министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования — нервый

проректор

1.A. Xarypo

«Kybanensonen

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ. 02.01 ИК И КР СПЕКТРОСКОПИЯ НЕОРГАНИЧЕСКИХ И КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ

Направление подготовки

04.03.01 Химия

Направленность (профиль) координационных соединений

Неорганическая химия и химия

Форма обучения

очная

Квалификация

бакалавр

Рабочая программа дисциплины ИК и КР спектроскопия неорганических и координационных соединений составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 Химия (уровень бакалавриата)

Программу составил: Буков Н.Н., д-р хим. наук, профессор

Рабочая программа дисциплины ИК и КР спектроскопия неорганических и координационных соединений утверждена на заседании кафедры ОНХиИВТвХ , протокол № 9 от «21» апреля 2022 г.

Заведующий кафедрой

Волынкин В.А.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий

протокол № 7 от «25» апреля 2022 г.

Председатель УМК факультета

Беспалов А.В.

Рецензенты:

Горохов Р.В., канд. хим. наук, главный специалист ООО

«Современные технологии», доцент

Месь Исаев В.А., д-р физ-мат. наук, зав. кафедрой теоретической физики и компьютерных технологий ФГБОУ ВО «КубГУ», доцент

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целью освоения дисциплины «ИК и КР спектроскопия неорганических и координационных соединений» является научить обучающихся использованию методов колебательной спектроскопии для решения структурных задач исследования неорганических и координационных соединений.

1.2 Задачи дисциплины

Задачи учебной дисциплины «ИК и КР спектроскопия неорганических и координационных соединений» дать студентам основы теории и эксперимента колебательной спектроскопии, принципы работы серийных спектральных приборов и стратегию применения методов колебательной спектроскопии при идентификации и качественном анализе химических соединений.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «ИК и КР спектроскопия неорганических и координационных соединений» относится к части, формируемой участниками образовательных отношений Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 4 курсе. Вид промежуточной аттестации: зачет.

Изучению дисциплины «ИК и КР спектроскопия неорганических и координационных соединений» предшествует изучение дисциплин «Физические методы анализа» и «Электронная спектроскопия неорганических и координационных соединений». Данная дисциплина является предшествующей для дисциплины «Методы исследования неорганических и композитных материалов».

1.4 Перечень планируемых результатов обучения по дисциплине ИК и КР спектроскопия неорганических и координационных соединений, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине		
достижения компетенции			
ПК-2 – Способен применять соврем	енную аппаратуру при проведении научных		
исследований, а также обрабатывать и а			
ИПК-2.1. Осуществляет исследование	знает базовые и специальные		
химических соединений и материалов	·		
с использованием современного			
химического оборудования			
химического оборудования	умеет выбирать оптимальные методы		
	колебательной спектроскопии для		
	исследования конкретных химических		
	соединений		
	владеет методологией колебательной		
	спектроскопии		
ИПК-2.2. Обрабатывает и анализирует	знает теорию и практику колебательной		
экспериментальные данные,	спектроскопии		
полученные с использованием	умеет обрабатывать и осуществлять анализ		
современной химической аппаратуры	экспериментальных данных колебательной		
	спектроскопии		
	владеет методологией колебательной		
	спектроскопии		
ПК-3 – Способен использовать совреме	енные теоретические представления химической		

науки для анализа экспериментальных данных.

