Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.07 «ОСНОВЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ»

Направление

подготовки/специальность 02.03.02 Фундаментальная информатика и

<u>информационные технологии</u>

(код и наименование направления подготовки/специальности)

Направленность (профиль) /специализация Математическое и программное обеспечение компьютерных технологий

Программа подготовки академический бакалавриам

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «ОСНОВЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии.

Программу составил(а):

Патыковская Марина Валентиновна, ст. преподаватель

 Φ .И.О., должность, ученая степень, ученое звание

-

подпись

Рабочая программа дисциплины «ОСНОВЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ» утверждена на заседании кафедры <u>Вычислительных</u> технологий протокол №8 от «03» мая 2023 г.

Заведующий кафедрой (разработчика) Вишняков Ю.М.

фамилия, инициалы

полпись

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики протокол №5 от «19» мая 2023 г.

Председатель УМК факультета

Коваленко А.В.

фамилия, инициалы

подпись

Рецензенты:

Гаркуша О.В., доцент каф. ИТ ФБГОУ ВО «КубГУ», к.ф.-м.н., доцент

Схаляхо Ч.А., доцент КВВУ им. С.М. Штеменко, к.ф.-м.н., доцент

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Цель освоения дисциплины

Курс «Основы компьютерного моделирования» имеет своей целью: формирование у студентов профессиональных компетенций в области разработки и исследования стохастических моделей, основанных на теории систем массового обслуживания. Данная цель соотносится с целью образовательной программы, в частности, с технологией разработки специализированных программных систем, предназначенных для анализа вычислительных процессов, структур, систем и сетей, использующих аппарат теории вероятностей и математической статистики. Изучение данной дисциплины готовит выпускника к выполнению следующих профессиональных задач:

- Постановка задач имитационного моделирования.
- Выбор метода решения поставленной задачи.
- Планирование имитационных экспериментов.
- Визуализация результатов моделирования.
- Разработка математических и компьютерных моделей вычислительных процессов.

1.2 Задачи дисциплины

Основные задачи освоения дисциплины:

Студент должен **знать** основы теории массового обслуживания, и марковских процессов, языки программирования, позволяющие выполнять компьютерную реализацию моделей и средства визуализации результатов моделирования; **уметь** применять вероятностные и статистические методы, алгоритмы и программные средства для анализа систем и сетей массового обслуживания; **владеть** теоретическими основами математического и компьютерного моделирования информационно-вычислительных систем.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Курс «Основы компьютерного моделирования» относится к части блока Б1, формируемой участниками образовательных отношений.

Для изучения дисциплины студент должен владеть знаниями, умениями и навыками по следующим дисциплинам: Основы теории вероятностей и статистических методов, Основы программирования, Алгоритмы вычислительной математики, Конструирование алгоритмов и структур данных, Теория алгоритмов и вычислительных процессов, Алгоритмы и структуры данных, Математическая логика и теория алгоритмов, Интеллектуальный анализ данных.

Знания, получаемые при изучении дисциплины «Основы компьютерного моделирования» используются при изучении профессиональных дисциплин Распределенные задачи и алгоритмы, Программирование в компьютерных сетях, Облачные вычисления, Мультиагентные системы, а также для выполнения выпускной квалификационной работы бакалавра и магистерской диссертации.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих **профессиональных компетенций:** УК-4; ПК-2.

В результате изучения дисциплины у студента формируются:

• представления о математическом и имитационном моделировании стохастических процессов;

- знания марковских моделей, методов, систем и сетей массового обслуживания;
- умения применять методы математической статистики для постановки задач моделирования и анализа результатов моделирования.

