МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет химии и высоких технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.05.02 КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ ИСПЫТАНИЙ

Направление подготовки/специальность 27.03.01 Стандартизация и метрология

Направленность (профиль) / специализация Стандартизация и сертификация

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины «Компьютерное обеспечение испытаний» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 27.03.01 - Стандартизация и метрология.

Программу составила:

Доцент кафедры аналитической химии, к.э.н.

Сальникова А.А.

Рабочая программа дисциплины обсуждена и утверждена на заседании кафедры аналитической химии протокол № 6 от 21 апреля 2022 г.

Заведующий кафедрой

Темердашев З.А

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 7 от 24 апреля 2022 г.

Председатель УМК факультета

Беспалов А.В.

Рецензент:

Соболев К.И., генеральный директор ООО «РУССКИЙ ТОРГОВЫЙ ДОМ»

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

В соответствии с Федеральным государственным образовательным стандартом высшего образования, основной образовательной программой бакалавриата по направлению подготовки 27.03.01 — Стандартизация и метрология целью дисциплины Б1.В.ДВ.05.02 «Компьютерное обеспечение испытаний» является подготовка студента к решению профессиональных задач путем применения современных методов автоматизации измерений, контроля, испытаний.

1.2 Задачи дисциплины

В результате изучения дисциплины студенты должны овладеть навыками сбора и анализа информационных данных измерения; знать методы разработки программного обеспечения измерения параметров объектов различной физической природы; владеть принципами построения математических моделей средств измерений; осуществлять выбор технологии, инструментальных средств и средств вычислительной техники при организации процессов измерений, контроля, испытаний обрабатывать экспериментальные данные и оценивать точность (неопределенность) измерений, испытаний и достоверность контроля.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Компьютерное обеспечение испытаний» относится к вариативной части Блока 1 "Дисциплины по выбору" учебного плана.

Учебная дисциплина «Компьютерное обеспечение испытаний» базируется на знаниях, умениях и навыках, полученных при изучении дисциплин «Математика», «Электротехника и электроника».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине
достижения компетенции	
	кнических данных для моделирования процессов и средств
измерений с использованием стандартных прог	раммных средств автоматизированного проектирования
ИПК-1.1. проводит изучение и анализ	знает теоретические и методологические основы
необходимой информации, технических	автоматизации измерений и испытаний
данных, показателей и результатов работы, их	умеет применять технологии автоматизации измерений и
обобщение и систематизацию, проводит	испытаний
необходимые расчеты с использованием	владеет технологиями автоматизации измерений и
современных технических средств	испытаний
ИПК-1.2. участвует в моделировании	знает основы моделирования процессов и средств
процессов и средств измерений, испытаний и	измерений, испытаний и контроля с использованием
контроля с использованием стандартных	стандартных пакетов и средств автоматизированного
пакетов, и средств автоматизированного	проектирования
проектирования	умеет применять стандартные пакеты и средства
	автоматизированного проектирования
	владеет навыками использования стандартных пакетов и
	средств автоматизированного проектирования

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице.

Вид уче	Всего часов	5 семестр	
Контактная работа, в том	числе:	52,2	52,2
Аудиторные занятия (всег	70)	50	50
Занятия лекционного типа		16	16
Лабораторные занятия		34	34
Иная контактная работа:		2,2	2,2
Контроль самостоятельной	работы (КСР)	2	2
Промежуточная аттестация	(ИКР)	0,2	0,2
Самостоятельная работа,	55,8	55,8	
Проработка учебного (теоре	20	20	
Выполнение индивидуальни	10	10	
сообщений, презентаций)			
Подготовка к текущему кон	25,8	25,8	
Контроль:	Контроль:		
Подготовка к экзамену	-	-	
Общая трудоемкость	час.	108	108
	в том числе контактная работа	52,2	52,2
	зач.ед.	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемой в 6 семестре

