МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, честву образования – первый

Т.А. Хагуров

2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.02 ИНТЕГРАЛЬНАЯ ФОТОНИКА

(коо и наименовани	не оисциплины в соответствии с учестым плином)
Направление подготовки / с	пециальность
11.04.02 Инфокоммун	икационные технологии и системы связи
(код и наименован	ие направления подготовки/специальности)
Направленность (профиль)	/ специализация
Оптические системы	локации, связи и обработки информации
(наименован	ие направленности (профиля) специализации)
Форма обучения	очная
	(очная, очно-заочная, заочная)
Квалификация	магистр
	(бакалавр, магистр, специалист)

Рабочая программа дисциплины Б1.В.02 «Интегральная фотоника» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи»

Программу составил:

М.М. Векиши доктор физ.-мат. наук другит каф, оптоэпектронини Вокини

Рабочая программа дисциплины Б1.В.02 «Интегральная фотоника» утверждена на заседании кафедры оптоэлектроники ФТФ, протокол № 9 от 13 апреля 2022 г.

Заведующий кафедрой оптоэлектроники д-р техн. наук, профессор Н.А. Яковенко

Утверждена на заседании учебно-методической комиссии физикотехнического факультета, протокол № 8 от 15 апреля 2022 г.

Председатель УМК ФТФ

д-р физ.-мат. наук, профессор Н.М. Богатов

подпись

подпись

Рецензенты:

Дергач В.А., начальник научно-технического центра по подвижным комплексам АО «КПЗ «Каскад»

Копытов Г.Ф., д-р физ.-мат. наук, зав. кафедрой радиофизики и нанотехнологий

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины: Изучение физико-технических и схемотехнических принципов построения и функционирования устройств и элементов интегральной фотоники, выполняющих функции обработки оптических сигналов в оптических системах связи и системах обработки информации.

1.2 Задачи дисциплины

- 1. Изучение фундаментальных основ функционирования и базовых приемов разработки интегрально-оптических функциональных схем и исследования их основных характеристик
- 2. Изучение принципов построения перестраиваемых лазеров и высокоскоростных фотоприемных устройств
- 3. Изучение принципов построения высокоскоростных волноводных амплитудных и фазовых модуляторов
- 4. Изучение принципов построения волноводных оптических элементов для коммутации, фильтрации и мультиплексирования оптических сигналов
- 5. Изучение основных технологий построения и материалов элементов и схем интегральной фотоники

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Б1.В.02_Интегральная фотоника» относится к части блока 1 дисциплин учебного плана, формируемого участниками образовательных отношений

Данный курс опирается на знания, полученные при изучении дисциплин «Оптоэлектронные квантовые приборы и устройства в инфокоммуникационных системах и сетях», "Оптическое материаловедение" на 1 курсе магистратуры. Знания, приобретенные при освоении курса, могут быть использованы при решении различных задач по дисциплинам «Радиофотоника», "Технология спектрального мультиплексирования в оптической связи", "Сети оптической связи".

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора* Результаты обучения по дисциплине

ПК-1

Способен разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов в области инфокоммуникаций, принципиальных схем устройств с использованием средств компьютерного проектирования, проведением проектных расчетов и технико-экономическим обоснованием принимаемых решений

- 1. Разрабатывает и согласует технические задания на проектирование, технические условия, программы и методики испытаний радиоэлектронных устройств и систем;
- 2. Разрабатывает структурные и функциональные схемы радиоэлектронных систем и комплексов, принципиальные схемы устройств с использованием средств компьютерного проектирования, проведение проектных расчетов и технико-экономических обоснований принимаемых решений;

3.Подготавливает конструкторскую и техническую до	окументацию, включая инструкции по эксплуатации, программы
испытаний и технические условия.	
Vol. II Hollmonopolino hillimetano*	Розуни толу и объеминия на видинини
Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-6	

Способен к планированию, оптимизации и развитию сетей связи.