Таблица 1. Профессиональные компетенции студента

№	Индекс	Содержание	В результате изучения учебной д		цисциплины	
п.п	компет	компетенции (или	обучающие должны			
	енции	ее части)	знать	уметь	владеть	
1.	УК-4	способен осуществлять	стандарты в	формулировать	средствами	
		деловую	области описания		коммуникации,	
		коммуникацию в	математических и	моделирования	представления	
		устной и письменной	имитационных	конкретных	информации о	
		формах на	моделей.	процессов,	разрабатываемой	
		государственном		осуществлять	модели,	
		языке Российской		постановку задач	планируемых	
		Федерации и		моделирования,	экспериментах,	
		иностранном(ых)		визуализацию	результатах	
		языке(ах)		интерпретацию	моделирования.	
				результатов		
2.	ПК-2	способен проводить под	методы	выполнять	методами	
		научным руководством	статистического	_	разработки	
		локальные исследования	анализа данных,		компьютерных	
		на основе существующих			моделей; языками	
		методов в конкретной	прикладные языки	моделью;	системного и	
		области	для разработки	оценивать	прикладного	
		профессиональной		достоверность	программировани	
		деятельности.	-	результатов	я для разработки	
				моделирования	математических,	
			математических,		информационных	
			информационных		и имитационных	
			и имитационных		моделей.	
			моделей.			

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часов), их распределение по видам работ представлено в таблице (для студентов ОФО).

Вид учебной работы	Всего	Семестры	
	часов	(час	-
		5	
Контактная работа в том числе:			
Аудиторные занятия (всего):	72,3	72,3	
В том числе:			
Занятия лекционного типа	34	34	
Занятия семинарского типа (семинары, практ. занятия)			
Лабораторные занятия	34	34	
Иная контрольная работа			
Контроль самостоятельной работы	4	4	
Промежуточная аттестация (ИКР)	0,3	0,3	
Самостоятельная работа, в том числе	36	36	
В том числе:			
Курсовая работа			
Проработка учебного (теоретического) материала	10	10	
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	26	26	
Реферат			
Подготовка к текущему контролю			
Контроль:			
Подготовка к экзамену:	35,7	35,7	
Общая трудоемкость (час)	144	144	
в т.ч. контактная работа	72,3	72,3	
зач. ед.	4	4	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в $\underline{5}$ семестре (очная форма)

	Наименование разделов		Количество часов			
№			Аудиторная работа			Внеаудит орная работа
			Л	КСР	ЛР	CPC
1	2	3	4	5	6	7
1.	Основные понятия компьютерного моделирования.	15	2	1	2	10
2.	Введение в теорию массового обслуживания.	47	12	1	12	22
3.	Моделирование систем массового обслуживания	63	14	1	16	32
4.	Сети массового обслуживания.	18,7	6	1	4	7,7
	Итого по разделам дисциплины:	143,7	34	4	34	71,7
	ИКР	0,3				
	Итого по дисциплине:	144	34	4	34	71,7

Примечание: Π – лекции, КСР – контрольные и самостоятельные работы, Π – лабораторные занятия, СРС – самостоятельная работа студента, РГЗ – расчетно-графическое задание.

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

No	Наименование	Содержание раздела	Форма	Разработ.
раз-	раздела		текущего	c
дела			контроля	участием
				представ
				ителей
				работода
				телей
1	2	3	4	5
1.	Основные понятия	Понятие модели. Классификация моделей.	ЛР	
	компьютерного	Этапы построения моделей. Исследование		
	моделирования.	и верификация моделей. Компьютерные		
		модели. Эксперименты с моделями.		
2.	Введение в теорию	Предмет и задачи теории массового	ЛР	
	массового	обслуживания. Основные понятия СМО:	113	
	обслуживания.	заявки, каналы, потоки. Классификация		
		систем массового обслуживания.		
		Показатели эффективности работы СМО.		
		Понятие марковского случайного процесса.		
		Виды марковских случайных процессов		
		(дискретные и непрерывные состояния,		
		дискретное и непрерывное время).		
		Описание процессов с непрерывным		
		временем. Непрерывная марковская цепь.		
		Уравнения Колмогорова.		
		Финальные вероятности состояния СМО.		
		Процессы гибели и размножения		
		(«рождения-гибели»). Показатели		
		функционирования СМО. Показатели		
		эффективности использования СМО.		
		Показатели качества обслуживания заявок.		
		Марковский процесс с дискретными		
		состояниями и дискретным временем.		
		Классификация состояний. Распределение		
		вероятностей по состояниям.		
		Матрица интенсивностей. Системы		
		уравнений Колмогорова в матричном виде.		