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции	
ИПК-3.1. Использует современные	знает теорию колебательной спектроскопии
теоретические представления	умеет использовать полуэмпирические методы
химической науки в своей	анализа данных колебательной спектроскопии
профессиональной деятельности	для установления строения исследуемых
	соединений
	владеет методологией колебательной
	спектроскопии
ИПК-3.2. Интерпретирует результаты	знает базовые и специальные
химического эксперимента на основе	экспериментальные и теоретические методы
современных теоретических	анализа данных колебательной
представлений	спектроскопиив
	умеет осуществлять расчет основных
	параметров исследуемых молекул по данным
	колебательной спектроскопии
	владеет методологией колебательной
	спектроскопии

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зачетных единиц (180 часов), их распределение по видам работ представлено в таблице

	Виды работ	Всего	Форма обучения
		часов	очная
			7
			семестр
			(часы)
Контактная рабо	ота, в том числе:		
Аудиторные заня	тия (всего):	102	102
занятия лекционно	ого типа	34	34
лабораторные заня	RUTF	68	68
практические заня	РИТ		
семинарские занят	РИТ		
Иная контактная	гработа:		
	ятельной работы (КСР)	6	6
Промежуточная ат	ттестация (ИКР)	0.2	0.2
Самостоятельная	пработа, в том числе:	71,8	71,8
Оформление лабор	раторных работ	34	34
Самостоятельное і	изучение теоретического материала	17	17
Самостоятельное р	решение задач	-	-
Подготовка к теку	щему контролю	20,8	20,8
Контроль:			
Подготовка к экзаг	мену	-	-
Общая	час.	180	180
трудоемкость	в том числе контактная работа	108.2	108.2
	зач. ед	5	5

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 7 семестре (очная форма обучения)

	Наименование разделов (тем)		Количество часов				
№			Аудиторная работа			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1.	Введение.	3,8	2	-	-	1,8	
2.	Спектроскопия колебательных переходов в молекулах.	90	16	-	28	46	
3.	Применение колебательной спектроскопии в химии.	80	16	1	40	24	
	ИТОГО по разделам дисциплины	-	34	-	68	71,8	
	Контроль самостоятельной работы (КСР)	6	-	-	-	-	
	Промежуточная аттестация (ИКР)	0.2	-	1	-	-	
	Подготовка к текущему контролю	-	_	-	-	-	
	Общая трудоемкость по дисциплине	180	-	-	-	-	

Примечание: Π — лекции, Π 3 — практические занятия / семинары, Π 9 — лабораторные занятия, Π 9 — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего
1.	Вражания	Фурууулаарад тааруд мата уа Варууауулаату	контроля
1.	Введение	Физическая теория метода. Возможности,	1 1
		области применения и интеграция методов колебательной спектроскопии.	
2.	Спектроскопия	Квантовомеханический подход к описанию	устный опрос
	колебательных	колебательных спектров Уровни энергии, их	I I
	переходов в	классификация. Фундаментальные, обертонные	
	молекулах	и составные частоты. Инфракрасные (ИК)	
		спектры поглощения и спектры	
		комбинационного рассеяния (КР).	
		Правила отбора и интенсивность полос	
		колебательных переходов в ИК-спектрах	
		поглощения и в спектрах КР.	
		Классический подход к решению прямой и	
		обратной колебательных задач. Частоты и	
		формы нормальных колебаний молекул.	
		Выбор модели. Естественные и нормальные	
		координаты молекул. Коэффициенты	
		кинематического взаимодействия и силовые	
		постоянные. Учёт симметрии молекул.	
		Типы симметрии нормальных колебаний.	
		Приводимые и неприводимые представления.	
		Таблицы характеров неприводимых	
		представлений точечных групп симметрии и	
		правила пользования ими при определении	
		типов симметрии и активности нормальных	
		колебаний молекул в спектрах ИК и КР.	
		Характеристичность нормальных колебаний.	

		Концепция групповых частот и её ограничения. Сопоставление ИК- и КР-спектров и выводы о	
		симметрии молекул.	
3.	Применение	Идентификация спектральных данных.	ЛР1
	колебательной	Качественный и количественный анализ.	
	спектроскопии в	Приготовление образцов для спектральных	
	химии	измерений.	
		Исследования строения молекул, динамической	
		изомерии, равновесий и кинетики химических	
		реакций.	
		Методы и техника ИК- и КР-спектроскопии.	
		Понятия о методах НПВО и МНПВО.	
		Подготовка образцов для регистрации спектров.	