- Знает принципы построения и работы сети связи и протоколов сигнализации, используемых в сетях связи; стандарты в области качества услуг связи
- Умеет осуществлять конфигурационное и параметрическое планирование транспортных сетей и сетей передачи данных, анализировать качество работы транспортных сетей и сетей передачи данных; разрабатывать технические требования, предъявляемые к используемому на сети оборудованию.
- Владеет навыками выработки решений по оперативному переконфигурированию сети, изменению параметров коммутационной подсистемы, сетевых платформ, оборудования и технологий

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице

Виды работ	Всего часов	Форма обучения			
		очі	ная	очнозаочная	заочная
		3	4	Х семестр	X
		семестр (часы)	семестр (часы)	(часы)	курс (часы)
Контактная работа, в том числе:			` ,		, , ,
Аудиторные занятия (всего):		38,2			
занятия лекционного типа		10			
лабораторные занятия		18			
практические занятия					
семинарские занятия		10			
Иная контактная работа:					
Контроль самостоятельной работы (КСР)					
Промежуточная аттестация (ИКР)		0,2			
Самостоятельная работа, в том числе:					

Самостоятельное изучение разделов, самоподготовка		69,8		
Подготовка к текуш	цему контролю			
Контроль:				
Подготовка к экзам	ену	-		
Общая	час.	108		
трудоемкость	в том числе контактная работа	38,2		
	зач. ед	3		

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре (на 2 курсе) (очная форма обучения)

			Количество часов			
№	Наименование разделов (тем)	Всего	Аудиторная работа		Внеаудито рная работа	
			Л	П3	ЛР	CPC
1.	Обзор базовых волноводных элементов интегральной фотоники. Физические основы распространения излучения в волноводных структурах.		2		8	
2.	Волноводные устройства с применением электрооптического и акустооптического эффекта		2			
3.	Интегрально-оптические направленные ответвители.и их применение			2		
4.	Волноводные распределители оптического излучения и оптические мультиплексоры.		2		4	
5.	Стыковка интегрально-оптических схем с волоконными световодами. Методы измерения параметров волноводов интегральной оптики			2	6	
6.	Материалы и технологии формирования интегрально-оптических схем.			2		
7.	Интегрально-оптические датчики		2			
8.	Фотонные кристаллы.			2		
9.	Новые источники приемники сигналов для интегральных схем.			2		
10.	Перестраиваемые источники излучения		2			
	ИТОГО по разделам дисциплины	107,8	10	10	18	69,8
	Промежуточная аттестация (ИКР)	0,2				
	Контроль:					
	Подготовка к экзамену	-				
	Общая трудоемкость по дисциплине	108				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа и семинарские занятия

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Обзор базовых волноводных элементов интегральной фотоники. Физические основы распространения излучения в волноводных структурах.	Планарные оптические волноводы. Волноводные и излучательные моды. Интегрально-оптические канальные волноводы, сегментированные канальные волноводы. Волноводы с вытекающими волнами (leaky waveguides). Базовые волноводные структуры интегральной оптики. Гибридные и монолитные интегрально-оптические схемы. Нелинейно-оптические эффекты в оптических волноводах.	КВ
2.	Волноводные устройства с применением электрооптического и акустооптического эффекта	Фазовые и амплитудные волноводные модуляторы. Спектральные электрооптические и акустооптические фильтры. Перестраиваемые оптические спектральные фильтры	КВ
3.		Интегрально-оптические направленные ответвители. переключатели и коммутаторы.	КВ
4.	Волноводные распределители оптического излучения и оптические мультиплексоры.	Устройства на основе Y-разветвителей. AWGмультиплексоры.	КВ
5.	Стыковка интегральнооптических схем с волоконными световодами. Методы измерения параметров волноводов интегральной оптики	Торцевая стыковка, призменная, и на основе дифракционной решетки. Методы измерения параметров волноводов: затухания, размеров поля моды и волноводных характеристик	КВ
6	Материалы и технологии формирования интегральнооптических схем.	Методы формирования элементов и устройств интегральной оптики в стекле, сегнетоэлекрических кристаллах, полупроводниковых и полимерных материалах. Промышленные технологии производства элементов и устройств интегральной фотоники в стекле и полупроводниковых материалах	КВ
7	Интегральнооптические датчики	Интегрально-оптические датчики физических величин (давления, температуры, скорости) и химикобиологических реагентов.	КВ
8	Фотонные кристаллы.	Фотонные кристаллы и устройства на их основе	КВ
9	Новые источники приемники сигналов для интегральных схем.	Гомо- и гетеропереходы. Кванторазмерные полупроводниковые структуры. Полупроводниковые оптические усилители, светодиоды и лазеры. Линейки лазеров. Лазеры с вертикальным резонатором.	КВ

