министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А

28 мая 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.20

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Направление подготовки

02.03.01 Математика и компьютерные науки

Направленность (профиль)

«Вычислительные, программные, информационные

системы и компьютерные технологии»,

«Алгебра, теория чисел и дискретный анализ»,

«Математическое и компьютерное моделирование»

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины «Компьютерная геометрия и геометрическое моделирование» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 Математика и компьютерные науки (уровень высшего образования: бакалавриат)

Myster

Программу составил: доцент, канд. физ.-мат. наук Марковский А. Н.

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов, протокол № 10 от 08.04.2021.

Заведующий кафедрой математических и компьютерных методов Лежнев А. В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук, протокол № 3 от 12.05.2021.

Председатель УМК факультета математики и компьютерных наук Шмалько С. П.

Рецензенты:

Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю. Г., доцент кафедры теоретической физики и компьютерных технологий Φ ГБОУ ВО «Кубанский государственный университет»

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Целями освоения дисциплины «Компьютерная геометрия и геометрическое моделирование» являются: формирование углубленных знаний по геометрии, той ее части которая положена в основу компьютерной графики и моделированию геометрических объектов посредством математических методов анализа.

1.2 Задачи дисциплины.

Получение базовых теоретических сведений по аффинной, конформной и фрактальной геометрии; их вычислительным аспектам; реализация алгоритмов вычислительной геометрии в системе компьютерной алгебры (MathCAD) и визуализация полученных результатов; проведение численных экспериментов.

При освоении дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для построения базовых геометрических объектов (линий, поверхностей, многогранников) с использованием различных методов и алгоритмов компьютерной графики. Получаемые знания лежат в основе математического образования и служат развитию навыков математического и компьютерного моделирования, вычислительного эксперимента, применения численных методов и программных комплексов.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Компьютерная геометрия и геометрическое моделирование» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана.

Знания и умения, приобретенные студентами в результате изучения дисциплины, будут использоваться при изучении общих и специальных курсов, при выполнении курсовых работ, связанных с применением компьютерных технологий.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Процесс изучения дисциплины направлен на формирование у обучающихся следующих компетенций.

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине	
ОПК-4 — Способен находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительны систем		
ОПК-4.1 – Владеет языками	Знает основные конструкции языков высокого	
программирования высокого уровня,	уровня	
навыками структурирования программ	Умеет решать задачи профессиональной	
	деятельности посредством составления программ на	
	языках высокого уровня	
	Владеет навыками решения стандартных задач	
	профессиональной деятельности	

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
ОПК-4.2 — Применяет современные методы разработки и реализации	Знает основные принципы построения математических моделей
алгоритмов математических моделей на базе языков высокого уровня и пакетов	Умеет составлять алгоритмы для реализации математических моделей
прикладных программ моделирования	Владеет навыками составления программ для реализации математических моделей
ОПК-6 – Способен разрабатывать алгорит практического применения	мы и компьютерные программы, пригодные для
ОПК-6.1 — Создает алгоритмы и их программные реализации для решения	Знает основные принципы построения дискретных аналогов реальных процессов и явлений
дискретных аналогов математических моделей реальных процессов и явлений	Умеет составлять алгоритмы для решения дискретных задач
	Владеет навыками составления программ для реализации дискретных математических моделей реальных процессов и явлений
ОПК-6.2 – Создает программные продукты и программные комплексы в	Знает основные требования информационной безопасности
области профессиональной деятельности с учетом основных требований	Умеет создавать программные продукты в области профессиональной деятельности
информационной безопасности	Владеет навыками использования программных продуктов и программных комплексов в области профессиональной деятельности с учетом основных требований информационной безопасности
ПК-6 – Способен использовать методы мат при решении теоретических и прикладных	ематического и алгоритмического моделирования
ПК-6.1 – Анализирует поставленные задачи и выбирает для их решения	Знает методы математического и алгоритмического моделирования
современные методы разработки и реализации алгоритмов математических моделей на базе языков и пакетов	Умеет использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач
прикладных программ моделирования	Владеет навыками математического и алгоритмического моделирования при решении теоретических и прикладных задач
ПК-6.2 – Разрабатывает численные методы и алгоритмы для реализации	Знает основные численные методы и алгоритмы решения стандартных математических задач
вычислительных экспериментов, основанных на математических моделях явлений и процессов в областях естественных и гуманитарных наук	Умеет разрабатывать численные методы и алгоритмы решения задач в областях естественных и гуманитарных наук
	Владеет навыками проведения вычислительных экспериментов, основанных на математических моделях
ПК-6.3 – Применяет в профессиональной деятельности методику разработки и	Знает методику разработки и реализации алгоритмов на базе языков высокого уровня
реализации алгоритмов на базе языков	Умеет разрабатывать алгоритмы и реализовывать
высокого уровня и пакетов прикладных программ моделирования	их на базе языков высокого уровня Владеет навыками применения в профессиональной
	деятельности пакетов прикладных программ моделирования