2.3.2 Занятия семинарского типа

Занятия семинарского типа - не предусмотрены

2.3.3 Лабораторные занятия

	Наименование		Форма
No	раздела	Наименование лабораторных работ	текущего
	раздела		контроля
1.	Введение	Техника безопасности при работе в химической	УО
		лаборатории. Работа с электроизмерительными и	
		оптическими приборами.	
2.	Спектроскопия	Измерение ИК спектров пленок полимеров.	ЛР
	колебательных	Измерение ИК спектров твердых соединений.	
	переходов в	Измерение ИК-спектров поглощения жидких	
	молекулах	соединений.	
3.	Применение	Работа с Базами данных по ИК спектрам.	ЛР
	колебательной	Самостоятельная работа №1.	
	спектроскопии в	Самостоятельная работа №2.	
	химии	Итоговая самостоятельная работа	

2.3.4 Примерная тематика курсовых работ

Курсовая работа не предусмотрена учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

NΩ	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1		Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования. Молекулярная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/MOLEKULYRNAYSPEKTROSKOPIY_6.pdf
2	колебательных	1.Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова С.Л. Физические методы исследования: Колебательная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/KOLEBATELNAYSPEKTROSKOPIY 4.pdf
3	колебательной	Буков Н.Н., Костырина Т.В., Абрамов Д.Е., Фурсина А.Б. Физические методы исследования. Часть 2. Колебательная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/KOLEBATELNIESPEKTRI 3.pdf

4	Подготовка к	Методические	рекомендации	К	организации	аудиторной	И	внеаудиторной
	текущему	(самостоятельной) работы студент	гов:	методические ук	азания / сост.	Т.П.	Стороженко, Т.Б.
	контролю	Починок, А.В. Бе	спалов, Н.В. Лоз	a. – l	Краснодар: Кубан	нский гос. ун-т	, 201	8 89 c.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины «ИК и КР спектроскопия неорганических и координационных соединений»

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий:

Семестр	Вид занятия (Л, ПР, ЛР)	Используемые интерактивные образовательные технологии	Количество часов
7	Л	электронные презентации	6
	ПР	-	
	ЛР	решение проблемных ситуаций в	6
		составе малых групп.	
Итого:			12

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль осуществляется в устной и электронной форме в процессе выполнения лабораторных работ. Промежуточный контроль проводится в виде устного опроса и выполнения самостоятельных работ. Итоговый контроль осуществляется приемом зачета в 7 семестре.

Критерии оценки сформированных компетенций определяются уровнем усвоения изучаемого материала

- обучаемый имеет определенное представление об ИК спектральных методах исследования, но не проявляет их должной осмысленности и не справляется с выполнением соответствующих письменных и экспериментальных работ (незачтено);
- обучаемый имеет четкие представления об ИК спектральных методах исследования, понимает их сущность, однако обнаруживает затруднение в их воспроизведении и применении на практике, что приводит к необходимости уточняющих и дополнительных вопросов в процессе проверки (зачтено, удовл);
- обучаемый достаточно полно осмыслил материал об ИК спектральных методах исследования, с пониманием формулирует соответствующие понятия (теоретические положения), хотя при их обосновании и воспроизведении нуждается в некоторых уточнениях, обнаруживает умение применять усвоенные знания на практике, допуская мелкие, несущественные недочеты в письменных работах (зачтено, хор);
- высший уровень владения материалом состоит в глубоком осмыслении ИК спектральных методов исследования на понятийном уровне, в умении свободно и логично воспроизводить и обосновывать содержащиеся в них положения примерами и фактами, а также не допускать ошибок при выполнении письменных и практических работ, проявлять самостоятельность и элементы творчества (зачтено, отл).