10	Перестраиваемые	Перестраиваемые и многочастотные лазеры.	КВ
	источники излучения		

Примечание: КВ – ответы на контрольные вопросы

2.3.2 Лабораторные работы

№	Тема	Форма текущего
Π		контроля
П		
1	Расчеты волноводных характеристик и распределений полей планарных оптических волноводов различных типов.	Отчет по лабораторной работе
2	Экспериментальное исследование параметров многоканального интегрально-оптического Yразветвителя и оптического AWG-мультиплексора	Отчет по лабораторной работе
3	Экспериментальное определение эффективных размеров поля моды интегрально-оптического волновода	Отчет по лабораторной работе

При изучении дисциплины могут применятся электронное обучение, дистанционные образовательные технологии в соответствии с ФГОС ВО.

2.3.3 Примерная тематика курсовых работ (проектов)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по
		выполнению самостоятельной работы
1	Изучение тем	Методические указания по организации самостоятельной работы
	дисциплины,	по дисциплине «Интегральная фотоника»
	вынесенные на СРС	
2	Подготовка отчетов по	Методические указания по организации самостоятельной работы
	лабораторным работам	по дисциплине «Интегральная фотоника»
3	Подготовка к зачету	Методические указания по организации самостоятельной работы
		по дисциплине «Интегральная фотоника»

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа, в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, практические занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

1. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электротехника и электроника».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме контрольных вопросов по темам дисциплины и по отчетам лабораторных работ и промежуточной аттестации в форме вопросов и заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

$N_{\underline{0}}$	Код и наименование	Воруни тотк и обучномина (р	Наименование оценочно	ого средства
Π/	индикатора	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная
П	(в соответствии с п. 1.4)	coordererann e n. 1.1)	текущий контроль	аттестация

		1.0. 6		
	ПК-1	1.Разрабатывает и согласует	Контрольные вопросы по	Вопросы на
	Способен разрабатывать	технические задания на	темам дисциплины Отчет	зачете по темам
	структурные и	проектирование, технические условия,	о выполненных	дисциплины
	функциональные схемы радиоэлектронных систем и	программы и методики	лабораторных работах с	(приведены
	радиоэлектронных систем и комплексов в области	испытаний	дополнительными	ниже)
	инфокоммуникаций,	радиоэлектронных	контрольными	,
	принципиальных схем	устройств и систем;	вопросами	
	устройств с	2.Разрабатывает	1	
	использованием средств	структурные и		
	компьютерного	функциональные схемы		
	проектирования,	радиоэлектронных систем и		
	проведением проектных	комплексов,		
	расчетов и	принципиальные схемы		
	техникоэкономическим обоснованием	устройств с использованием		
	принимаемых решений	средств компьютерного		
	1	проектирования,		
		проведение проектных		
		расчетов и технико-		
		экономических		
		обоснований принимаемых		
		решений; 3.Подготавливает		
		болодготавливает конструкторскую и		
		техническую		
		документацию, включая		
1		инструкции по		
1		эксплуатации,		
		программы		
		испытаний и технические		
		условия.		
		3		
		1. Знает принципы		
		построения и работы сети		
		связи и протоколов		
	ПК-6	сигнализации,		
	Способен к планированию,	используемых в		
	оптимизации и развитию	сетях связи;		
	сетей связи.	стандарты в области		
		качества услуг связи		
		2. Умеет		
		осуществлять		
		конфигурационное и		
		параметрическое		
		планирование транспортных		
		сетей и сетей передачи		
		данных,		
		анализировать качество		
		работы транспортных сетей		
		и сетей передачи данных;		
		разрабатывать технические		
		требования, предъявляемые		
		к используемому на сети		
		оборудованию.		
		3. Владеет навыками		
		выработки решений по		
		оперативному		
		переконфигурированию		
		сети, изменению параметров		
		коммутационной		
		подсистемы, сетевых		
		платформ, оборудования и		
		технологий		
		1		1