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 2 зачетные единицы (72 часа, из них – 52 часа аудиторной нагрузки: лекционных 18 часов, лабораторных 34 часа; 17,8 часов самостоятельной работы; 2 часов КСР), их распределение по видам работ представлено в таблице.

Вид учебной работы			Семестры
			(часы)
Контактная работа, в т	ом числе:	54,2	54,2
Аудиторные занятия (в	сего)	52	52
Занятия лекционного ти	па	18	18
Занятия семинарского	гипа (семинары, практические	_	_
занятия)			
Лабораторные занятия		34	34
Иная контактная работа:			2,2
Контроль самостоятельной работы (КСР)			2
Промежуточная аттестация (ИКР)			0,2
Самостоятельная работа, в том числе:			17,8
Проработка учебного (теоретического) материала			12,8
Подготовка к текущему контролю			5
Общая трудоемкость час.			72
	в том числе контактная	54,2	54,2
	работа		
	зач. ед	2	2

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разлелы лисциплины изучаемые в 5 семестве

	Разделы дисциплины, изучаемые в 5 семестре						
					Количе	ство ча	сов
№ раздела	Наименование разделов	Всего	A	Аудиторная работа		КСР	Самостоятельн
			Л	ПЗ	ЛР		ая работа
1.	Основы компьютерной графики	2	2		_		
2.	Плоская графика (2D-графика)	15	3		8		4
3.	Конформная геометрия	19	5		10		4
4.	Фрактальная геометрия	18	4		8	2	4
5.	Объемная графика (3D-графика)	17,8	4		8		5,8
	Итого по дисциплине:	72	18		34	2	17,8

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:2.3.1 Занятия лекционного типа.

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	Основы компьютерной графики	Аналоговые и компьютерные изображения. Форматы изображений. Растровая и векторная графика. Графические объекты, примитивы и их атрибуты, аналитическая модель. Компьютерная графика и геометрическое моделирование	T. C.
2	Плоская графика (2D-графика)	Аффинные преобразования в 2D- пространстве. Линейные объекты и их представление. Однородные координаты. Динамика линейных объектов. Построение кривых на плоскости. Лемнискаты и их свойства. Методы построения лемнискат. Моделирование плоских линий. Полигональные сетки. Алгоритмы вычислительной геометрии	
3	Конформная геометрия	Движение плоскости. Стереографическая проекция и сфера Римана. Обратно пропорциональное отображение. Дробнолинейное отображение и его свойства. Дробно-линейные изоморфизм и автоморфизм. Конформные отображения. Конформные преобразования геометрических объектов	
4	Фрактальная геометрия	Конструктивные фракталы. Системы счисления. Решето Серпинского и фрактал Кантора. Кривая Коха. Общая схема построения конструктивных фракталов. Анализ конструктивных фракталов. Инвариантные преобразования: Поворот, сжатие (растяжение), поворот с растяжением, отражение. Общая схема построения фракталов используя преобразования	
5	Объемная графика (3D-графика)	Основные виды объектов: линии, поверхности, тела. Отображение трехмерных объектов на плоскость, проективные преобразования. Виды проекций. Матрицы аффинных и проективных преобразований. Простейшие объекты в 3D-пространстве. Построение изображений многогранников. Матрицы вершин и граней. Правильные многогранники, их виды. Построение платоновых тел. Операции вращения и переноса для платоновых тел. Объектноориентированный подход к реализации	

	трехмер	оных многог	ранников	

2.3.2 Занятия семинарского типа.

Занятия семинарского типа не предусмотрены

2.3.3 Лабораторные занятия.

