МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Институт географии, геологии, туризма и сервиса Кафедра геофизических методов поисков и разведки

"УТВЕРЖДАЮ"

Проректор по учебной работе, качеству образования —

первый проректор

Хагуров

23 " ман 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.04 ПРИКЛАДНАЯ ТЕПЛОФИЗИКА В ГЕОЛОГИЧЕСКИХ СРЕДАХ

Специальность 21.05.03 "Технология геологической разведки" Специализация "Геофизические методы поиска и разведки месторождений полезных ископаемых"

Квалификация (степень) выпускника: горный инженер-геофизик

Форма обучения: очная

Рабочая программа дисциплины «Прикладная теплофизика в геологических средах» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 21.05.03 «Технология геологической разведки», утвержденным приказом Министерства науки и высшего образования Российской Федерации №977 от 12.08.2020 г.

Программу составил:

Захарченко Е.И., канд. техн. наук, доцент, и.о. заведующего кафедрой геофизических методов поисков и разведки

Рабочая программа дисциплины рассмотрена и утверждена на заседании кафедры геофизических методов поисков и разведки « 202 г. Протокол № 9

И.о. заведующего кафедрой геофизических методов поисков и разведки, канд. техн. наук, доцент Захарченко Е.И.

Рабочая программа дисциплины утверждена на заседании учебнометодической комиссии Института географии, геологии, туризма и сервиса «25» 2022 г. Протокол № 5

Председатель учебно-методической комиссии ИГГТиС, канд. геогр. наук, доцент Филобок А.А.

Рецензенты:

Гуленко В.И., д-р техн. наук, профессор кафедры геофизических методов поисков и разведки Кострыгин Ю.П., д-р техн. наук, генеральный директор ООО «Новоросморгео»

СОДЕРЖАНИЕ

	Стр
1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ	5
1.1. Цели изучения дисциплины	5
1.2. Задачи изучения дисциплины	5
1.3. Место дисциплины (модуля) в структуре образовательной	
программы	5
1.4. Перечень планируемых результатов обучения по	
дисциплине (модулю), соотнесенных с планируемыми	
результатами освоения образовательной программы	6
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	8
2.1. Распределение трудоёмкости дисциплины по видам работ	8
2.2. Структура дисциплины	9
2.3. Содержание разделов (тем) дисциплины	11
2.3.1. Занятия лекционного типа	11
2.3.2. Занятия семинарского типа	12
2.3.3. Лабораторные занятия	12
2.3.4. Примерная тематика курсовых работ (проектов)	13
2.4. Перечень учебно-методического обеспечения для	
самостоятельной работы обучающихся по дисциплине (модулю)	13
3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	13
4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	
УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	14
4.1. Фонд оценочных средств для проведения текущей	
аттестации	14
4.2. Фонд оценочных средств для проведения промежуточной	
аттестации	18
5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ	
ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ	
ДИСЦИПЛИНЫ (МОДУЛЯ)	21
5.1. Основная литература	21
5.2. Дополнительная литература	
5.3. Периодические издания	22
6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-	
ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", В ТОМ	
ЧИСЛЕ СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ	
ДАННЫХ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ,	
НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)	23

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО	
ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)	24
8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ,	
ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ	
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	
(МОДУЛЮ)	25
8.1. Перечень информационных технологий	25
8.2. Перечень необходимого лицензионного программного	
обеспечения	25
8.3. Перечень необходимых информационных справочных	
систем	25
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ	
ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА	
ПО ДИСЦИПЛИНЕ (МОДУЛЮ)	26
РЕЦЕНЗИЯ	27
РЕЦЕНЗИЯ	28

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Дисциплина "Прикладная теплофизика в геологических средах" является одним из важных курсов для изучения основных разделов разведочной геофизики, широко применяемой при поисках нефтегазовых месторождений, геологическом картировании, в решении задач инженерной геологии.

Целью изучения дисциплины "Прикладная теплофизика в геологических средах" является приобретение знаний фундаментальных законов и понятий термодинамики, массообмена и теплообмена в скважинах; навыков проведения расчетных работ с использованием таблиц и диаграмм состояния рабочего тела, а также понимание механизмов протекания тепловых процессов в геологических средах.

1.2. Задачи изучения дисциплины

В соответствии с поставленной целью в процессе изучения дисциплины "Прикладная теплофизика в геологических средах" решаются следующие задачи:

- изучаются основные понятия, термины и определения, используемые в термодинамике, в теории теплообмена и массообмена, в строительной и горной теплофизике;
- рассматривается использование основных математических моделей теории теплообмена для формализации задач обеспечения энергетической эффективности нефтегазовых технологических процессов и производств;
- умение использовать справочный материал для определения типа математической модели и класса методов ее исследования;
- овладение методами выбора оптимальных параметров теплотехнических систем;
- приобретение навыков проведения расчетов теплофизических характеристик процессов, протекающих в конкретных технических устройствах, по существующим методикам с использованием справочной литературы.