3.	Моделирование	Постановка задач теории массового	ЛР	
]	систем массового	обслуживания. Понятие статистического	РГЗ	
	обслуживания	моделирования. Генерации случайных	113	
		чисел.		
		Моделирование случайного события,		
		полной группы несовместных событий.		
		Методы моделирования случайной		
		величины с заданным законом		
		распределения. Моделирование потока		
		случайных событий, неординарных и		
		нестационарных потоков событий, потоков		
		с последействием (потоков Эрланга). Общие		
		принципы построения моделирующих		
		алгоритмов: принцип Δt, принцип особых		
		состояний, принцип последовательной		
		проводки заявок, объектный принцип		
		моделирования. Анализ результатов		
		моделирования СМО. Синтез		
		СМО. Оценка влияния управляющих		
		воздействий и возмущений на изменения		
		параметров СМО. Вычисление		
		статистических характеристик: средних,		
		геометрии распределения. Оценка		
		точности статических характеристик		
4.	Сети массового	Понятие сети массового обслуживания.	ЛР	
	обслуживания.	Классификация СеМО. Параметры сети		
		массового обслуживания. Режимы		
		функционирования сети массового		
		обслуживания. Узловые характеристики		
		СеМО. Сетевые характеристики СеМО.		
	II.			

2.3.2. Занятия семинарского типа

Занятия семинарского типа – не предусмотрены.

2.3.3. Лабораторные занятия

	2.5.5. 71a00 pa 10 pii bie 5a ii 7 i 1 i				
No	№ раздела	Наименование лабораторных работ			
работы	дисциплины				
1	1	Аппроксимация экспериментальных данных методом наименьших			
		квадратов.			
2	3	Статистическое моделирование. Метод Монте-Карло. Визуализация			
		результатов.			
3	3	Статистическое моделирование. Методы генерации случайных			
		чисел.			
4	2-3	Генерация случайных чисел с заданным законом распределения.			
5	2-3	Моделирование потока случайных событий.			
6	2-3	Моделирование неординарных потоков событий			
7	2-3	Моделирование нестационарных потоков событий			
8	2-3	Уравнения Колмогорова. Финальные вероятности состояния СМО.			
		Методы Рунге-Кутта решения систем обыкновенных			
		дифференцированных уравнений.			

9	3	Общие принципы построения моделирующих алгоритмов. Принцип Δt .
10	3	Общие принципы построения моделирующих алгоритмов. Принцип особых состояний
11	3	Общие принципы построения моделирующих алгоритмов. Принцип последовательной проводки заявок
12	3	Общие принципы построения моделирующих алгоритмов. Объектный принцип моделирования.
13	3	Анализ результатов моделирования СМО
14	3-4	Оценка влияния управляющих воздействий и возмущений на изменения параметров СМО
15	3-4	Вычисление статистических характеристик
16	1-4	Оформление отчетов по РГЗ

2.3.3 Примерная тематика курсовых работ (проектов)

Учебным планом не предусмотрены.

2.3.4 Расчетно-графические задания (индивидуальное задание)

В процессе изучения дисциплины «Основы компьютерного моделирования» студентами выполняется одно расчетно-графическое (индивидуальное) задание. Темы заданий для каждого студента различны. Задача РГЗ состоит в проверке умений студентов и эффективности их самостоятельной работы. Темы заданий ежегодно обновляются. Общая тематика соответствует тематик лабораторных работ.

Пример РГЗ

В вычислительном центре имеются две ЭВМ. Задания на обработку поступают каждые 2 мин в пункт приема. Здесь в течение 12 мин они регистрируются и сортируются оператором, после чего каждое задание поступает на одну из ЭВМ. Примерно в 70 % заданий в результате их первой обработки на ЭВМ обнаруживаются ошибки ввода, которые сразу же в течение 3 мин исправляются оператором. На время корректировки ввода задание не освобождает соответствующей ЭВМ, и после корректировки начинается его повторная обработка. Возможность ошибки при повторной обработке исключается, т.е. повторная обработка всегда является окончательной. Продолжительность работы ЭВМ при обработке задания в каждом случае составляет 10. В центре имеется лишь одно рабочее место оператора.

Разработать программу, моделирующую процесс функционирования вычислительного центра при условии, что обработать необходимо 100 заданий.

Разработанная программа должна удовлетворять следующим требованиям:

обеспечивать ввод исходных данных;

поддерживать интерактивное редактирование; производить имитационное моделирование; представлять результаты моделирования в удобном виде.