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов и заданий

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет) Ниже приводятся примеры контрольных вопросов рабочей программы.

- 1. Физический механизм каналирования оптического излучения в интегрально-оптических волноводах.
- 2. Принцип работы интегрально-оптического направленного ответвителя.
- 3. Принцип работы AWG-мультиплексора.
- 4. Применение электрооптического эффекта для создания волноводного модулятора оптического излучения Маха-Цендера.
- 5. Технология формирования элементов интегральной оптики методом ионного обмена в стекле.
- 6. Оптические характеристики фотонных кристаллов.
- 7. Принцип действия интегрально-оптического датчика вращения на основе эффекта Саньяка.
- 8. Физика кванторазмерных полупроводниковых структур. Полупроводниковые оптические усилители, светодиоды и лазеры
- 9. Принцип действия лазера с вертикальным резонатором.
- 10. Физические подходы к созданию перестраиваемых полупроводниковых лазеров.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по разделам дисциплины, допускает незначительные ошибки; студент умеет правильно объяснять основной материал дисциплины, иллюстрируя его практическими примерам;

«не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести практические примеры, довольно ограниченный объем знаний материала программы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление

информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом, - в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература Основная литература

- 1.Кульчин, Ю. Н. Современная оптика и фотоника нано- и микросистем / Кульчин Ю. Н. М.: ФИЗМАТЛИТ, 2016. 440 с. https://e.lanbook.com/book/91158#book_name.
- 2. Никитин, В.А. Электростимулированная миграция ионов в интегральной оптике / В. А. Никитин, Н. А. Яковенко; М-во образования и науки Рос. Федерации, Кубанский гос. унт. [3-е изд., доп.]. Краснодар: [Кубанский государственный университет], 2013. 245 с.
- 3.Салех, Бахаа Е. А. Оптика и фотоника. Принципы и применения : [учебное пособие : в 2 т.]. / Б. Салех, М. Тейх ; пер. с англ. В. Л. Дербова. Долгопрудный : Интеллект, 2012. 759 с.,
- 4. Ларкин, А.И. Когерентная фотоника : [учебник] / А. И. Ларкин, Ф. Т. С. Юу. М. : БИНОМ. Лаборатория знаний, 2009. 317 с.
- 5.Панов, М.Ф. Физические основы интегральной оптики: учебное пособие для студентов вузов / М. Ф. Панов, А. В. Соломонов, Ю. В. Филатов. М.: Академия, 2010. 427 с.
- 6.Янг, Матт. Оптика и лазеры, включая волоконную оптику и оптические волноводы / М. Янг; пер. с англ. Н. А. Липуновой, О. К. Нания, В. В. Стратонович; под ред. В. В. Михайлина. М.: Мир, 2005. 541 с.: ил. ISBN 5030034579. ISBN 354065741X: 586 р. 7.Барыбин, А.А. Электродинамика волноведущих структур. Теория возбуждения и связи волн / А. А. Барыбин. М.: ФИЗМАТЛИТ, 2007. 510 с.
- 8. Гончаренко А.М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко. Изд. 2-е, испр. М.: [Едиториал УРСС], 2004. 237 с.