Объектами профессиональной деятельности выпускников, освоивших программу специалитета, являются горные породы и геологические тела в земной коре, горные выработки.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "Прикладная теплофизика в геологических средах" введена в учебные планы подготовки специалистов (специальность 21.05.03 "Технология геологической разведки") согласно ФГОС ВО, цикла Б1, базовая часть. Индекс дисциплины — Б1.Б.34, читается в восьмом семестре.

Предшествующие смежные дисциплины цикла Б1.Б (базовая часть) логически и содержательно взаимосвязанные с изучением данной дисциплины: Б1.Б.179 "Электротехника и электроника", Б1.Б.20 "Физика Земли", Б1.Б.29.01 "Электроразведка", Б1.Б.29.02 "Магниторазведка", Б1.Б.29.03 "Гравиразведка", Б1.Б.29.04 "Сейсморазведка", Б1.Б.35 "Нефтяная подземная гидродинамика".

Последующие дисциплины, для которых данная дисциплина является предшествующей, в соответствии с учебным планом: Б1.В.03 "Инженерная Б1.В.04.03 геофизика", "Сейсмостратиграфия И прогнозирование Б1.В.04.04 "Интегрированные геологического разреза", системы Б1.В.04.08 интерпретации геофизических данных", "Геофизические обрабатывающие Б1.В.ДВ.01.01 регистрирующие комплексы", И "Современные проблемы геологии и геофизики".

Дисциплина предусмотрена основной образовательной программой (ООП) КубГУ (специальность 21.05.03 "Технология геологической разведки") в объёме 2 зачетных единиц (72 часа, итоговый контроль — зачет).

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины "Прикладная теплофизика в геологических средах" направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по специальности 21.05.03 "Технология геологической разведки":

- самостоятельно принимать решения в рамках своей профессиональной компетенции, быть готовым работать над междисциплинарными проектами (ОПК-6);
- уметь разрабатывать технологические процессы геологоразведочных работ и корректировать эти процессы в зависимости от поставленных геологических и технологических задач в изменяющихся горно-геологических и технических условиях (ПК-3).

В результате изучения дисциплины "Прикладная теплофизика в геологических средах" студент должен уметь решать задачи, соответствующие его квалификации.

Изучение дисциплины "Прикладная теплофизика в геологических средах" направлено на формирование у обучающихся общепрофессиональных и профессиональных компетенций, что отражено в таблице 1.

Таблица 1.

№ п.	Индекс компетенции	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны			
п.	И	(или её части)	знать	уметь	владеть	
1	ОПК-6	самостоятельно принимать решения в рамках своей профессиональной компетенции, быть готовым работать над междисциплинарны ми проектами	основные понятия и определения термодинамики; основные понятия и законы теплопередачи, конвективного теплообмена, теплообмена с излучением; особенности теплового режима скважин	рассчитывать термодинамические параметры системы на основе уравнения состояния идеального газа; рассчитывать основные параметры теплопередачи и теплообмена, разрабатывать технологические процессы геологической разведки и корректировать эти процессы в зависимости от поставленных геологических и технологических и технологических и технологических и технологических и технологических и технических условиях; производить расчёты протекания тепловых процессов при эксплуатации скважин	теплопередачи для плоской, многослойной и цилиндрической стенки; методами прогноза и опенки	
2		уметь разрабатывать технологические процессы геологоразведочных работ и корректировать эти процессы в зависимости от поставленных геологических и технологических задач	теорию теплопроводности, методические и алгоритмические основы создания новейших технологических процессов геологической разведки; теорию теплообмена и теплопередачи; влияние тепловых процессов	теорию тепло- и массообмена для изучения и регулирования	навыками использования законов теплофизики в профессиональной деятельности; методами выполнения проектов геологической влияния тепловых разведки и управления этими проектами; методам	

№ п.	Индекс эмпетенции	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны			
п.	И	(или её части)	знать	уметь	владеть	
		в изменяющихся горно- геологических и технических условиях	на эффективность и безопасность горных работ	эксплуатационных скважин; применять теоретические расчеты способов и средств регулирования теплового режима в выработках	и оценки процессов на эффективность и безопасность горных работ, способами и средствами регулирования теплового режима в выработках	

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины "Прикладная теплофизика в геологических средах" приведена в таблице 2. Общая трудоёмкость учебной дисциплины составляет 3 зачётные единицы. Таблица 2.