	Наименование разделов	Количество часов				
№		Всего	Аудиторная работа			Внеауд иторная работа
			Л	ЛР	ПР	CPC
1	2		4	5	6	7
1	Компьютерное моделирование.	34,6	5	11	-	18,6
2	Статистическая обработка данных	34,6	5	11	-	18,6
3	Программное обеспечение автоматизации испытаний	36,6	6	12	-	18,6
	Итого по дисциплине:		16	34	-	55,8
	Контроль самостоятельной работы (КСР)					
	Промежуточная аттестация (ИКР)	0,2				
	Общая трудоемкость по дисциплине:	108				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№ раздела	Наименование раздела	Содержание раздела Форма текущего контроля		
1	2	3	4	
1.	Компьютерное	Использование компьютера в научных	Расчетно-	
	моделирование.	исследованиях. Основные подходы к	графическое	
		построению компьютерных моделей.	задание	
2.	Статистическая	Первичная обработка данных в	Расчетно-	
	обработка данных	электронных таблицах. Методы графичес:		
		статистического вывода	задание	
3.	Программное	Виды программного обеспечения.	Расчетно-	
	обеспечение	Характеристики шлюзов и интерфейсов.	графическое	
	автоматизации		задание	
	испытаний			

2.3.2 Занятия лабораторного типа

No	Наименование раздела	Наименование практических	Форма контроля
раздела		работ	
1	Компьютерное	Построение компьютерной	Устный опрос
	моделирование.	модели эксперимента.	
2	Статистическая	Изучение методов обработки	Устный опрос
	обработка данных	данных испытаний. Анализ	
		данных с применением	
		однофакторного анализа	
3	Пиотион	Cannyayyyayyayy	Vorm
3	Программное	Сравнение и выбор	Устный опрос
	обеспечение	программного обеспечения для	
	автоматизации	проведения испытаний	
	испытаний		

2.3.3 Занятия семинарского типа

(учебным планом занятия семинарского типа не предусмотрены)

2.3.4 Примерная тематика курсовых работ (проектов)

(Курсовые работы – не предусмотрены)

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Обеспечение обучающихся инвалидов и лиц с ограниченными возможностями здоровья учебно-методическими ресурсами осуществляется в формах, адоптированных к ограничениям их здоровья

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Компьютерное моделирование.	Методические рекомендации к организации
2.	Статистическая обработка данных	аудиторной и внеаудиторной
3.	Программное обеспечение автоматизации испытаний	(самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.

3 Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- проведение практических занятий;
- опросы;
- индивидуальные практические задания;
- контрольные работы;
- представление отчетов по выполнению лабораторных работ;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение индивидуальных типовых расчетов, подготовка к опросу, зачету).

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации

4.1.1. Пример контрольной работы

Контрольная работа №1 Вариант 2

- 1. Для чего служит интерфейс?
- 2. Сколько линий использует интерфейс GPIB для передачи данных?
- 3. Посредством какого устройства можно подключить прибор, снабженный интерфейсом GPIB, к персональному компьютеру IBM?

4.1.2. Примерная тематика рефератов

- 1. История и эволюция устройств автоматизации и вычислительных машин.
- 2. Этические, социальные и правовые аспекты компьютерного обеспечения испытаний.
- 3. Жизненный цикл устройств автоматизации.
- 4. Организация хранения информации результатов контроля, измерений, испытаний.
- 5. Структуры баз данных результатов измерений, контроля, испытаний.
- 6. Экспертные системы, их применение в автоматизации измерений, испытаний и контроля.

7. Использование всемирной сети Internet для реализации распределенных автоматизированных систем измерений и контроля.

