МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования первый

проректор

подпись

« 27 »

2022

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.31СТРОЕНИЕ ВЕЩЕСТВА

Направление подготовки/специальность: 04.03.01 химия

Направленность (профиль) / специализация: физическая химия

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины: СТРОЕНИЕ ВЕЩЕСТВА

составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки / специальности: 04.03.01 химия

Программу составил: доцент, к.х.н. Зеленов В.И.

// /

Рабочая программа дисциплины: СТРОЕНИЕ ВЕЩЕСТВА утверждена на заседании кафедры ОНХ и ИВТ в химии протокол № ____ 9 ___ «__21_»____ дпредля ____ 2022 г.

Заведующий кафедрой

Sthere

Волынкин В.А.

Председатель УМК факультета Беспалов А.В.

Z

Рецензенты: Кононенко Н.А., д.х.н., проф. КубГУ Шабанова И.В., к.х.н., доц. КубГАУ

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Формирование готовности к профессиональной деятельности, связанной с прогнозированием свойств веществ и механизмов протекания химических процессов на основе данных о структуре вещества и фундаментальных положений квантовомеханической теории, в соответствии с компетентностным подходом.

1.2 Задачи дисциплины

- Овладение системой фундаментальных химических понятий в области квантовой механики и строения вещества, необходимых в дальнейшей профессиональной деятельности;
- Раскрытие роли современных теорий, описывающих строение вещества, как основы теоретической и экспериментальной химии;
- Формирование умения применять теоретические знания в области строения вещества для решения практических задач дальнейшей профессиональной деятельности.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Строение вещества» относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана.

Изучению дисциплины «Строение вещества» предшествует изучение дисциплин «Математика» и «Неорганическая химия». Данная дисциплина является предшествующей для дисциплины «Органическая химия».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональной компетенции (ОПК):

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине			
полученные результаты с использо математических и физических задач				
ИОПК-4.1. Использует базовые знания в области математики и физики при планировании работ	знает базовые законы физики и математики, используемые в области строения вещества, необходимые для планирования работ химической направленности			
химической направленности	умеет использовать базовые законы физики и математики, используемые в области строения вещества, для планирования работ химической направленности			
владеет способами применения базовых законов физики и матема используемых в области строения вещества, необходимых для планирования работ химической направленности				
ИОПК-4.2. Обрабатывает данные с использованием стандартных	знает стандартные методы обработки данных с использованием аппроксимации численных характеристик			
способов аппроксимации численных характеристик	умеет использовать основные методы обработки данных с использованием аппроксимации численных характеристик			
	владеет методами обработки данных с использованием стандартных приемов аппроксимации численных характеристик, необходимыми при решении задач, возникающих при изучении строения вещества			
ИОПК-4.3. Интерпретирует результаты химических	знает базовые законы и представления физики, необходимые в области строения вещества			
наблюдений с использованием физических законов и	умеет интерпретировать результаты химических наблюдений с использованием физических законов и представлений			
представлений	владеет методами интерпретации результатов химических наблюдений, полученных в области строения вещества, с использованием физических законов и представлений			

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице.

Вид учебной работы			Семест	р (часы)
Вид учебной работы			4	5
Контактная рабо				
Аудиторные заня	68	68	-	
занятия лекционн	ого типа	34	34	-
лабораторные зан	ятия			
Занятия семинарс	кого типа (семинары, практические занятия)	34	34	
Иная контактная	я работа:			-
Контроль самосто	ятельной работы (КСР)	2	2	-
Промежуточная а	ттестация (ИКР)	0,2	0,2	-
Самостоятельна	я работа, в том числе:			
Курсовая работа	Курсовая работа			-
Проработка учебн	Проработка учебного (теоретического) материала			
Выполнение инди	видуальных заданий (подготовка	-	-	-
сообщений, презе	нтаций)			
Реферат		10	10	-
Подготовка к теку	дему контролю	-	-	-
Контроль				-
Подготовка к экза	Подготовка к экзамену			-
Общая час.		108	108	-
трудоемкость	в том числе контактная работа	70,2	70,2	-
	зач. ед.	3	3	-

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 4 семестре (очная форма обучения)

№	Наименование разделов(тем)	Кол-во часов				
		всего	A	удиторн	ая	Внеаудиторная
				работа		работа
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1	Квантовомеханическая теория	34	12	10	-	12
	строения вещества					
2	Симметрия молекул	20	6	6	-	8
3	Энергетические аспекты строения	23,8	6	10	-	7,8
	молекул. Электрические и магнитные					
	свойства веществ					

4	Строение вещества в	28	10	8	-	10
	конденсированном состоянии					
ИТОГО по разделам дисциплины			34	34	-	37,8
,						
Контроль самостоятельной работы (КСР)						
Промежуточная аттестация (ИКР)						
По	дготовка к текущему контролю	-	-	-	-	-
Общая трудоемкость по дисциплине						