Вид учебной работы	Всего часов	Трудоемкость, часов (в том числе часов в интерактивной форме) 8 семестр
Контактная работа, в том числе:		
Аудиторные занятия (всего):	32 / 8	32 / 8
Занятия лекционного типа	16 / 4	16 / 4
Лабораторные занятия	-	-
Занятия семинарского типа (семинары, практические занятия)	16 / 4	16 / 4
Иная контактная работа:		
Контроль самостоятельной работы (КСР)	6	6
Промежуточная аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:		
Курсовая работа	-	-
Проработка учебного (теоретического) материала	9	9
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	8	8
Контрольная работа	8	8

Подготовка к текущему ко	онтролю	8,8	8,8
Контроль:			
Подготовка к экзамену		-	-
Общая трудоемкость	час.	72	72
	в том числе контактная работа	38,2	38,2
	зач. ед.	2	2

2.2. Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам (темам) дисциплины "Прикладная теплофизика в геологических средах" приведено в таблице 3.

Таблица 3.

2.0		Количество часов				
№ раздела	Наименование разделов (тем)	всего	аудиторная всего работа			внеаудиторная работа
			Л	ЛР	ПЗ	CPC
1	2	3	4	5	6	7
1	Введение. Основы термодинамики	9	2		2	5
2	Теплопроводность	11	2		2	7
3	Теплопередача. Конвективный теплообмен. Теплообмен излучением	13	2	_	4	7
4	Теплообмен при конденсации. Теплообмен при кипении жидкости. Массообмен	15	4		4	7
5	Термометрические методы при изучении состояния скважин	18	6		4	8

2.3. Содержание разделов (тем) дисциплины

2.3.1. Занятия лекционного типа

Принцип построения программы — модульный, базирующийся на выделении крупных разделов программы — модулей, имеющих внутреннюю взаимосвязь и направленных на достижение основной цели преподавания дисциплины. В соответствии с принципом построения программы и целями

преподавания дисциплины курс "Прикладная теплофизика в геологических средах" содержит 5 модулей, охватывающих основные разделы (темы).

Содержание разделов (тем) дисциплины приведено в таблице 4. Таблица 4.

No	Наименование		Форма
раздела	раздела (темы)	Содержание раздела (темы)	текущего контроля
1	2	3	4
1	Введение. Основы термодинамики	Основы молекулярно-кинетической теории и законы для идеального газа. Понятия и определения технической термодинамики. Термодинамические процессы. Основные понятия и определения процессов теплообмена: теплопроводность, конвективный теплообмен, теплообмен излучением, сложный теплообмен. Температурное поле. Изотермический, изобарический, изохорический, адиабатический и политропный процессы.	КР, УО
2	Теплопроводность	Закон Фурье. Коэффициенты теплопроводности. Дифференциальное уравнение теплопроводности. Условия однозначности. Теплопроводность цилиндрической стенки. Теплоотдача. Коэффициент теплоотдачи, термическое сопротивление теплоотдачи. Понятия о расчете нестационарного температурного поля неограниченной пластины и бесконечного цилиндра. Числа Фурье, Био.	КР, УО, ДКР
3	Теплопередача. Конвективный теплообмен. Теплообмен излучением	Термическое сопротивление теплопередачи для плоской, многослойной и цилиндрической стенки. Критический диаметр цилиндрической стенки. Принцип выбора и расчета тепловой изоляции. Методы интенсификации процесса теплопередачи. Сущность конвективной теплоотдачи, факторы, определяющие его значение, свободная и вынужденная конвекция. Гидродинамическая структура потока. Режимы течения. Понятие о тепловом излучении. Законы теплового излучения.	КР, УО, ДКР
4	Теплообмен при конденсации. Теплообмен при кипении жидкости. Массообмен	Теплообмен при конденсации пара на вертикальной поверхности, на поверхности горизонтальной трубы. Особенности конденсации движущегося пара. Конденсация пара на горизонтальных трубных пучках. Режимы кипения. Механизм кипения. Влияние теплофизических свойств поверхности и среды на интенсивность теплоотдачи при пузырьковом кипении. Особенности теплообмена кипящей жидкости в трубках.	КР, УО

№ раздела	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
5	Термометрические методы при изучении состояния скважин	Классификация тепловых режимов в горных выработках. Влияние тепловых процессов на эффективность и безопасность горных работ. Особенности протекания тепловых процессов в глубоких шахтах. Способы и средства регулирования теплового режима в выработках. Методы прогноза и оценки теплового режима. Тепловой режим скважин. Термические способы бурения скважин.	КР, УО

Форма текущего контроля — контрольная работа (КР), устный опрос (УО) и домашняя контрольная работа (ДКР).

2.3.2. Занятия семинарского типа

Перечень занятий семинарского типа (к которым относятся практические работы) по дисциплине "Прикладная теплофизика в геологических средах" приведен в таблице 5. Таблица 5.