4.2 Фонд оценочных средств для проведения промежуточной аттестации 4.2.1. Вопросы к зачету

- 1. Основные положения автоматизации измерений. Понятие автоматического процесса.
- 2. Что изучает автоматика? Классификация промышленных автоматических систем.
 - 3. Автоматическая система контроля.
 - 4. Применением ЭВМ в автоматизации.
- 5. Обобщенная структурная схема типовой системы автоматического измерения, контроля и испытания.
 - 6. Обобщенная модель измерительного прибора
 - 7. Чувствительный элемент, датчик
 - 8. Классификация датчиков
 - 9. Контактные и бесконтактные чувствительные элементы
- 10. Основное назначение коммутаторов, их классификация и основные технические характеристики.
 - 11. Схемы коммутаторов.
 - 12. Назначение мультиплексоров и его схема.
- 13. Значение микропроцессора для автоматизации и его технические характеристики.
 - 14. Архитектура микропроцессора и его технические характеристики.
 - 15. Структурная схема микропроцессора и ее описание.
 - 16. Функциональная схема микропроцессора и ее описание.
 - 17. Классификация АЦП.
 - 18. Назначение АЦП. Технические характеристики АЦП.
 - 19. Назначение ЦАП. Технические характеристики ЦАП.
- 20. Основные производители АЦП. На какие параметры следует обращать внимание при выборе АЦП?
- 21. Обобщенная структурная схема типовой системы автоматического измерения, контроля и испытания.
 - 22. Понятие интерфейса
 - 23. Схема соединений ЭВМ и внешних ФЭ системы через общую магистраль.
 - 24. Структура интерфейса КАМАК.
 - 25. Структура AS-интерфейса.
 - 26. Интерфейс Interbus, Profibus.
 - 27. ОРС –стандарт
 - 28. Конструкции стрелок измерительных механизмов
 - 29. Виды шкал измерительных приборов
 - 30. Поясните понятие SCADA-системы и ее основные функции.
 - 31. Структура технических средств АСУ ТП
 - 32. Основные функции SCADA –систем
 - 33. Цифровые фильтры
 - 34. Кодирование информации
 - 35. Двоичная система счисления
 - 36. Двоично-десятичный код
 - 37. Классическая иерархия АСУ ТП
 - 38. Тенденция развития АСУ ТП.
 - 39. Иерархия современной распределенной системы автоматизации

- 40. Методы определения полной погрешности автоматизированных измерительных систем
 - 41. Нормируемые характеристики автоматизированных средств измерения
 - 42. Метрологическое обеспечение автоматизированных средств измерения

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Критерии оценки: «зачтено» выставляется, если студент, как минимум, демонстрирует следующие знания, умения и навыки:

Знает фрагментарно (на уровне понятий) принципы построения, структуру и содержание систем обеспечения достоверности измерений и оценки качества продукции; способы оценки точности (неопределенности) измерений и испытаний и достоверности контроля;

умеет проводить изучение и анализ необходимой информации, технических данных, показателей и результатов работы, их обобщение и систематизацию;

владеет методами сбора анализа необходимой информации, технических данных, показателей и результатов работы, их обобщения и систематизации.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Шишмарев, Владимир Юрьевич. Технические измерения и приборы [Текст]: учебник для студентов вузов / В. Ю. Шишмарев. 2-е изд., испр. Москва: Академия, 2012. 384 с. (Высшее профессиональное образование. Автоматизация и управление) (Бакалавриат). Библиогр.: с. 377-378.
- 2. Мелехин, Виктор Федорович. Вычислительные машины, системы и сети [Текст]: учебник для студентов вузов / В. Ф. Мелехин, Е. Г. Павловский. 3-е изд., стер. М.:

- Академия, 2010. 555 с.: ил. (Высшее профессиональное образование. Автоматизация и управление). Библиогр.: с. 549-551.
- 3. Зубарев, Ю.М. Автоматизация координатных измерений в машиностроении [Электронный ресурс] : учебное пособие / Ю.М. Зубарев, С.В. Косаревский. Электрон. дан. Санкт-Петербург : Лань, 2017. 160 с. Режим доступа: https://e.lanbook.com/book/93000.