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

$N_{\underline{0}}$	Наименование	Содержание раздела (темы)	Форма
	раздела (темы)		текущего
			контроля
1	2	3	4
1.	Квантово- механическая теория строения вещества	Математический аппарат квантовой химии. Операторы, собственные функции и собственные значения. Оператор Гамильтона. Соотношение неопределенности. Основные постулаты квантовой химии. Задачи о свободном движении частицы, движении частицы в потенциальном ящике. Эмпирические и полуэмпирические методы в квантовой химии.	устный опрос
2.	Симметрия молекул	Симметрия равновесной геометрической конфигурации молекулы. Элементы симметрии. Операции симметрии. Точечные группы симметрии. Приводимые и неприводимые представления. Классификация атомов и молекул. Параметры, определяющие геометрию молекулы, межъядерные расстояния, валентные углы. Внутренние вращения молекул. Понятие конформации молекул. Шахматные и затененные конфигурации.	устный опрос
3.	Энергетические аспекты теории строения вещества. Электрические и магнитные свойства веществ	Энергетический критерий существования некоторой совокупности эффективных атомов как единой частицы — молекулы. Энергия образования молекул из свободных атомов. Парциальные энергии отдельных видов химической связи одного вида в любых молекулах. Энергия образования молекулы. Постоянство энергии связей одного вида в молекулах. Энергия стабилизации кристаллическим полем, как эффект влияния строения молекул на их свойства. Электрический дипольный момент в классической теории и квантовой механике. Полярные и неполярные вещества. Дипольный момент и изомерия молекул. Парциальные моменты связей и структурных групп. Векторно-аддитивная схема расчета дипольных моментов.	реферат

		Деформация молекул во внешнем электрическом поле. Индуцированный момент и поляризуемость молекул. Средняя поляризуемость, анизотропия поляризуемости. Связь молекулярных постоянных —дипольного момента и поляризуемости — с макроскопическими характеристиками вещества. Молярная рефракция. Эмпирическая схема расчета рефракций. Магнитный момент и магнитная восприимчивость молекулы. Состояние молекул в магнитном поле. Диамагнитные и парамагнитные вещества. Ферромагнетизм. Зеемановские уровни энергии. Условия ядерного магнитного резонанса. Химический сдвиг и его интерпретация. ЭПР. Парамагнитные частицы. Полная энергия молекулы как сумма электронной, колеба-	
		тельной и вращательной составляющих. Межмолекулярное взаимодействие.	
		Относительное положение электронных, колебательных и вращательных уровней энергии.	
		Электронные состояния, колебательные состояния, вращательные состояния.	
		Вращательные, колебательные и электронные спектры. Теория кристаллического поля и теория поля лигандов как основа интерпретации спектров комплексных соединений. Правила отбора. Значение молекулярных спектров для решения практических задач химической науки.	
4.	Строение вещества в конденсированном состоянии	Структурная классификация конденсированных фаз. Диаграммы состояния. Мгновенная колебательно-усредненная структура жидкостей. Современные способы описания структуры жидкостей. Аморфные вещества. Жидкие кристаллы (холестерики, нематики и пр.). Идеальные кристаллы. Особенности ультрадисперсного состояния веществ. Структура границы раздела конденсированных фаз.	устный опрос

2.3.2 Занятия семинарского типа (практические / семинарские занятия / лабораторные работы)

No	Наименование раздела (темы)	•	
1	2	3	4
1.	Квантово- механическая теория строения вещества	Математический аппарат квантовой химии. Операторы, собственные функции и собственные значения. Основные постулаты квантовой химии. Уравнение Шредингера. Задачи о свободном движении частицы, движении частицы потенциальном ящике. Эмпирические и полуэмпирические методы в квантовой химии.	устный опрос
2.	Симметрия молекул	Симметрия равновесной геометрической конфигурации молекулы. Элементы симметрии. Операции симметрии. Точечные группы симметрии. Приводимые и неприводимые представления.	устный опрос
3.	Энергетические аспекты теории строения вещества. Электрические и магнитные свойства веществ	Энергия образования молекулы. Энергия стабилизации кристаллическим полем как эффект влияния строения молекул на их свойства. Электрический дипольный момент в классической теории и квантовой механике. Парциальные моменты связей и структурных групп. Векторно-аддитивная схема расчета дипольных моментов. Связь молекулярных постоянных – дипольного момента и поляризуемости – с макроскопическими характеристиками вещества. Молярная рефракция. Эмпирическая схема расчета рефракций. Магнитный момент и магнитная восприимчивость молекулы. Состояние молекул в магнитном поле. Диамагнитные и парамагнитные вещества. Ферромагнетизм. ЯМР-спектроскопия. Условия ядерного магнитного резонанса. Химический сдвиг. Релаксационные явления. Шифт-реагенты Химический сдвиг и его интерпретация. ЭПР. Парамагнитные частицы. Полная энергия молекулы как сумма электронной, колебательной и вращательной составляющих. Относительное положение электронных, колебательных и вращательных уровней энергии. Вращательные, колебательные и электронные спектры. Правила отбора. Значение молекулярных спектров для решения практических задач химической науки.	реферат

4.	Строение	Диаграммы состояния. Структура и свойства жидкостей,		
	вещества в	структура твёрдого тела. Зонная теория проводимости.	опрос	
	конденсирован	Жидкие кристаллы.		
	ном состоянии	Особенности ультрадисперсного состояния веществ.		
		Межмолекулярное взаимодействие		
		Комплексные соединения. Теория кристаллического поля		
		и теория поля лигандов.		