Отчет по выполнению РГЗ должен содержать:

- постановку задачи;
- краткое описание разработанного алгоритма;
- текст разработанной программы на выбранном языке программирования;
- тестовые примеры и результаты тестирования программы.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

007 1	пощимел по днецииние	
		Перечень учебно-методического обеспечения
$N_{\underline{0}}$	Вид СРС	дисциплины по выполнению самостоятельной работы
1	2	3
1	Раздел 1. Математические моде-	Источники основной и дополнительной литературы
	ли физических процессов.	
2	Раздел2. Моделирование работы	Источники основной и дополнительной литературы
	вычислительных систем.	
3	Раздел 3. Библиотеки C\C++	Источники основной и дополнительной литературы,
	и\или Python для выполнения	Перечень ресурсов информационно-
	РГ3.	телекоммуникационной сети «Интернет»
4	Раздел 4. Особенности	Источники основной и дополнительной литературы
	моделирования СМО.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Семестр	Вид занятия	Используемые интерактивные	Количество часов
	$(\Pi, \Pi P, \Pi P)$	образовательные технологии	
	Л	Компьютерные презентации и обсуждение	34
		Разбор конкретных ситуаций (задач), тренинги	
	ЛР	по решению задач, компьютерные симуляции	34
5		(программирование алгоритмов),	
		подготовка и обсуждение докладов.	
	КРС	РГ3	4
Итого:			72

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1 Фонд оценочных средств для проведения текущего контроля

Фонд оценочных средств дисциплины состоит из средств текущего контроля (вопросы при защите ЛР, контрольной работы) лабораторных работ, средств итоговой аттестации (экзамен в 5 семестре).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- выполнения РГЗ;
- ответа на экзамене (для выявления знания и понимания теоретического материала
- дисциплины).

Перечень вопросов, для подготовки к экзамену

- 1. Предмет и задачи теории массового обслуживания.
- 2. Основные понятия СМО: заявки, каналы, потоки. Примеры.
- 3. Показатели эффективности работы СМО.
- 4. Понятие потоков событий. Их разновидности (стационарные, регулярные, без последействия, ординарные) и основные характеристики.
- 5. Простейший, или пуассоновский поток (формула Пуассона).
- 6. Понятие марковского случайного процесса. Виды марковских случайных процессов (дискретные и непрерывные состояния, дискретное и непрерывное время).
- 7. Описание процессов с непрерывным временем. Непрерывная марковская цепь.
- 8. Уравнения Колмогорова. Финальные вероятности состояния СМО. Пример.
- 9. Процессы гибели и размножения («рождения-гибели»). Пример.
- 10. Классификация систем массового обслуживания.
- 11. Постановка задач теории массового обслуживания.
- 12. Показатели функционирования СМО. Показатели эффективности использования СМО.
- 13. Показатели функционирования СМО. Показатели качества обслуживания заявок.
- 14. Одноканальная СМО с отказами в обслуживании. Пример.
- 15. Многоканальная СМО с отказами в обслуживании. Пример.
- 16. Одноканальная СМО с ограниченной длиной очереди. Пример.
- 17. Одноканальная СМО с неограниченной очередью. Пример.
- 18. Многоканальная СМО с ограниченной длиной очереди. Пример.
- 19. Многоканальная СМО с неограниченной очередью. Пример.
- 20. Марковский процесс с дискретными состояниями и дискретным временем. Классификация состояний. Распределение вероятностей по состояниям.
- 21. Марковский процесс с дискретными состояниями и непрерывным временем. Матрица интенсивностей.
- 22. Марковский процесс с дискретными состояниями и непрерывным временем. Системы уравнений Колмогорова в матричном виде.
- 23. Марковский процесс с дискретными состояниями и непрерывным временем. Процессы гибели и размножения. Матричный вид.
- 24. Понятие сети массового обслуживания. Классификация СМО.
- 25. Параметры сети массового обслуживания.
- 26. Режимы функционирования сети массового обслуживания.
- 27. Узловые характеристики СМО.
- 28. Сетевые характеристики СМО.
- 29. Моделирование СМО. Статистическое моделирование. Метод Монте-Карло.
- 30. Схема использования метода Монте-Карло при исследовании систем со случайными параметрами.
- 31. Моделирование СМО. Статистическое моделирование. Методы генерации случайных чисел.
- 32. Моделирование СМО. Статистическое моделирование. Проверка качества работы генератора случайных чисел.
- 33. Моделирование случайного события. Моделирование полной группы несовместных событий.
- 34. Методы моделирования случайной величины с заданным законом распределения.
- 35. Моделирование нормально распределенных случайных величин.