Дополнительная литература

- 1.Волноводная оптоэлектроника / под ред. Т. Тамира ; пер. с англ. А. П. Горобца, Г. В. Корнюшенко, Т. К. Чехловой под ред. В. И. Аникина. М. : Мир, 1991. 574 с.
- 2.Прохоров В.П. Моделирование физико-технологических параметров оптических ионообменных волноводов : монография / В. П. Прохоров, Н. А. Яковенко ; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар : [Кубанский государственный университет], 2014. 197 с.

3.Желтиков, А.М. Микроструктурированные световоды в оптических технологиях / А. М. Желтиков. - М.: ФИЗМАТЛИТ, 2009. - 191 с.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 3FC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на

Российской платформе научных журналов НЭИКОН http://archive.neicon.ru

- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 10. Springer Journals https://link.springer.com/
 - 11. Nature Journals https://www.nature.com/siteindex/index.html
 - 12. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: <a href="https://link.springer.com/"/
 http://www.lektorium.tv/">https://link.springer.com/"Лекториум ТВ"
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

1. Американская патентная база данных http://www.uspto.gov/patft/

- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
 - 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов http://schoolcollection.edu.ru/.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина
- "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
 - 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе

различных способов взаимодействия в открытой информационной среде и отражается в процессе формирования так называемого «электронного портфеля студента».

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам основной дисциплины «Электротехника и электроника».

Контроль осуществляется посредством тестирования студентов по окончании изучения тем учебной дисциплины и выполнения письменных контрольных работ.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- выполнение семестровой контрольной работы по индивидуальным вариантам;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «Электротехника и электроника» также относятся электронные варианты дополнительных учебных, научно-популярных и научных изданий по данной дисциплине.

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

Типовые задания для самостоятельной работы студентов

№ темы	Тема или задание текущей работы	Форма пред- ставления результатов	Сроки выполнения (недели)
1.	Метод эффективного показателя преломления расчета волноводных характеристик канальных оптических волноводов	Устный ответ, текстовый документ	1
2.	Формирование волноводного режима распространения оптического излучения в волноводах с утечкой (leaky waveguides)	Устный ответ, текстовый документ	1
3.	Измерение эффективного показателя преломления волноводной моды методом ее призменного возбуждения	Устный ответ, текстовый документ	1
4.	Принцип работы электрооптического волноводного оптического модулятора Маха-Цендера в роазличных режимах работы	Устный ответ, текстовый документ	1
5.	Формирование волноводного режима распространения оптического излучения в фотонных кристаллах	Устный ответ, текстовый документ	1
6.	Интегрально-оптические датчики концентрации химических веществ: принцип действия	Устный ответ, текстовый документ	2

7.	Технология формирования элементов	Устный ответ,	1
	субмикронной интегральной оптики "кремний на	текстовый	
	изоляторе"	документ	
8.	Принцип работы многочастотного лазера	Устный ответ,	1
		текстовый	
		документ	

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

Наименование специальных	Оснащенность специальных	Перечень лицензионного
помещений	помещений	программного обеспечения
Учебная аудитория	Мебель: учебная мебель	Операционная система MS
для проведения занятий	Технические средства обучения:	Windows 10; интегрированное
лекционного типа	экран, проектор, компьютер	офисное приложение MS Office
Учебная аудитории N137с для	Мебель: учебная мебель	
проведения лабораторных работ.	Оборудование:	
	специализированные	
	учебноисследовательские стенды	
	для проведению лабораторных	
	работ по интегральной фотонике	
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS
проведения лабораторных работ	Технические средства обучения:	Windows 10; приложение Matlab.
	экран, проектор, компьютерный	
	класс	
Учебная аудитории N133с для	Мебель: учебная мебель	Операционная система MS
проведения текущего контроля и	Технические средства обучения:	Windows 10; интегрированное
промежуточной аттестации	экран, проектор, компьютерный	офисное приложение MS Office,
	класс	приложение Matlab.

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного
самостоятельной работы	самостоятельной работы	программного обеспечения
обучающихся	обучающихся	

Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационнообразовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее	Операционная система MS Windows 10; интегрированное офисное приложение MS Office, приложение Matlab.
	оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по	

технологии Wi-Fi)