4.1 Фонд оценочных средств для проведения текущей аттестации

ТЕМЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 1

по курсу «ИК и КР спектроскопия неорганических и координационных соединений»

по теме «Измерение ИК спектров твердых соединений»

Записать в таблетках с KBr и в суспензии с вазелиновым маслом, провести обработку и отнесение полос поглощения ИК спектров твердых солей следующих соединений:

- А) безводных и кристаллогидратов сульфатов натрия и меди;
- Б) моно-, ди- и тризамещенных фосфатов натрия;
- В) кислых, основных и нормальных карбонатов калия и кальция;
- Г) алюмокалиевых и хромокалиевых квасцов;
- Д) нитратов калия, натрия и лития;

ТЕМЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 2

по курсу «ИК и КР спектроскопия неорганических и координационных соединений»

по теме «Измерение ИК-спектров поглощения газов и жидких соединений

Записать, провести обработку и отнесение полос поглощения ИК спектров газов и растворов следующих соединений:

- А) пары воды, аммиака, сероводорода, бензола, хлороформа;
- Б) первичных и вторичных аминов;
- В) кислых, основных и нормальных карбонатов калия и кальция;
- Г) алюмокалиевых и хромокалиевых квасцов;
- Д) нитратов калия, натрия и лития;

ТЕМА ИТОГОВОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

по курсу «ИК и КР спектроскопия неорганических и координационных соединений»

Записать спектры, провести отнесение полос поглощения и установить химическую формулу и строение неизвестного соединения.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Вопросы к зачету

- 1. Общая характеристика методов колебательной спектроскопии.
- 2. Полуэмпирические методы в колебательной спектроскопии.
- 3. Прямая и обратная спектральная колебательная задача.
- 4. Законы светопоглощения.
- 5. Вероятности колебательных переходов и правила отбора.
- 6. Интенсивности в колебательных спектрах.
- 7. Химические процессы, влияющие на ширину спектральной линии.
- 8. Обработка результатов спектральных измерений.
- 9. Естественные пределы спектральных измерений.
- 10. Концепция групповых частот в колебательной спектроскопии
- 11. Корреляция силовых постоянных связей.
- 12. Правила отбора в колебательной спектроскопии
- 13. Симметрия молекулярных колебаний
- 14. Методика эксперимента в колебательной спектроскопии.
- 15. Влияние растворителя на колебательные спектры
- 16. Различия в ИК- и КР-спектроскопии.
- 17. Нормальные колебания многоатомных молекул.
- 18. Анализ нормальных колебаний молекул.
- 19. Двухатомные молекулы.
- 20. Трехатомные молекулы.
- 21. Четырехатомные молекулы.
- 22. Пятиатомные молекулы.
- 23. Шестиатомные молекулы.
- 24. Многоатомные молекулы.
- 25. Координационные соединения с азотсодержащими лигандами.
- 26. Координационные соединения с кислородсодержащими лигандами.
- 27. Координационные соединения с серосодержащими лигандами.
- 28. Координационные соединения с полидентатными лигандами.
- 29. Металлорганические соединения.
- 30. Бионеорганические соединения.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

– в печатной форме,

– в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Основная литература:

- 1. Пентин, Ю.А. Физические методы исследования в химии [Текст] : Учебник для студентов вузов. М.: Изд-во "МИР" Изд-во "АСТ", 2003. 683 с. : ил. (Методы в химии). Библиогр. : с. 658-661. ISBN 5030034706. ISBN 5170187602 : 358.00.
- 2. Буков, Н.Н. Физические методы исследования: колебательная спектроскопия [Текст]: учебное пособие / Н. Н. Буков, Ф. А. Колоколов, Т. В. Костырина, С. Л. Кузнецова; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2010. 53 с.: ил. Библиогр.: с. 46. 8 р. 45 к.
- 3. Лебухов В.И. Физико-химические методы исследования [Электронный ресурс]: Учебник / В.И. Лебухов, А.И. Окара, Л.П. Павлюченкова; под ред. А.И. Окара. СПб.: Издательство «Лань», 2012. 480 с. : ил. (Учебник для вузов. Специальная литература). ISBN: 978-5-8114-1320-1. Режим доступа: https://e.lanbook.com/book/4543#book_name