№ раздела	Наименование раздела (темы)	Тематика практических работ	Форма текущего контроля
1	2	3	4
1	Введение. Основы термодинамики	Основы молекулярно-кинетической теории и законы для идеального газа	КР-1, УО-1
		Расчет теплопроводности	KP-2
2	Теплопроводность	Расчет температурного поля	ДКР-1, УО-2
	Т	Расчет теплопередачи и теплообмена	KP-3
3	Теплопередача. Конвективный теплообмен.	Расчет коэффициента теплоотдачи	ДКР-2
	Теплообмен излучением	Расчет тепловой изоляции	ДКР-3, УО-3
4	Теплообмен при конденсации. Теплообмен при кипении жидкости. Массообмен	Расчет теплообмена при кипении жидкости	КР-4, УО-4
5	Термометрические методы при изучении состояния скважин	Использование термометрических методов при изучении состояния скважин	КР-5, УО-5

Форма текущего контроля — защита контрольных работ (КР-1 — КР-5), домашних контрольных работ (ДКР-1 — ДКР-3), устный опрос (УО-1 — УО-5).

2.3.3. Лабораторные занятия

Лабораторные занятия по дисциплине "Прикладная теплофизика в геологических средах" не предусмотрены.

2.3.4. Примерная тематика курсовых работ (проектов)

Курсовые работы (проекты) по дисциплине "Прикладная теплофизика в геологических средах" не предусмотрены.

2.4. Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю)

Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю) приведен в таблице 6. Таблица 6.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	CPC	Методические указания по организации самостоятельной работы по дисциплине "Прикладная теплофизика в геологических средах", утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.
2	Контрольные работы	Методические рекомендации по написанию контрольных работ, утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Общим вектором изменения технологий обучения должны стать активизация студента, повышение уровня его мотивации и ответственности за качество освоения образовательной программы.

При реализации различных видов учебной работы по дисциплине "Прикладная теплофизика в геологических средах" используются следующие образовательные технологии, приемы, методы и активные формы обучения:

- 1) разработка и использование активных форм лекций (в том числе и с применением мультимедийных средств):
 - а) проблемная лекция;
 - б) лекция-визуализация;
 - в) лекция с разбором конкретной ситуации.
 - 2) разработка и использование активных форм практических работ:
 - а) практическое занятие с разбором конкретной ситуации;
 - б) бинарное занятие.

В сочетании с внеаудиторной работой в активной форме выполняется также выполнение контролируемых самостоятельных работ (КСР).

В процессе проведения лекционных занятий и практических работ практикуется широкое использование современных технических средств (проекторы, интерактивные доски, Интернет). С использованием Интернета осуществляется доступ к базам данных, информационно-справочным и поисковым системам.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Удельный вес занятий, проводимых в интерактивных формах, приведён в таблице 7.

Таблица 7.

Сомость	Вид занятия	Используемые интерактивные	Количество
Семестр	(Л, ПР)	образовательные технологии	часов
8	Л	Проблемная лекция, лекция-визуализация, лекция с разбором конкретной ситуации	4

	ПР	Практическая работа с разбором конкретной ситуации, бинарное занятие	4
Итого			8

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1. Фонд оценочных средств для проведения текущей аттестации

К формам письменного контроля относится контрольная работа, которая является одной из сложных форм проверки; она может применяться для оценки знаний по базовым и вариативным дисциплинам всех циклов. Контрольная работа, как правило, состоит из небольшого количества средних по трудности вопросов, задач или заданий, требующих поиска обоснованного ответа.

Во время проверки и оценки контрольных письменных работ проводится анализ результатов выполнения, выявляются типичные ошибки, а также причины их появления.

Контрольная работа может занимать часть или полное учебное занятие с разбором правильных решений на следующем занятии.

Перечень контрольных работ приведен ниже.

Контрольная работа №1. Основы молекулярно-кинетической теории и законы для идеального газа.

Контрольная работа №2. Расчет теплопроводности.

Контрольная работа №3. Расчет теплопередачи и теплообмена.

Контрольная работа №4. Расчет теплообмена при кипении жидкости.

Контрольная работа №5. Использование термометрических методов при изучении состояния скважин.

Критерии оценки контрольных работ:

- оценка "зачтено" выставляется студенту, если он правильно применяет теоретические положения курса при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения, а также правильно выполняет расчеты контрольной работы: а именно расчёт искомых величин, расчёт погрешностей к этим величинам, построение графиков, объяснение полученных результатов и графиков;
- оценка "не зачтено" выставляется студенту, если он не знает значительной части программного материала, в расчетной части контрольной работы допускает существенные ошибки, затрудняется объяснить расчетную часть, а также неуверенно, с большими затруднениями выполняет задания или не справляется с ними самостоятельно.