2.3.3 Примерная тематика курсовых работ (проектов) Курсовая работа не предусмотрена учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

		Перечень учебно-методического обеспечения дисциплины по
$N_{\underline{0}}$	Вид СРС	выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоретического) материала	1. Цирельсон, В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела [Электронный ресурс]: учебное пособие для вузов / В.Г. Цирельсон. — 4-е изд. (эл.) - М.: Лаборатория знаний, 2017 522 с (Учебник для высшей школы) ISBN 978-5-00101-502-4. — Режим доступа: https://e.lanbook.com/book/94104#book_name
		2. Камышов, В.М. Строение вещества [Электронный ресурс] : учебное пособие / В. М. Камышов, Е. Г. Мирошникова, В. П. Татауров 2-е изд., испр. и доп Санкт-Петербург : Лань, 2022 236 с https://e.lanbook.com/book/90007#authors .
		3. Сизова, О.В. Молекулярная симметрия в неорганической и координационной химии [Электронный ресурс]: учебное пособие / О.В. Сизова, Н.В. Иванова, А.А. Ванин Изд. 2-е, перераб. и доп. – СПб.: Издательство «Лань», 2021 276 с (Учебники для вузов. Специальная литература) ISBN 978-5-8114-2173-2. — Режим доступа: https://e.lanbook.com/book/76285#book_name
		4. Минкин, В.И. Теория строения молекул [Текст] : учебное пособие для студентов вузов / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев 2-е изд., перераб. и доп Ростов н/Д : Феникс, 1997 558 с (Учебники и учебные пособия) Библиогр. в конце гл ISBN 5222001067
		5. Журнал общей химии
		6. Журнал неорганической химии
		7. Журнал физической химии
2	Реферат	1. Цирельсон, В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела [Электронный ресурс]: учебное пособие для вузов / В.Г. Цирельсон. — 4-е изд. (эл.) - М.: Лаборатория знаний, 2017 522 с (Учебник для высшей школы) ISBN 978-5-00101-502-4. — Режим доступа: https://e.lanbook.com/book/94104#book_name

- 2. Камышов, В.М. Строение вещества [Электронный ресурс] : учебное пособие / В. М. Камышов, Е. Г. Мирошникова, В. П. Татауров. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2022. 236 с. https://e.lanbook.com/book/90007#authors.
- Сизова, О.В. Молекулярная симметрия в неорганической и координационной химии [Электронный ресурс]: учебное пособие / О.В. Сизова, Н.В. Иванова, А.А. Ванин. Изд. 2-е, перераб. и доп. СПб.: Издательство «Лань», 2021. 276 с. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-2173-2. Режим доступа: https://e.lanbook.com/book/76285#book_name
- 4. Минкин, В.И. Теория строения молекул [Текст] : учебное пособие для студентов вузов / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев. 2-е изд., перераб. и доп. Ростов н/Д : Феникс, 1997. 558 с. (Учебники и учебные пособия). Библиогр. в конце гл. ISBN 5222001067
 - 5. Журнал общей химии
 - 6. Журнал неорганической химии
 - 7. Журнал физической химии

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме с увеличенным шрифтом. Для лиц с нарушениями слуха:
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

– в печатной форме.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В учебном процессе по дисциплине «Строение вещества» используются консервативные (лекции), репродуктивные (практические занятия) и творческие (подготовка рефератов) педагогические технологии.

Для инвалидов и лиц с ограниченными возможностями здоровья используются образовательные технологии, позволяющие полностью индивидуализировать содержание, методы и темпы учебной деятельности, вносить вовремя необходимые коррективы как в деятельность студента инвалида, так и в деятельность преподавателя.

4. Оценочные средства для текущего контроля успеваемости и промежуточнойаттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Строение вещества».