		Форма
№	Наименование лабораторных работ	текущего
		контроля
1	3	4
1	Аффинные преобразования в 2D-пространстве	ЛР
2	Линейные объекты и их представление	ЛР
3	Однородные координаты ЛР	
4	Динамика линейных объектов	ЛР
5	Построение кривых на плоскости	ЛР
6	Лемнискаты и их свойства	ЛР
7	Методы построения лемнискат	ЛР
8	Моделирование плоских линий	ЛР
9	Полигональные сетки. Алгоритмы вычислительной геометрии	ЛР

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Проработка учебного (теоретического) материала	Литература из основного и дополнительного списков
2	Подготовка к текущему контролю	Образцы программ по темам лабораторных занятий в электронном виде

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа,

Для лиц с нарушениями слуха:

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Лекции, лабораторные занятия, контрольные работы, зачет.

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

- 1. Графические объекты, примитивы и их атрибуты, аналитическая модель;
- 2. Аффинные преобразования в 2D-пространстве;
- 3. Линейные объекты и их представление. Однородные координаты;
- 4. Построение кривых на плоскости. Лемнискаты и их свойства;
- 5. Моделирование плоских линий. Полигональные сетки;
- 6. Движение плоскости;
- 7. Стереографическая проекция и сфера Римана;
- 8. Обратно пропорциональное отображение;
- 9. Дробно-линейное отображение и его свойства;
- 10. Дробно-линейные изоморфизм и автоморфизм;
- 11. Конформные отображения. Конформные преобразования геометрических объектов;
- 12. Конструктивные фракталы;
- 13. Системы счисления;
- 14. Решето Серпинского и фрактал Кантора;
- 15. Кривая Коха;
- 16. Общая схема построения конструктивных фракталов;
- 17. Анализ конструктивных фракталов;
- 18. Инвариантные преобразования: Поворот, сжатие (растяжение), поворот с растяжением, отражение;
- 19. Общая схема построения фракталов используя преобразования;
- 20. Отображение трехмерных объектов на плоскость;
- 21. Проективные преобразования. Виды проекций;
- 22. Матрицы аффинных и проективных преобразований;
- 23. Простейшие объекты в 3D-пространстве;
- 24. Построение изображений многогранников. Матрицы вершин и граней;
- 25. Правильные многогранники, их виды;
- 26. Построение Платоновых тел. Операции вращения и переноса для Платоновых тел;
- 27. Объектно-ориентированный подход к реализации трехмерных многогранников.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Задание № 1. В MathCad создать анимацию на плоскости многоточечного объекта. 1.1) пользуясь операторами: поворота, переноса, сжатия; 1.2) используя комплексные числа и их арифметические операции. Многоточечные объекты для 1.1 буквы фамилии студента, для 1.2. буквы имени студента. Закон динамики букв задаётся самостоятельно.

Задание № 2. Построить фрактальную фигуру F_p порядка p с заданными: основой V и фрагментом U. Основа и фрагмент состоят из ломаных, заданных координатами точек: $V = \{(0,0), (0.5,0.85), (0,1), (0,0)\}, U = \{(0,0), (0.333,0), (0.5,0.289), (0.667,0), (0,1)\}, p = 6.$

$$f(z) = \prod_{j=1}^{n} |z - z_j|^{a_j}$$

3.1) определить значения константы B, при которых кривая F(x,y) = f(x+iy) - B = 0 односвязна и определить $B_2 = \inf_{B \in R} \{B\}$; 3.2) построить (по точечно) кривую (лемнискату), заданную неявно уравнением F(x,y) = 0 при $B = B_2$. 3.3) вычислить длину лемнискаты и площадь области, ограниченной лемнискатой.

Задание № **4.** Построить дробно-линейное отображение, переводящее три заданные точки z_1, z_2, z_3 в три заданные точки w_1, w_2, w_3 . 4.1) построить образ (по точечно) лемнискатного множества (определенного в задании 3); 4.2) построить образ фрактальной фигуры (определенной в задании 2).

Задание № 5. Сглаживание ломаной. Пусть задано множество точек $P = \{p_i\}_{i=1}^n$, определяющее замкнутую ломаную (например, контуры границы некоторой страны или какой либо фигуры). Построить гладкую кривую по заданным точкам.