Домашняя контрольная работа — одна из форм контроля уровня знаний студента и ориентирования его в вопросах, ограниченных объемом учебной тематики. Относится к формам контроля самостоятельной работы студента.

Цели домашней контрольной работы:

- углубить, систематизировать и закрепить теоретические знания студентов;
 - проверить степень усвоения одной темы или вопроса;
- выработать у студента умения и навыки самостоятельной обработки материала.

Перечень домашних контрольных работ приведен ниже.

Домашняя контрольная работа 1. Расчет температурного поля.

Домашняя контрольная работа №2. Расчет коэффициента теплоотдачи.

Домашняя контрольная работа №3. Расчет тепловой изоляции.

Критерии оценки домашних контрольных работ:

- оценка "зачтено" выставляется студенту, если выполнено не менее 60% заданий варианта, работа выполнена по стандартной или самостоятельно разработанной методике, в освещении вопросов не содержится грубых ошибок, по ходу решения сделаны аргументированные выводы;
- оценка "не зачтено" выставляется студенту, если он не справился с заданием (выполнено менее 60% задания), не раскрыто основное содержание работы, имеются грубые ошибки в освещении вопросов, в решении задач, а так же если работа выполнена не самостоятельно.

Текущий контроль успеваемости студентов представляет собой также устный опрос.

Устиный опрос — наиболее распространенный метод контроля знаний учащихся. При устном опросе устанавливается непосредственный контакт между преподавателем и учащимся, в процессе которого преподаватель получает широкие возможности для изучения индивидуальных особенностей усвоения учащимися учебного материала.

Цель устного опроса: проверка знаний учащихся; проверка умений учащихся публично излагать материал; формирование умений публичных выступлений.

Вопросы для проведения устного опроса приведены ниже.

Вопросы устного опроса по разделу №1 "Введение. Основы термодинамики".

- 1. Основы молекулярно-кинетической теории (МКТ) и законы для идеального газа.
 - 2. Понятия и определения технической термодинамики.

- 3. Термодинамические процессы.
- 4. Основные понятия и определения процессов теплообмена: теплопроводность, конвективный теплообмен, теплообмен излучением, сложный теплообмен.
- 5. Температурное поле, изотермическая поверхность, градиент температуры.

Вопросы устного опроса по разделу №2 "Теплопроводность".

- 1. Тепловой поток, плотность теплового потока, внутренние источники.
 - 2. Закон Фурье.
 - 3. Коэффициенты теплопроводности и температуропроводности.
 - 4. Дифференциальное уравнение теплопроводности.
 - 5. Условия однозначности. Граничные условия 1, 2 и 3 рода.
- 6. Многослойная стенка, термическое сопротивление теплопроводности. Теплопроводность цилиндрической стенки.
- 7. Теплопроводность в плоской стенке при граничных условиях 1-го рода.

Вопросы устного опроса по разделу №3 "Теплопередача. Конвективный теплообмен. Теплообмен излучением".

- 1. Теплоотдача. Коэффициент теплоотдачи, термическое сопротивление теплоотдачи.
- 2. Понятия о расчете нестационарного температурного поля неограниченной пластины и бесконечного цилиндра.
 - 3. Числа Фурье, Био.
- 4. Основное понятие о приближенных методах решения задач нестационарного теплообмена для тел конечных размеров.
- 5. Термическое сопротивление теплопередачи для плоской, многослойной и цилиндрической стенки.
 - 6. Критический диаметр цилиндрической стенки.
 - 7. Принцип выбора и расчета тепловой изоляции.
 - 8. Методы интенсификации процесса теплопередачи.
- 9. Сущность конвективной теплоотдачи, факторы, определяющие его значение, свободная и вынужденная конвекция.
 - 10. Гидродинамическая структура потока.
 - 11. Режимы течения.
 - 12. Понятие о тепловом излучении.
 - 13. Законы теплового излучения.
 - 14. Серое тело и степень черноты.
- 15. Теплообмен излучением в системах тел: параллельные поверхности, тело в оболочке, система с экранами.

Вопросы устного опроса по разделу №4 "Теплообмен при конденсации. Теплообмен при кипении жидкости. Массообмен".

- 1. Теплообмен при конденсации пара на вертикальной поверхности.
- 2. Теплообмен при конденсации пара на поверхности горизонтальной трубы.
 - 3. Особенности конденсации движущегося пара.
 - 4. Конденсация пара на горизонтальных трубных пучках.
 - 5. Режимы кипения.
 - 6. Механизм кипения.
- 7. Влияние теплофизических свойств поверхности и среды на интенсивность теплоотдачи при пузырьковом кипении.
- 8. Особенности теплообмена кипящей жидкости в трубках. Основные понятия и определения.
 - 9. Молекулярная диффузия, градиент концентрации, законы Фика.
 - 10. Конвективный массообмен.

