд.)	Комплект специализированной	2. Microsoft Office PowerPoint
pade 121 dely intendiment (u) A.)	мебели: компьютерные столы	Professional Plus.
	Оборудование: компьютерная	i rolessional i lus.
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	

рудование, обеспечивающее до-	
ступ к сети интернет (проводное	
соединение и беспроводное со-	
единение по технологии Wi-Fi)	