Аннотация рабочей программы дисциплины Б1.О.19.10 КВАНТОВАЯ МЕХАНИКА

Объем трудоемкости: 3 зачетные единицы

Цель дисциплины: ознакомление студентов со специфическими квантовыми свойствами и закономерностями микрообъектов, с применением законов квантовой механики для анализа физических явлений и процессов.

Задачи дисциплины: формирование основных понятий и представлений квантовой механики; ознакомление студентов с основными методами и их использованием для решения ряда конкретных задач; создание базы для изучения последующих разделов курса теоретической физики; обсуждение приложений квантовой механики, предсказанных на основе квантовых свойств и закономерностей микрообъектов; формирование у будущих учителей представления о квантовой теории как фундаменте современной физики и как важнейшей составной части общечеловеческой культуры.

Место дисциплины в структуре образовательной программы

Дисциплина «Квантовая механика» относится к Модулю "Основы предметных знаний по профилю «Физика»". Модуль относится к обязательной части и является базовым теоретическим и практическим основанием для подготовки бакалавров по профилю «Физика».

Квантовая механика является одним из главных достижений научной мысли XX века. Наряду с теорией относительности она составляет фундамент современной физики. Она опирается на значительно более сложный, по сравнению с классической механикой, математический аппарат. Программа курса предусматривает изучение трёх физически эквивалентных формулировок квантовой механики: волновой механики Шрёдингера, матричной механики Гейзенберга и векторной квантовой механики Дирака.

Изучение дисциплины «Квантовая механика» базируется на знаниях, умениях, навыках, сформированных в процессе изучения дисциплин «Механика», «Математические методы в физике» и школьном курсе физики.

Понятия, законы и методы, введенные в дисциплине «Квантовая механика», будут использоваться при изучении дисциплин «Электродинамика и теория относительности», «Термодинамика, статистическая физика и физическая кинетика», а также для последующего прохождения педагогической практики, подготовки к итоговой государственной аттестации.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине						
ПК-1. Способен осваивать и использовать базовые научно-теоретические знания и							
практические умения по предмету в профессиональной деятельности							
ИПК-1.1. Понимает сущность,	знает предмет, цель, задачи и методы физики, её место в						
закономерности, принципы и особенности	системе наук; фундаментальные физические теории и						
изучаемых явлений и процессов, базовых	законы; понимать, анализировать физическую сущность						
теорий в области физики и технологии	явлений и процессов, происходящих в природе и технике						
	умеет приобретать новые научно-теоретические знания						
	владеет навыками применения физических теорий к						
	анализу простейших теоретических и прикладных						
	вопросов						
ПК-2 Способен конструировать содержание образования в предметной области в соответствии							
с требованиями ФГОС основного и среднего общего образования, с уровнем развития современной							
науки и с учетом возрастных особенностей обучающихся							
ИПК-2.1. Определяет приоритетные	знает методы и приёмы постановки физического						
направления развития образовательной	эксперимента, способы его математической обработки;						
системы РФ, требования ФГОС, примерных	знать методы и приёмы решения конкретных физических						
	задач, физические приложения математических понятий						

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине				
образовательных программ по учебным предметам «Физика» и «Технология»	умеет применять базовые знания для решения теоретических и практических физических задач, правильно организовывать физические наблюдения и эксперименты, анализировать их результаты, осуществлять построение математических моделей физических явлений и процессов владеет навыками проведения физических наблюдений и экспериментов, решения простейших теоретических и прикладных задач				

Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины (для студентов $O\Phi O$)

	my centilled & 1 e)	Количество часов					
№ раздел а	Наименование разделов	Всего	Аудиторная			Самостоятельная	
			работа			работа	
			Л	П3	ЛР		
	Экспериментальные основы и				-		
1.	математический аппарат квантовой		4	4		4	
	механики						
2.	Волновая функция и ее свойства		4	4		4	
	Операторы физических величин.						
3.	Собственные функции, собственные		4	6		4	
	значения, средние.						
141	Точно решаемые квантово-				-		
	механические задачи. Одномерное		4	6		5	
	движение. Движение в поле						
	центральных сил						
	Приближенные методы квантовой		4	4	-	4	
	механики. Теория возмущений						
6.	Спин и системы тождественных частиц		4	4	-	4	
	ИТОГО		24	28	-	25	

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Автор Парфенова И.А.