5.2 Дополнительная литература:

- 1. Келим, Юрий Михайлович. Типовые элементы систем автоматического управления [Текст]: учебное пособие для студентов учреждений среднего проф. образования / Ю. М. Келим. М.: ФОРУМ: ИНФРА-М, 2002. 383 с.: ил. (Профессиональное образование). Библиогр.: с. 378. ISBN 581990043. ISBN 5160009892.
- 2. Власов, И.И. Техническая диагностика современных цифровых сетей связи. Основные принципы и технические средства измерений параметров передачи для сетей PDH, SDH, IP, Ethernet и ATM [Электронный ресурс] : учебное пособие / И.И. Власов, Э.В. Новиков, М.М. Птичников, Д.В. Сладких ; под ред. М.М.Птичникова. Электрон. дан. Москва : Горячая линия-Телеком, 2012. 552 с. Режим доступа: https://e.lanbook.com/book/5134.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Редакционно-информационное агентство "Стандарты и качество". Средство массовой информации, посвященное проблемам в области стандартизации и качества в разных отраслях промышленности.

http://www.stq.ru/

Раздел "Управление качеством и ISO 9000" на ресурсе "Корпоративный менеджмент", где размещены учебники, курсы лекций, аналитические статьи, ссылки на другие источники информации в Интернет.

http://www.cfin.ru/management/iso9000/index.shtml

Открытый проект по темам: управление качеством, управленческий консалтинг, психология торговли, интернет-маркетинг. Статьи, обзоры, консультации, форум. http://www.klubok.net

"QUALITY - Менеджмент качества и ISO 9000", Документы и материалы по менеджменту качества, стандартам ISO серии 9000, ежедневное обновление. http://quality.eup.ru/
Всероссийский научно-исследовательский институт классификации, терминологии и информации по стандартизации и качеству является Главным информационным центром Государственного комитета по стандартизации и метрологии.

http://www.vniiki.ru/

Официальный сайт Государственного комитета Российской Федерации по стандартизации и метрологии.

http://www.gost.ru/

сайт Российской Ассоциации Деминга.

http://www.deming.ru/

Справочно-правовая система «Консультант Плюс» http://www.consultant.ru Портал открытых данных Российской Федерации https://data.gov.ru

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

 составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов; – проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде. В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам дисциплины.

Контроль осуществляется посредством выполнения письменных контрольных работ.

По итогам выполнения каждой лабораторной работы студент составляет подробный письменный отчет, опираясь на который должен в беседе с преподавателем продемонстрировать знание теоретического и экспериментального материала, относящегося к работе. Проверка знаний студента основана на контрольных вопросах, приведенных в описании работы и дополнительных вопросах, касающихся соответствующих разделов основной дисциплины.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Программное обеспечение для организации управляемого и безопасного доступа в Интернет.
- 4. Программное обеспечение для безопасной работы на компьтере файловый антивирус, почтовый антивирус, веб-антивирус и сетевой экран.

8.2 Перечень информационных технологий.

- Консультирование посредством электронной почты;
- Использование электронных презентаций при проведении практических занятий;
- Самостоятельный поиск обучающимися информации в электронных системах и сети Интернет.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
1.	Лекционные занятия	Лекционная аудитория 322с, оснащенная презентационной	
		техникой (проектор, ноутбук) и соответствующим программным обеспечением	
2.	Лабораторные занятия	Компьютерный класс №3 в ВЦ (Вычислительный центр), оснащенный компьютерами с необходимым программным	
		обеспечением	

3.	Текущий контроль,	Лаборатория 422с
	промежуточная	
	аттестация	
4.	Самостоятельная	Читальный зал (108с), предназначенный для
	работа	самостоятельной работы, обеспеченный доступом в
		электронную информационно-образовательную среду
		университета. с возможностью подключения к сети
		«Интернет».
		Аудитория 400с, предназначенная для самостоятельной
		работы студента, оснащенная компьютером с
		соответствующим программным обеспечением, доступом к
		сети «Интернет».