Вопросы устного опроса по разделу №5 "Термометрические методы при изучении состояния скважин".

- 1. Аналогия процессов переноса теплоты и массы.
- 2. Классификация тепловых режимов в горных выработках.
- 3. Влияние тепловых процессов на эффективность горных работ и безопасность.
- 4. Особенности протекания тепловых процессов в глубоких шахтах и в криолитозоне.
- 5. Способы и средства регулирования теплового режима в выработках.
 - 6. Методы прогноза и оценки теплового режима.
 - 7. Термические способы бурения скважин.
 - 8. Тепловой режим скважин.

Критерии оценки защиты устного опроса:

- оценка "зачтено" ставится, если студент достаточно полно отвечает на вопрос, развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа, демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации;
- оценка "не зачтено" ставится, если ответ недостаточно логически выстроен, студент обнаруживает слабость в развернутом раскрытии профессиональных понятий.

4.2. Фонд оценочных средств для проведения промежуточной аттестации

К формам контроля относится *зачет* — это форма промежуточной аттестации студента, определяемая учебным планом подготовки по направлению ВО. Зачет служит формой проверки успешного выполнения студентами практических работ и усвоения учебного материала лекционных занятий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Вопросы для подготовки к зачету:

- 1. Основы молекулярно-кинетической теории.
- 2. Термодинамические законы для идеального газа.
- 3. Работа, внутренняя энергия системы.
- 4. Первое начало термодинамики.
- 5. Термодинамическая функция энтальпия.

- 6. Термодинамическая функция энтропия.
- 7. Понятия и определения технической термодинамики.
- 8. Термодинамические процессы.
- 9. Основные понятия и определения процессов теплообмена: теплопроводность, конвективный теплообмен, теплообмен излучением, сложный теплообмен.
 - 10. Второе начало термодинамики.
 - 11. Третье начало термодинамики.
 - 12. Температурное поле.
 - 13. Изотермическая поверхность.
 - 14. Градиент температуры.
 - 15. Тепловой поток, плотность теплового потока.
 - 16. Внутренние источники тепла.
 - 17. Закон Фурье.
 - 18. Коэффициенты теплопроводности.
 - 19. Дифференциальное уравнение теплопроводности.
 - 20. Условия однозначности. Граничные условия 1, 2 и 3 рода.
- 21. Теплопроводность в плоской стенке при граничных условиях 1-го рода.
- 22. Многослойная стенка, термическое сопротивление теплопроводности.
 - 23. Теплопроводность цилиндрической стенки.
 - 24. Теплоотдача. Коэффициент теплоотдачи.
 - 25. Термическое сопротивление теплоотдачи.
- 26. Понятия о расчете нестационарного температурного поля неограниченной пластины и бесконечного цилиндра.
 - 27. Числа Фурье, Био.
- 28. Основное понятие о приближенных методах решения задач нестационарного теплообмена для тел конечных размеров.
 - 29. Термическое сопротивление теплопередачи для плоской стенки.
- 30. Термическое сопротивление теплопередачи для многослойной стенки.
- 31. Термическое сопротивление теплопередачи для цилиндрической стенки.
 - 32. Критический диаметр цилиндрической стенки.
 - 33. Принцип выбора и расчет тепловой изоляции.
 - 34. Методы интенсификации процесса теплопередачи.
 - 35. Сущность конвективной теплоотдачи.
 - 36. Факторы, определяющие значение конвективной теплоотдачи.
 - 37. Свободная и вынужденная конвекция.
 - 38. Гидродинамическая структура потока.

- 39. Режимы течения.
- 40. Понятие о тепловом излучении.
- 41. Законы теплового излучения.
- 42. Серое тело и степень черноты.
- 43. Теплообмен излучением в системах тел: параллельные поверхности, тело в оболочке, система с экранами.
 - 44. Теплообмен при конденсации пара на вертикальной поверхности.
- 45. Теплообмен при конденсации пара на поверхности горизонтальной трубы.
 - 46. Особенности конденсации движущегося пара.
 - 47. Конденсация пара на горизонтальных трубных пучках.
 - 48. Режимы кипения.
 - 49. Механизм кипения.
- 50. Влияние теплофизических свойств поверхности и среды на интенсивность теплоотдачи при пузырьковом кипении.
- 51. Особенности теплообмена кипящей жидкости в трубках. Основные понятия и определения.
 - 52. Молекулярная диффузия, градиент концентрации, законы Фика.
 - 53. Конвективный массообмен.
 - 54. Аналогия процессов переноса теплоты и массы.
- 55. Влияние тепловых процессов на эффективность горных работ и безопасность.
- 56. Особенности протекания тепловых процессов в глубоких шахтах и в криолитозоне.
- 57. Способы и средства регулирования теплового режима в выработках.
 - 58. Методы прогноза и оценки теплового режима.
 - 59. Тепловой режим поисково-разведочных скважин.
 - 60. Тепловой режим нагнетательных скважин.
 - 61. Тепловой режим бурящихся скважин.
 - 62. Тепловой режим эксплуатационных скважин.