- 36. Моделирование биномиально распределенных случайных величин.
- 37. Моделирование случайных величин, распределенных по закону Пуассона.
- 38. Моделирование потока случайных событий.
- 39. Моделирование неординарных потоков событий.
- 40. Моделирование нестационарных потоков событий.
- 41. Моделирование потоков с последействием (потоки Эрланга).
- 42. Общие принципы построения моделирующих алгоритмов. Принцип Δt . Пример.
- 43. Общие принципы построения моделирующих алгоритмов. Принцип особых состояний.
- 44. Общие принципы построения моделирующих алгоритмов. Принцип последовательной про водки заявок.
- 45. Общие принципы построения моделирующих алгоритмов. Объектный принцип моделирования.
- 46. Анализ результатов моделирования СеМО (на примере).
- 47. Синтез CeMO. Оценка влияния управляющих воздействий и возмущений на изменения параметров CeMO.
- 48. Вычисление статистических характеристик. Вычисление средних.
- 49. Вычисление статистических характеристик. Вычисление геометрии распределения.
- 50. Оценка точности статических характеристик.

Критерии оценивания:

Оценка «отлично»: точные формулировки алгоритмов, теорем и правильные доказательства; точные определения математических объектов и ясные и правильные определения объектов, характеризующихся неформализованными понятиями.

Оценка «хорошо»: при ответе на один вопрос даны точные формулировки алгоритмов, теорем и правильные доказательства; точные определения математических объектов и ясные и правильные определения объектов, характеризующихся неформализованными понятиями; при ответе на второй вопрос имеются неточности формулировки алгоритмов, теорем или пробелы в правильных доказательствах; недостаточно точные определения математических объектов или неясные и не совсем правильные определения объектов, характеризующихся неформализованными понятиями.

Оценка «удовлетворительно»: при ответе на оба вопроса имеются неточности

формулировки алгоритмов, теорем или пробелы в правильных доказательствах; недостаточно точные определения математических объектов или неясные и не совсем правильные определения объектов, характеризующихся неформализованными понятиями.

Оценка «неудовлетворительно»: отсутствует ответ хотя бы на один из вопросов или имеются существенные неточности в формулировках алгоритмов, теорем, приведены

неправильные доказательства; неверные определения математических объектов и неправильные определения объектов, характеризующихся неформализованными понятиями.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей:

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в

несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Акопов, А. С. Имитационное моделирование: учебник и практикум для академического бакалавриата / Акопов А. С. М.: Юрайт, 2018. 389 с. [Электронные ресурс]. URL: https://biblio-online.ru/book/17ADD5FC-11D6-4BE7-8CBD-796A6C0F46B0.
- 2. Боев В. Д. Имитационное моделирование систем. М.: Юрайт, 2018. 253 с. [Электронные pecypc]. URL: https://biblio-online.ru/book/588F8066-F842-4C2C-9389-70DE883386EB.
- 3. Вьюненко, Л. Ф. Имитационное моделирование: учебник и практикум для академического бакалавриата / Л. Ф. Вьюненко, М. В. Михайлов, Т. Н. Первозванская; под ред. Л. Ф. Вьюненко. М.: Юрайт, 2018. 283 с. https://biblio-online.ru/book/4D3D33B8-08F4-4148-AADC-90689A5EB29C.
- 4. Михайлов Г. А. Статистическое моделирование. Методы Монте-Карло: учеб. пособие для бакалавриата и магистратуры. М.: Юрайт, 2018. 371 с. [Электронные pecypc]. URL: https://www.biblio-online.ru/book/statisticheskoe-modelirovanie-metody-monte-karlo-419564.
- 5. Петров А.В. Моделирование процессов и систем: учебное пособие для студентов вузов, обучающихся по направлению подготовки (бакалавриат) "Информатика и вычислительная техника" / А. П. Петров. Санкт-Петербург [и др.]: Лань, 2015. 287 с. (18 экз. в библиотеке КубГУ).
- 6. Фомин Г. П. Экономико-математические методы и модели в коммерческой деятельности. М.: Юрайт, 2017. 462 с. [Электронные ресурс]. URL: https://www.biblio-online.ru/book/16072D11-6614-42B7-9FB3-2C1F732BBF97.