Оценочные средства включают контрольные материалы для проведения **текущего** контроля в форме вопросов, заданий и тем для самостоятельной работы и **промежуточной** аттестации в форме вопросов и заданий для подготовки к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

№ п/п	Код и наименование	Результаты обучения (в соответствии с п. 1.4)		ние оценочного едства
11/11	индикатора	(в соответствий с п. 1.4)		Промежуточная
	(в соответствии с п. 1.4)		контроль	аттестация
1	ИОПК-4.1. Использует	знает базовые законы физики и	устный	зачет
	базовые знания в	математики, используемые в об-	опрос	
	области математики и	ласти строения вещества, необ-		
	физики при	ходимые для планирования ра-		
	планировании работ	бот химической направленности		
	химической	умеет использовать базовые		
	направленности	законы физики и математики, используемые в области строе-		
		ния вещества, для планирова-		
		ния работ химической направ-		
		ленности		
		владеет способами примене-		
		ния базовых законов физики и		
		математики, используемых в		
		области строения вещества,		
		необходимых для планирова-		
		ния работ химической направ-		
2	ИОПК-4.2.	знает стандартные методы обра-	устный	зачет
	Обрабатывает данные с	ботки данных с использованием	опрос	34 101
	использованием	аппроксимации численных	1	
	стандартных способов	характеристик		
	аппроксимации	умеет использовать основные		
	численных	методы обработки данных с		
	характеристик	ис-пользованием		
		аппроксимации численных характеристик		
		владеет методами обработки		
		данных с использованием ста-		
		ндартных приемов аппрокси-		
		мации численных характери-		
		стик, необходимыми при ре-		
		шении задач, возникающих при изучении строения веще-		
		ства		
3	ИОПК-4.3.	знает базовые законы и пред-	реферат	зачет
	Интерпретирует	ставления физики, необходимые в		
	результаты химических	области строения вещества		
	наблюдений с	умеет интерпретировать резу-		
	использованием	льтаты химических наблюде-		
	физических законов и	ний с использованием физических законов и представлений		
	представлений	владеет методами интерпре-		
		тации результатов химических		
		наблюдений, полученных в		
		области строения вещества, с		
		использованием физических		
		законов и представлений		

Типовые контрольные задания или иные материалы, необходимые для оценкизнаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Вопросы и задания для текущего контроля

- 1. В чём заключается разница понятий функция, функционал, оператор? (ОПК-4)
- 2. Сформулируйте понятие коммутатора операторов (ОПК-4).
- 3. Какие операторы называют Эрмитовыми? (ОПК-4)
- 4. Что такое операторные уравнения? (ОПК-4)
- 5. Какие функции называют собственными? (ОПК-4)
- 6. Определите понятие «Собственные значения» (ОПК-4).
- 7. В чем сущность термина «Вырождение функций»? (ОПК-4)
- 8. Какие операторы квантовой механики Вам известны? (ОПК-4)
- 9. Оператор Гамильтона (ОПК-4).
- 10. Запишите выражение оператора набла (ОПК-4).
- 11. Запишите выражение принципа неопределенности (ОПК-4).
- 12. Перечислите основные постулаты квантовой механики (ОПК-4).
- 13. Запишите уравнение Шредингера (ОПК-4).
- 14. В чём преимущество использования сферических координат при решении квантовомеханических задач? (ОПК-4)
- 15. Почему для атома водорода и водородоподобного атома могут быть получены точные волновые функции путем прямого решения уравнения Шредингера? (ОПК-4)
- 16. Объясните сущность метода Хартри-Фока (ОПК-4).
- 17. АО Слэтера-Зеннера (ОПК-4).
- 18. Термы многоэлектронных атомов (ОПК-4).
- 19. Система термов (ОПК-4).
- 20. Правила Пфёнда для определения основного терма (ОПК-4).
- 21. Эффект Зеемана (ОПК-4).
- 22. LS и JJ-связь (ОПК-4).
- 23. Приближение Борна-Оппенгеймера (ОПК-4).
- 24. Метод Гайтлера-Лондона (ОПК-4).
- 25. Метод МО ЛКАО (ОПК-4).
- 26. Уравнение Рутаана (ОПК-4).
- 27. Полуэмпирические методы в квантовой химии (ОПК-4).
- 28. Метод Хюккеля (ОПК-4).
- 29. Метод Фроста (ОПК-4).
- 30. Ароматичность и антиароматичность (ОПК-4).
- 31. Коммутируют ли операторы А и В если А= х; В= у? (ОПК-4)
- 32. Линеен ли оператор $A = x^2$? (ОПК-4)
- 33. Докажите линейность оператора d/dx (ОПК-4).
- 34. Докажите, что оператор і d/dx линеен и эрмитов (ОПК-4).
- 35. Удовлетворяет ли функция $\exp(ax)$ уравнению $\mathbf{L} = \mathbf{L} = \mathbf$
- 36. Оцените коэффициент прозрачности потенциального барьера, если: $D_0 \approx 1$, U_0 -E = 10^{-18} Дж, μ = 10^{-30} кг, l= 10^{-10} м (ОПК-4).
- 37. В рамках ЈЈ-связи установите термы для электронной конфигурации sp (ОПК-4).
- 38. Установите все возможные термы для системы из двух р-электронов, выберите на основании известных Вам правил основной терм (используйте схему Рассела-Саундерса) (ОПК-4).
- 39. Определите константу экранирования S для AO 1s,2p,3p атома хлора (ОПК-4).
- 40. Определите эффективный заряд ядра для 6s электрона атома гадолиния (ОПК-4).
- 41. Используя МОХ, постройте диаграмму энергетических уровней π -МО и схемы их