Критерии получения студентами зачетов:

— оценка "зачтено" ставится, если студент строит свой ответ в соответствии с планом. В ответе представлены различные подходы к проблеме. Устанавливает содержательные межпредметные связи. Развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа. Выводы правильны. Речь грамотна, используется профессиональная лексика. Демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации.

— оценка "не зачтено" ставится, если ответ недостаточно логически соблюдается выстроен, ответа план непоследовательно. Студент обнаруживает слабость В развернутом раскрытии профессиональных понятий. Выдвигаемые положения декларируются, НО недостаточно аргументируются. Ответ носит преимущественно теоретический характер, примеры отсутствуют.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Основная литература

- 1. Кудинов В.А., Карташов Э.И. Техническая термодинамика. М.: Высшая школа, 2007. 261 с. (27)
- 2. Козлов В.Ф., Маношкин Ю.В., Миллер А.Б. Задачи по общей и прикладной физике: учебное пособие. Долгопрудный: Интеллект, 2015. 453 с. (10)
- 3. Дмитриев А.С. Введение в нанотеплофизику. М.: Бином Лаборатория знаний, 2015. 793 с. ISBN 978-5-9963-2870-3; То же [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php? page=book&id=272800.
- 4. Митрофанова О.В. Гидродинамика и теплообмен закрученных потоков в каналах ядерно-энергетических установок. М.: Физматлит, 2010. 285 с. [Электронный ресурс]: монография. Электрон. дан. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=48282; http://biblioclub.ru/index.php?page=book&id=68969.

*Примечание: в скобках указано количество экземпляров в библиотеке КубГУ.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах "Лань" и "Юрайт".

5.2. Дополнительная литература

1. Брюханов О.Н., Шевченко С.Н. Тепломассообмен: учебное пособие для студентов вузов. — М.: Изд-во Ассоциации строительных вузов, 2005. — 460 с. (3)

- 2. Гухман А.А. Применение теории подобия к исследованию процессов тепломассообмена: процессы переноса в движущейся среде: учебное пособие. Изд. 3-е, испр. М.: Изд-во ЛКИ, 2010. 328 с. (4)
- 3. Кудинов В.А., Карташов Э.М. Техническая термодинамика: учебное пособие для студентов втузов. 2-е изд., испр. М.: Высшая школа, 2001. 261с. (4)
- 4. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1981. 416 с.
- 5. Ермаков В.И., Скоробогатов В.А. Тепловое поле и нефтегазоносность молодых плит СССР. М.: Недра, 1986. 222 с.
- 6. Теория тепломассообмена / под ред. Леонтьева А.И. — М.: Высшая школа, 1979. — 495 с.
- 7. Краснощеков В.А., Сукомел А.С. Сборник задач по теплопередаче. М.: Энергия, 1980. 280 с.
- 8. Зарипов З.И., Мухамедзянов Г.Х. Теплофизические свойства жидкостей и растворов : монография. Казань: Изд-во КНИТУ, 2008. 373 с.: ил., табл., схем. Библиогр. в кн. ISBN 978-5-7882-0663-9; То же [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=259069.

5.3. Периодические издания

- 1. Известия высших учебных заведений. Геология и разведка: научно-методический журнал министерства образования и науки Российской Федерации. ISSN 0016-7762.
- 2. Геология и геофизика: научный журнал СО РАН. ISSN 0016-7886.
- 3. Доклады Академии наук: Научный журнал РАН (разделы: Геология. Геофизика. Геохимия). ISSN 0869-5652.
 - 4. Геофизика. Научно-технический журнал ЕАГО.
 - 5. Каротажник. Научно-технический вестник АИС.
- 6. Вестник московского университета. Серия 3. Физика. Астрономия. ISSN 0579-9392.
 - 7. Вестник СПбГУ. Серия: Физика. Химия. ISSN 1024-8579.
 - 8. Известия ВУЗов. Серия: Физика. ISSN 0021-3411.
 - 9. Теоретическая и математическая физика. ISSN 0564-6162.
 - 10. Физика. Реферативный журнал. ВИНИТИ.