Дополнительная литература:

- 1. Васильева, В.И. Спектральные методы анализа. Практическое руководство [Электронный ресурс]: Учебное пособие / В.И. Васильева, О.Ф. Стоянова, И.В. Шкутина. С.И. Карпов; под. Ред. В.Ф. Семенова. СПб.: Издательство «Лань», 2014. 416 с. (Учебники для вузов. Специальная литература). ISBN: 978-5-8114-1638-7. Режим доступа: https://e.lanbook.com/book/50168#book name
- 2. Пентин, Ю.А. Основы молекулярной спектроскопии [Текст] : учебное пособие для студентов вузов / Ю. А. Пентин, Г.М. Курамшина. М. : Мир : БИНОМ. Лаборатория знаний, 2008. 398 с. : ил. (Методы в химии). Библиогр. : с. 392-393. ISBN 9785947747652. ISBN 9785030038469 : 379.50.

5.2. Периодическая литература

- 1. Успехи химии российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.
- 2. Журнал неорганической химии российский научный журнал, публикующий статьи по теоретическим проблемам неорганической химии, механизмам реакций, соотношениям между физическими свойствами, реакционной способностью и строением.
- 3. Журнал общей химии один из крупнейших российских научных журналов, отражающих основные направления развития химии, публикующий работы, посвящённые актуальным общим вопросам химии и проблемам, возникающим на стыке различных разделов химии, а также на границах химии и смежных с ней наук (металлоорганические соединения, элементоорганическая химия, органические и неорганические комплексы, механохимия, нанохимия и т. д.).

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com

5. ЭБС «ЛАНЬ» <u>https://e.lanbook.com</u>

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 9. Springer Journals https://link.springer.com/
 - 10. Nature Journals https://www.nature.com/siteindex/index.html
 - 11. Springer Nature Protocols and Methods

https://experiments.springernature.com/sources/springer-protocols

- 12. Springer Materials http://materials.springer.com/
- 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 5. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «ИК и КР спектроскопия неорганических и координационных соединений» требует от студентов регулярного посещения лекций, а также выполнения и защиты лабораторных работ, ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения,

выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал слово в слово.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Для материально-технического обеспечения дисциплины «ИК и КР спектроскопия неорганических и координационных соединений» используется лабораторное оборудование и учебно-научная аппаратура (интерактивная доска, демонстрационные модели).

При выполнении лабораторных работ для реализации методик используются: инфракрасные Фурье-спектрофотометры, инвентарь изготовления паст и таблеток исследуемых соединений, весы аналитические. При проведении лабораторных работ используются химические реактивы и посуда.

ПЭВМ уровня не ниже Pentium IV с операционной системой Windows XP / Windows 7, Компьютерная программа Hyper Chemistry.

No	Вид работ	Материально-техническое обеспечение дисциплины
715	Вид расот	(модуля) и оснащенность
	Лекционные занятия	Лекционная аудитория 422С, оснащенная презентационной
		техникой и соответствующим программным обеспечением.
	Семинарские занятия	-
	Лабораторные занятия	Аудитория 422С, оснащенная презентационной техникой и
		соответствующим программным обеспечением и
		лаборатории факультета, укомплектованные
		специализированной мебелью и техническими средствами
		обучения.
	Курсовое	-

проектирование	
Групповые (индивидуальные)	Аудитория 422С, оснащенная презентационной техникой и соответствующим программным обеспечением.
консультации	
Текущий контроль, промежуточная	Аудитория 422С, оснащенная презентационной техникой и соответствующим программным обеспечением.
аттестация	
Самостоятельная	Кабинет для самостоятельной работы, оснащенный
работа	компьютерной техникой с возможностью подключения к
	сети «Интернет», программой экранного увеличения и
	обеспеченный доступом в электронную информационно-
	образовательную среду университета.