5.2. Дополнительная литература:

- 1. Алгазинов Э. К., Сирота А. А. Анализ и компьютерное моделирование информационных процессов и систем. М.: Диалог-МИФИ, 2009. 415 с.
- 2. Замятина О. М. Вычислительные системы, сети и телекоммуникации. Моделирование сетей. М.: Юрайт, 2018. 159 с. [Электронные ресурс]. URL: https://www.biblio-online.ru/book/3A1BBC90-1F94-4581-A4A3-8181BD9032BC.
- 3. Кобелев Н.Б. Теория глобальных систем и их имитационное управление. М.: Вузовский учебник: ИНФРА-М, 2014. 277 с. (2 экз. в библиотеке КубГУ).

- 4. Павловская Т. А. С/С++. Процедурное и объектно-ориентированное программирование.: СПб [и др.]: Питер, 2019. 495 с. (42 экз. в библиотеке КубГУ).
- 5. Подбельский В. В., Фомин С. С. Программирование на языке Си: учебное пособие для студентов вузов. 2-е доп. изд. М.: Финансы и статистика, 2003. 600 с.:
- 6. Тарасевич Ю. Ю. Математическое и компьютерное моделирование. Вводный курс: учебное пособие для студентов вузов. М.: [Едиториал УРСС], 2004. 149 с. (5 экз. в библиотеке КубГУ).
- 7. Топорков В. В. Модели распределенных вычислений. М.: Физматлит, 2011. 162 [Электронный ресурс]. URL: https://www.e.lanbook.com/book/2339#authors.

5.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Lectures on scientific computing with Python. В свободном доступе: URL: https://github.com/jrjohansson/scientific-python-lectures
- 2. Python. The official Python web site. В свободном доступе: URL: https://www.python.org/
- 3. Программирование и научные вычисления на языке Python B свободном доступе: http://ru.wikiversity.org/wiki/
- 4. Пакет NumPy. Краткое введение: URL: В свободном доступе: http://pyviy.blogspot.ru/2009/09/numpy.html

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, лабораторных работ и экзамена.

Важнейшим этапом курса является выполнение расчетно-графического задания и само стоятельная работа по дисциплине с использованием указанных литературных источников.

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите РГЗ студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

7.1 Перечень информационных технологий

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении лекций и практических занятий.

7.2 Перечень необходимого программного обеспечения

- 1. Phyton,
- 2. MS Visual Studio.
- 3. Программы для демонстрации и создания презентаций («Microsoft Power Point»).

7.3 Перечень информационных справочных систем:

- 1. ЭБС Издательства «Лань» http://e.lanbook.com,
- 2. ЭБС «Университетская библиотека онлайн» www.biblioclub.ru,
- 3. ЭБС «Юрайт» http://www.biblio-online.ru,
- 4. 3BC «ZNANIUM.COM» www.znanium.com,
- 5. ЭБС «BOOK.ru» <u>https://www.book.ru</u>.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

No	Вид работ	Материально-техническое обеспечение дисциплины
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной
		техникой (проектор, экран, компьютер/ноутбук) и
		соответствующим программным обеспечением (ПО)
		PowerPoint. ауд. 129, 131, A305.
2.	Лабораторные	Лаборатория, укомплектованная специализированными
	занятия	техническими средствами обучения – компьютерный класс, с
		возможностью подключения к сети «Интернет», программой
		экранного увеличения и обеспеченный доступом в
		электронную информационно-образовательную среду
		университета. (лаб. 102-106.).
3.	Групповые	Аудитория, (кабинет) – компьютерный класс
	(индивидуальные)	
	консультации	
4.	Текущий контроль,	Аудитория, приспособленная для письменного ответа при
	промежуточная	промежуточной аттестации.
	аттестация	
5.	Самостоятельная	Кабинет для самостоятельной работы, оснащенный
	работа	компьютерной техникой с возможностью подключения к сети
		«Интернет», программой экранного увеличения и
		обеспеченный доступом в электронную информационно
		образовательную среду университета.