- заполнения электронами для циклопропенильной системы (случаи катиона, радикала и аниона) (ОПК-4).
- 42. Используя графический метод Фроста определите энергетические уровни циклопентадиенила и бензола (ОПК-4).
- 43. Перечислите основные элементы симметрии молекул (ОПК-4).
- 44. Дайте определение понятию «группа» (ОПК-4).
- 45. Что такое точечная группа симметрии? (ОПК-4)
- 46. Определите операцию умножения для точечной группы симметрии (ОПК-4).
- 47. Каким образом можно отличить абелевы и неабелевы группы? (ОПК-4)
- 48. Какие группы симметрии наиболее характерны для молекул? (ОПК-4)
- 49. К какой группе симметрии можно отнести гомоядерные двухатомные молекулы? (ОПК-4)
- 50. К какой группе симметрии можно отнести гетероядерные двухатомные молекулы? (ОПК-4)
- 51. Что называют характером группы? (ОПК-4)
- 52. Дайте определение термина «Представление группы» (ОПК-4).
- 53. Какие представления относят к неприводимым? (ОПК-4)
- 54. Какие представления обозначаются t_g? (ОПК-4)
- 55. Какие представления обозначаются b₁? (ОПК-4)
- 56. Какие представления обозначаются а 1? (ОПК-4)
- 57. Какие представления обозначаются е? (ОПК-4)
- 58. Определите элементы симметрии и группу симметрии молекулы аммиака (ОПК-4).
- 59. Постройте таблицу умножения для элементов симметрия молекулы аммиака (ОПК-4).
- 60. Постройте квадрат Кэли для группы $C_{2v}(O\Pi K-4)$.
- 61. Охарактеризуйте преобразование р-орбиталей при операциях симметрии группы $C_{2\nu}(O\Pi K\text{-}4)$.
- 62. Охарактеризуйте преобразование d-орбиталей при операциях симметрии группы $C_{2v}(O\Pi K$ -4).
- 63. Определите характеры неприводимых представлений группы C_{2v} в базисе робиталей (ОПК-4).
- 64. Определите характеры неприводимых представлений группы C_{2v} в базисе d-орбиталей(ОПК-4).
- 65. Чему равно число неприводимых представлений группы? (ОПК-4)
- 66. Приведите примеры молекул с группой симметрии $D_{3h}(O\Pi K-4)$.
- 67. Приведите примеры молекул с группой симметрии $D_{5h}(O\Pi K-4)$.
- 68. Приведите примеры аморфных веществ (ОПК-4).
- 69. Какие свойства являются необходимым признаком кристалла? (ОПК-4)
- 70. Какие теории строения жидкости Вам известны? (ОПК-4)
- 71. Дайте определение термину «Молярная рефракция» (ОПК-4) При каких обстоятельствах были открыты мезоморфные свойства веществ? (ОПК-4)
- 72. Какую форму молекул имели жидкокристаллические вещества, открытые Рейнитцером? (ОПК-4)
- 73. В чем разница между лиотропными и термотропными жидкокристаллическими веществами? (ОПК-4)
- 74. В литературе распространен термин «дискотики», что он обозначает? (ОПК-4)
- 75. В каких целях используется явление экзальтации рефракции? (ОПК-4)
- 76. Что понимают под термином «жидкокристаллическое термопокрывало»? (ОПК-4)

Залания

При 293К плотность а%-го раствора вещества A в воде равна d г/см³, показатель преломления n. Вычислите молярную рефракцию вещества a, если для воды плотность составляет 1,000г/см³, а показатель преломления -1,333 (ОПК-4).

№	a%	Вещество А	d	n
78.	31,000	HC1	1,157	1,407
79.	30,000	H_2SO_4	1,220	1,370
80.	40,012	HClO ₃	1,293	1,367
81.	17,034	LiBr	1,129	1,362
82.	35,002	LiCl	1,174	1,414
83.	24,501	NaCl	1,187	1,377
84.	12,505	Na ₂ SO ₄	1,116	1,352
85.	9,0401	K ₂ SO ₄	1,075	1,345
86.	44,012	$C_{12}H_{22}O_{11}$	1,191	1,406
87.	44,023	$CO(NH_2)_2$	1,121	1,400

- 88. Дипольный момент. Полярные и неполярные вещества (ОПК-4).
- 89. Векторно-аддитивная схема расчета дипольных моментов (ОПК-4).
- 90. Магнитный момент и магнитная восприимчивость веществ (ОПК-4).
- 91. Методы ЭПР и ЯМР (ОПК-4).
- 92. Электронные, колебательные и вращательные уровни энергии (ОПК-4).
- 93. Молекулярные спектры. Правила отбора (ОПК-4).
- 94. Энергетические критерии существования молекул (ОПК-4).
- 95. Дисперсионное, ориентационное и индукционное взаимодействие (ОПК-4).
- 96. Энергия химических связей и методы её определения (ОПК-4).
- 97. Эксимеры и эксиплексы (ОПК-4).
- 98. Теория кристаллического поля (ОПК-4).
- 99. Спектрохимический ряд (ОПК-4).
- 100. Теорема Яна-Теллера (ОПК-4).

Примерные темы рефератов

- 1. Силы Ван-дер-Ваальса (ОПК-4).
- 2. Раман-спектроскопия и её применение в исследовании химических веществ (ОПК-4).
- 3. Спектры люминисценции (ОПК-4).
- 4. Магнитная восприимчивость веществ. Ферромагнетизм. Антиферромагнетизм. Ферримагнетики (ОПК-4).
- 5. Молекулярные магниты и перспективы их использования (ОПК-4).
- 6. Ориентационное и дисперсионное взаимодействия и их влияние на свойства веществ(ОПК-4).
- 7. Методы определения дипольных моментов химических соединений (ОПК-4).
- 8. ЭПР-спектроскопия и её применение к решению структурно-химических задач (ОПК-4).
- 9. Энергия химических связей и методы её определения (ОПК-4).
- 10. Эксимеры и эксиплексы (ОПК-4).
- 11. Спектроскопия ЯМР-высокого разрешения в исследовании структуры органических веществ (ОПК-4).
- 12. ИК-спектроскопия. Применение ИК-спектров в качественном и количественноманализе (ОПК-4).
- 13. Спектроскопия ядерного магнитного резонанса (ОПК-4).

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет)

Вопросы для подготовки к зачету

- 1. В чём заключается разница понятий функция, функционал, оператор?
- 2. Сформулируйте понятие коммутатора операторов.
- 3. Какие операторы называют Эрмитовыми?
- 4. Что такое операторные уравнения?
- 5. Какие функции называют собственными?
- 6. Определите понятие «Собственные значения».
- 7. В чем сущность термина «Вырождение функций»?
- 8. Какие операторы квантовой механики Вам известны?
- 9. Оператор Гамильтона.
- 10. Запишите выражение оператора набла.
- 11. Запишите выражение принципа неопределенности.
- 12. Перечислите основные постулаты квантовой механики.
- 13. Запишите уравнение Шредингера.
- 14. В чём преимущество использования сферических координат при решении квантовомеханических задач?
- 15. Почему для атома водорода и водородоподобного атома могут быть получены точные волновые функции путем прямого решения уравнения Шредингера?
- 16. Объясните сущность метода Хартри-Фока.
- 17. АО Слэтера-Зеннера.
- 18. Термы многоэлектронных атомов.
- 19. Система термов.
- 20. Правила Пфёнда для определения основного терма.
- 21. Эффект Зеемана.
- 22. LS и JJ-связь.
- 23. Приближение Борна-Оппенгеймера.
- 24. Метод Гайтлера-Лондона.
- 25. Метол МО ЛКАО.
- 26. Уравнение Рутаана.
- 27. Полуэмпирические методы в квантовой химии.
- 28. Метод Хюккеля.
- 29. Метод Фроста.
- 30. Ароматичность и антиароматичность.
- 31. Коммутируют ли операторы А и В если А= х; В= у?
- 32. Линеен ли оператор $A = x^2$?
- 33. Докажите линейность оператора d/dx.
- 34. Докажите, что оператор і d/dx линеен и эрмитов.
- 35. Удовлетворяет ли функция $\exp(ax)$ уравнению $\mathbf{L}f = \mathbf{L}f$, если $\mathbf{L} = d^2/dx^2$?
- 36. Оцените коэффициент прозрачности потенциального барьера, если: $D_0 \approx 1$, U_0 -E = 10^{-18} Дж, μ = 10^{-30} кг, 1= 10^{-10} м.
- 37. В рамках ЈЈ-связи установите термы для электронной конфигурации sp.
- 38. Установите все возможные термы для системы из двух р-электронов, выберите на основании известных Вам правил основной терм (используйте схему Рассела-Саундерса).
- 39. Определите константу экранирования S для AO 1s,2p,3p атома хлора.
- 40. Определите эффективный заряд ядра для 6s электрона атома гадолиния.
- 41. Используя МОХ, постройте диаграмму энергетических уровней π -МО и схемы их заполнения электронами для циклопропенильной системы (случаи катиона, радикалаи аниона).
- 42. Используя графический метод Фроста определите энергетические уровни

- циклопенталиенила и бензола.
- 43. Перечислите основные элементы симметрии молекул.
- 44. Дайте определение понятию «группа».
- 45. Что такое точечная группа симметрии?
- 46. Определите операцию умножения для точечной группы симметрии.
- 47. Каким образом можно отличить абелевы и неабелевы группы?
- 48. Какие группы симметрии наиболее характерны для молекул?
- 49. К какой группе симметрии можно отнести гомоядерные двухатомные молекулы?
- 50. К какой группе симметрии можно отнести гетероядерные двухатомные молекулы?
- 51. Что называют характером группы?
- 52. Дайте определение термина «Представление группы».
- 53. Какие представления относят к неприводимым?
- 54. Какие представления обозначаются t_g?
- 55. Какие представления обозначаются b₁?
- 56. Какие представления обозначаются а₁?
- 57. Какие представления обозначаются е?
- 58. Определите элементы симметрии и группу симметрии молекулы аммиака.
- 59. Постройте таблицу умножения для элементов симметрия молекулы аммиака.
- 60. Постройте квадрат Кэли для группы C_{2v}
- 61. Охарактеризуйте преобразование p-орбиталей при операциях симметрии группы C_{2v}
- 62. Охарактеризуйте преобразование d-орбиталей при операциях симметрии группы C_{2v}
- 63. Определите характеры неприводимых представлений группы C_{2v} в базисе рорбиталей.
- 64. Определите характеры неприводимых представлений группы C_{2v} в базисе dорбиталей.
- 65. Чему равно число неприводимых представлений группы?
- 66. Приведите примеры молекул с группой симметрии D_{3h}
- 67. Приведите примеры молекул с группой симметрии D_{5h}
- 68. Приведите примеры аморфных веществ.
- 69. Какие свойства являются необходимым признаком кристалла?
- 70. Какие теории строения жидкости Вам известны?
- 71. Дайте определение термину «Молярная рефракция»
- 72. При каких обстоятельствах были открыты мезоморфные свойства веществ?
- 73. Какую форму молекул имели жидкокристаллические вещества, открытые Рейнитцером?
- 74. В чем разница между лиотропными и термотропными жидкокристаллическими веществами?
- 75. В литературе распространен термин «дискотики», что он обозначает?
- 76. В каких целях используется явление экзальтации рефракции?
- 77. Что понимают под термином «жидкокристаллическое термопокрывало»?

Задания

При 293К плотность а%-го раствора вещества A в воде равна d г/см 3 , показатель преломления n. Вычислите молярную рефракцию вещества a, если для воды плотность составляет 1,000г/см 3 , а показатель преломления - 1,333.

No	a%	Вещество А	d	n
78.	31,000	HC1	1,157	1,407
79.	30,000	H_2SO_4	1,220	1,370
80.	40,012	HClO ₃	1,293	1,367
81.	17,034	LiBr	1,129	1,362
82.	35,002	LiCl	1,174	1,414

83.	24,501	NaCl	1,187	1,377
84.	12,505	Na ₂ SO ₄	1,116	1,352
85.	9,0401	K_2SO_4	1,075	1,345
86.	44,012	$C_{12}H_{22}O_{11}$	1,191	1,406
87.	44,023	$CO(NH_2)_2$	1,121	1,400

- 88. Дипольный момент. Полярные и неполярные вещества.
- 89. Векторно-аддитивная схема расчета дипольных моментов.
- 90. Магнитный момент и магнитная восприимчивость веществ.
- 91. Методы ЭПР и ЯМР.
- 92. Электронные, колебательные и вращательные уровни энергии.
- 93. Молекулярные спектры. Правила отбора.
- 94. Энергетические критерии существования молекул.
- 95. Дисперсионное, ориентационное и индукционное взаимодействие.
- 96. Энергия химических связей и методы её определения.
- 97. Эксимеры и эксиплексы.
- 98. Теория кристаллического поля.
- 99. Спектрохимический ряд.
- 100. Теорема Яна-Теллера.

Критерии оценивания результатов обучения

Критерий	Оценка	Уровень
Студент не имеет большого количества пропущенных занятий (более 20%), а при выполнении заданий в области теории строения вещества, направленных на контроль освоения компетенций, указанных в РПД, он показал знания, необходимые для решения поставленной задачи. Выполненные квантовомеханические расчеты базируются на глубоком знании соответствующих разделов математики, их результаты не имеют значительных погрешностей, а выводы соответствуют полученным результатам. При ответах на дополнительные вопросы студент не испытывает затруднений и способен сформулировать четкие однозначные ответы.	зачтено	пороговый
Студент имеет значительное количество пропущенных занятий, а при выполнении заданий в области теории строения вещества, направленных на контроль освоения компетенций, указанных в РПД, он не показал знаний, необходимых для решения поставленной задачи. Расчеты выполнены со значительными погрешностями, а выводы не соответствуют полученным результатам. При ответах на дополнительные вопросы студент испытывает значительные затруднения и неспособен сформулировать четких однозначных ответов.	не зачтено	не сформирован