6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", В ТОМ ЧИСЛЕ СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ, НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ))

- 1. www.moodle.kubsu.ru/ среда модульного динамического обучения КубГУ
 - 2. www.eearth.ru
 - 3. www.sciencedirect.com
 - 4. www.geobase.ca
 - 5. www.krelib.com
 - 6. www.geolib.ru
 - 7. www.geozvt.ru
 - 8. www.geol.msu.ru
 - 9. www.scintific.narod.ru/literature.htm каталог научных ресурсов
 - 10. www.sci-lib.com/ большая научная библиотека
- 11. www.eqworld.ipmnet.ru/ru/library/physics.htm раздел "Учебники и другие книги по физике" учебно-образовательной физико-математической библиотеки сайта EqWorld
 - 12. www.physics-lectures.ru/ лекции по физике для ВУЗов
- 13. База данных Всероссийского института научной и технической информации (ВИНИТИ) РАН (www.2viniti.ru)
- 14. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных (www.rusnano.com)
- 15. Базы данных и аналитические публикации "Университетская информационная система Россия" (www.uisrussia.msu.ru).
 - 16. Мировой Центр данных по физике твердой Земли (www.wdcb.ru).
- 17. База данных о сильных землетрясениях мира (www.zeus.wdcb.ru/wdcb/sep/hp/seismology.ru).
 - 18. База данных по сильным движениям (SMDB) (www.wdcb.ru).

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические знания по основным разделам курса "Прикладная теплофизика в геологических средах" студенты приобретают на лекциях и практических занятиях, закрепляют и расширяют во время самостоятельной работы.

Лекции по курсу "Прикладная теплофизика в геологических средах" представляются в виде обзоров с демонстрацией презентаций по отдельным основным темам программы.

Для углубления и закрепления теоретических знаний студентам рекомендуется выполнение определенного объема самостоятельной работы. Общий объем часов, выделенных для внеаудиторных занятий, составляет 33,8 часа.

Внеаудиторная работа по дисциплине "Прикладная теплофизика в геологических средах" заключается в следующем:

- повторение лекционного материала и проработка учебного (теоретического) материала;
 - подготовка к практическим занятиям;
- выполнение индивидуальных заданий (подготовка сообщений, презентаций);
- написание контролируемой самостоятельной работы (домашних контрольных работ);
 - подготовка к текущему контролю.

Для закрепления теоретического материала и выполнения контролируемых самостоятельных работ по дисциплине во внеучебное время студентам предоставляется возможность пользования библиотекой КубГУ, возможностями компьютерных классов.

Итоговый контроль осуществляется в виде зачета.

Контролируемой самостоятельной работы (КСР) по дисциплине "Прикладная теплофизика в геологических средах" является расчет 3-х домашних контрольных работ.

Контрольные работы в вузе могут быть:

- аудиторными (выполняемые во время аудиторных занятий в присутствии преподавателя);
 - домашними, которые задаются на дом к определенному сроку;
- текущими, целью которых является контроль знаний по только что пройденной теме;
 - экзаменационными, оценка по которым имеет статус итоговой.

Требования к аудиторным и домашним контрольным работам:

- оформленный титульный лист;
- подробное описание методик расчета;
- расчет задачи по индивидуальному варианту;
- список используемых источников.

Защита контролируемой самостоятельной работы (КСР) осуществляется на практических занятиях в виде собеседования с обсуждением отдельных его разделов, полноты раскрытия темы, новизны используемой информации.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8.1. Перечень информационных технологий

Использование электронных презентаций при проведении занятий лекционного типа и практических работ.

8.2. Перечень необходимого лицензионного программного обеспечения

При освоении курса "Прикладная теплофизика в геологических средах" используются лицензионные программы общего назначения, такие как Microsoft Windows 7, пакет Microsoft Officee Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point).

8.3. Перечень необходимых информационных справочных систем

- 1. Электронная библиотечная система издательства "Лань" (www.e.lanbook.com)
- 2. Электронная библиотечная система "Университетская Библиотека онлайн" (www.biblioclub.ru)
- 3. Электронная библиотечная система "ZNANIUM.COM" (www.znanium.com)
- 4. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 5. Единая интернет- библиотека лекций "Лекториум" (www.lektorium.tv)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
Занятия лекционного типа	Аудитория для проведения занятий лекционного типа, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением (лицензионные программы общего назначения, такие как Microsoft Windows 7, пакет Microsoft Officce Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point)	
Занятия семинарского типа	Аудитория для проведения занятий семинарского типа, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением	
Текущий контроль, промежуточная аттестация	Аудитория для проведения текущего контроля, аудитория для проведения промежуточной аттестации	
Самостоятельная работа	Аудитория для самостоятельной работы студентов, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет", с соответствующим программным обеспечением, с программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета	