Аннотация рабочей программы дисциплины 2.3.1. «Кандидатский экзамен по специальной дисциплине «Оптика»

Автор-составитель:

Заведующим кафедрой оптоэлектроники, д-р. техн. наук, профессор Яковенко Н.А.

Цель изучения	Цель проведения дисциплины обеспечение
дисциплины	подготовки аспирантов по научной специальности
	2.3.1. «Кандидатский экзамен по специальной
	дисциплине «Оптика». Настоящая программа
	основана на следующих дисциплинах:
	электромагнитной теории света, геометрической
	оптике, физической оптике, взаимодействии света с
	веществом, оптике лазеров, прикладной оптике,
	спектроскопии, статистической и квантовой
	оптике.
Компетенции,	ОНК-1 – Способность к критическому анализу и
формируемые в	оценке научных достижений, генерированию
результате освоения	<u>~</u>
дисциплины (модуля)	профессиональной деятельности
	ОНК-2 – Способность вести научную дискуссию,
	оформлять и представлять результаты
	исследований научному сообществу, включая
Canada	публикации в международных изданиях
Структура	Общая трудоемкость дисциплины составляет
дисциплины	3 зачетных единиц 108 часов.
(модуля), виды	
учебной работы	1.0
Содержание	1. Оптические свойства одноосных и двуосных кристаллов.
дисциплины (модуля)	Двойное лучепреломление. 2. Поглощение в инфракрасной области спектра и
	взаимодействие света с фононной подсистемой.
	3. Поверхностные волны в однородных и неоднородных
	планарных оптических волноводах.
	4. Электрооптические эффекты Керра и Поккельса.
	Оптическая активность. Эффект Фарадея.
	5. Запрещенная зона и область прозрачности в
	диэлектриках. Экситоны Ванье-Мотта и Френкеля. Область фундаментального поглощения.
	6. Связанные волны в оптических волноводах.
	7. Преломление на сферической поверхности. Сферические
	зеркала и линзы. Образование каустик в оптических
	системах.
	8. Вторичные эффекты в кристаллах: люминесценция,

- фотоэмиссия, дефектообразование под действием света.
- 9. Фокусирующие элементы интегральной оптики.
- 10. Однофотонные и многофотонные процессы. Вероятности спонтанных и вынужденных переходов. Коэффициенты Эйнштейна.
- 11. Источники оптического излучения. Тепловые, газоразрядные и лазерные источники.
- 12. Интегрально-оптические элементы на основе дифракционнорешетчатых структур.
- 13. Квадрупольные и магнито-дипольные переходы. Кооперативные эффекты. Сверхизлучение.
- 14. Люминесценция. Классификация люминесценции по длительности свечения и способу ее возбуждения.
- 15. Основные типы трехмерных оптических волноводов и методы их расчета.
- 16. Когерентное и комбинационное рассеяние.
- 17. Тушение (температурное, концентрационное, посторонними веществами) люминесценции. Кооперативные процессы в люминесценции.
- 18. Элементы ввода излучения в оптические волноводы.
- 19. Распространение волн в нелинейной среде. Условие синхронизма. Генерация оптических гармоник.
- 20. Синхротронное излучение. Оптические материалы.
- 21. Базовые элементы для оптических интегральных схем и основные методы получения волноводных структур.
- 22. Трехволновое взаимодействие. Параметрическое преобразование частоты.
- 23. Характеристики приемников излучения: спектральная и интегральная чувствительность, шумы, инерционность. Приборы с зарядовой связью (ПЗС) линейки, матрицы.
- 24. Методы согласования оптических волноводов и волоконных световодов.
- 25. Временная и пространственная когерентность световых полей.
- 26. Светофильтры, призменные и дифракционные спектральные приборы, интерферометры. Фурьеспектроскопия.
- 27. Согласование источников излучения с оптическими волноводами и волоконными световодами.
- 28. Спектроскопия твердого тела. Переходы под действием света в идеальном кристалле.
- 29. Основные характеристики приборов: аппаратная функция, разрешение, светосила, дисперсия. Лазерная спектроскопия.
- 30. Основные характеристики оптических волноводных модуляторов и переключателей.
- 31. Запись и обработка оптической информации. Механизм записи и воспроизведения волновых полей с помощью двумерных и трехмерных голограмм.
- 32. Принцип работы лазера. Схемы накачки. 33.Электрооптические модуляторы интерференционного типа.

	34. Моды оптических волокон. Затухание и дисперсия мод. Волоконные линии связи. Нелинейные эффекты в оптических волокнах. 35. Оптические резонаторы. Моды оптических резонаторов. Свойства лазерных пучков. 36. Акустооптические модуляторы и дефлекторы. 37. Волновое уравнение. Поляризация света.
Форма промежуточной аттестации	Экзамен