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Учебная литература

- 1. Цирельсон, В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела [Электронный ресурс]: учебное пособие для вузов / В.Г. Цирельсон. 4-е изд. (эл.) М.: Лаборатория знаний, 2017. 522 с. (Учебник для высшей школы). ISBN 978-5- 00101-502-4. Режим доступа: https://e.lanbook.com/book/94104#book_name
- 2. Камышов, В.М. Строение вещества [Электронный ресурс] : учебное пособие / В. М. Камышов, Е. Г. Мирошникова, В. П. Татауров. 2-е изд., испр. и доп. Санкт- Петербург : Лань, 2022. 236 с. https://e.lanbook.com/book/90007#authors.
- 3. Сизова, О.В. Молекулярная симметрия в неорганической и координационной химии [Электронный ресурс] : учебное пособие / О.В. Сизова, Н.В. Иванова, А.А. Ванин. Изд. 2-е, перераб. и доп. СПб.: Издательство «Лань», 2021. 276 с. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-2173-2. Режим доступа: https://e.lanbook.com/book/76285#book_name
- 4. Минкин, В.И. Теория строения молекул [Текст] : учебное пособие для студентов вузов / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев. 2-е изд., перераб. и доп. Ростов н/Д : Феникс, 1997. 558 с. (Учебники и учебные пособия). Библиогр. в конце гл. ISBN 5222001067

5.2 Периодические издания:

- 1. Журнал общей химии
- 2. Журнал неорганической химии
- 3. Журнал физической химии

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. $\supset BC \ll BOOK.ru$ » https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 2. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/

Ресурсы свободного доступа:

- 1. КиберЛенинка (http://cyberleninka.ru/);
- 2. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 3. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

4. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу «Строение вещества» предусмотрено проведение аудиторных занятий в форме лекций и практических занятий. Лекция предполагает передачу в структурированной форме систематизированной информации большого объёма. Посещение и конспектирование лекции студентами способствует формированию общих подходов и принципов усвоения содержания данной дисциплины, содействует активизации мышления, нацеливает на дальнейшую самостоятельную познавательную деятельность. конспектировать лекции по принципу выделения опорных пунктов той или иной темы, что позволит в дальнейшем углублять полученные на лекциях знания при дополнительных источников информации. Разделы лекций, которые вызывают затруднения, могут быть обсуждены в форме вопросов, заданных после лекции, или в ходе консультаций.

Практические занятия, в ходе которых проводится краткий опрос студентов и обсуждение вопросов изучаемой темы, способствуют лучшему усвоению теоретическогоматериала. При подготовке к практическим занятиям рекомендуется на первом этапе тщательно проработать конспекты лекций. В случае возникновения вопросов по теоретическим проблемам математических основ квантовомеханического описания теории строения вещества рекомендуется повторить соответствующие разделы курса высшей математики и физики.

Важнейшим этапом освоения дисциплины является самостоятельная работа. В процессе подготовки рефератов студенты сочетают самостоятельную индивидуальную и групповую работу, что является важнейшим этапом освоения дисциплины. При подготовке рефератов рекомендуется составить подробный план, который предусматривает изучение как основной учебной, так и дополнительной научной литературы. В ходе подготовки следует использовать как традиционные источники информации, так и электронные библиотечные системы. Иллюстративный материал готовится в виде презентации, которая должна отражать основное содержание каждого раздела реферата. Список использованных литературных источников составляется в соответствии с существующими нормами библиографического описания.

№		Формы самостоятельной работы	Формы
	раздела		отчетности
1	Квантовомеханическая	Самостоятельное изучение разделов. Подготовка к	У
	теория строения	практическим занятиям. Работа с учебной	
	вещества	литературой, базами данных в сети Internet.	
2	Симметрия молекул	Самостоятельное изучение разделов. Подготовка к	У
		практическим занятиям. Работа с учебной	
		литературой, базами данных в сети Internet.	
3	Энергетические	Самостоятельное изучение разделов. Работа с	P
	аспекты строения	учебной литературой, базами данных в сети	
	молекул.	Internet. Подготовка реферата с использованием	
	Электрические и	учебной и современной научной литературы.	
	магнитные свойства		
	веществ		
4	Строение вещества в	Самостоятельное изучение разделов. Подготовка к	У
	конденсированном	практическим занятиям. Работа с учебной	
	состоянии	литературой, базами данных в сети Internet.	

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

6 Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность	Перечень лицензионного
помещений	специальных помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения занятий лекционного	Технические средства обу-	Microsoft Office
типа	чения: экран, проектор,	
	компьютер	
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
проведения занятий	Технические средства обу-	Microsoft Office
семинарского типа, групповых и	чения: экран, проектор,	
индивидуальных консультаций,	компьютер	
текущего контроля и		
промежуточной аттестации		
Учебные аудитории для	Курсовая работа не предусмотрена учебным планом.	
курсового проектирования		
(выполнения курсовых работ)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучающихся	Оснащенность помещений для самостоятельной работы обучающихся	Перечень лицензионного программного обеспечения
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows; Microsoft Office
Помещение для самостоятельной работы обучающихся (ауд. 411C)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно-коммуникационной сети «Интернет» и доступом в электронную информационно-образовательную среду образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows; Microsoft Office