Для получения зачёта студент должен выполнить и сдать преподавателю полученные практические семестровые задания.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

1. Никулин, Е.А. Компьютерная графика. Фракталы [Электронный ресурс] : 2018-07-12 / Е.А. Никулин. — Электрон. дан. — Санкт-Петербург : Лань, 2018. — 100 с. — Режим доступа: https://e.lanbook.com/book/107949

- 2. Шабунин, М.И. Теория функций комплексного переменного [Электронный ресурс] : учебное пособие / М.И. Шабунин, Ю.В. Сидоров. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2016. 303 с. Режим доступа: https://e.lanbook.com/book/84089
- 3. Никулин, Е.А. Компьютерная графика. Оптическая визуализация [Электронный ресурс] : учебное пособие / Е.А. Никулин. Электрон. дан. Санкт-Петербург : Лань, 2018. 200 с. Режим доступа: https://e.lanbook.com/book/108463
- 4. Приемышев, А.В. Компьютерная графика в САПР [Электронный ресурс] : учебное пособие / А.В. Приемышев, В.Н. Крутов, В.А. Треяль, О.А. Коршакова. Электрон. дан. Санкт-Петербург : Лань, 2017. 196 с. Режим доступа: https://e.lanbook.com/book/90060
- 5. Никулин, Е.А. Компьютерная графика. Модели и алгоритмы [Электронный ресурс] : учебное пособие / Е.А. Никулин. Электрон. дан. Санкт-Петербург : Лань, 2017. 708 с. Режим доступа: https://e.lanbook.com/book/93702

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1. Гумерова, Г.Х. Основы компьютерной графики : учебное пособие / Г.Х. Гумерова ; Министерство образования и науки России, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технологический университет». Казань : Издательство КНИТУ, 2013. 87 с. : ил., табл. Библиогр. в кн. ISBN 978-5-7882-1459-7 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=258794
- 2. Колесниченко, Н.М. Инженерная и компьютерная графика: учебное пособие / Н.М. Колесниченко, Н.Н. Черняева. Москва; Вологда: Инфра-Инженерия, 2018. 237 с.: ил. Библигр.: с. 225 226. ISBN 978-5-9729-0199-9; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=493787
- 3. Шпаков, П.С. Основы компьютерной графики : учебное пособие / П.С. Шпаков, Ю.Л. Юнаков, М.В. Шпакова ; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет. Красноярск : Сибирский федеральный университет, 2014. 398 с. : табл., схем. Библиогр. в кн. ISBN 978-5-7638-2838-2 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=364588
- 4. Компьютерная геометрия : практикум / А.О. Иванов, Д.П. Ильютко, Г.В. Носовский и др. ; Национальный Открытый Университет "ИНТУИТ". Москва : Интернет-Университет Информационных Технологий, 2010. 388 с. : ил.,табл., схем. (Основы информатики и математики). ISBN 978-5-9556-0117-5 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=233999
- 5. Кузовлев, В.П. Курс геометрии: элементы топологии, дифференциальная геометрия, основания геометрии [Электронный ресурс]: учебник / В.П. Кузовлев, Н.Г. Подаева. Электрон. дан. Москва: Физматлит, 2012. 208 с. Режим доступа: https://e.lanbook.com/book/59618
- 6. Свешников, А.Г. Теория функций комплексной переменной: учебник / А.Г. Свешников, А.Н. Тихонов. 6-е изд., стереотип. Москва: Физматлит, 2010. 334 с. (Курс высшей математики и математической физики). ISBN 978-5-9221-0133-2 (Вып. 5),

978-5-9221-0134-9 ; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=75710

5.3. Периодические издания:

- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).
- 1. Иванов А.О. Компьютерная геометрия [Электронный ресурс]: практикум / А.О. Иванов Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), 2010. 211 с. Книга находится в базовой версии ЭБС IPRbooks.
- 2. Голованов Н.Н. Геометрическое моделирование [Электронныйресурс] : Учебное пособие / Н. Н. Голованов. 1. Москва : ООО "КУРС" ; Москва : ООО "Научно-издательский центр ИНФРА-М", 2016. 400 с. ISBN 978-5-905554-76-6 : Б. ц. http://znanium.com/go.php?id=520536
- 3. Никулин Е. Компьютерная геометрия и алгоритмы машинной графики [Электронный ресурс] / Е. Никулин. Санкт-Петербург : БХВ-Петербург, 2013. 576 с. : ил. ISBN 978-5-9775-1925-0 : Б. ц. http://ibooks.ru/reading.php?short=1&isbn=978-5-9775-1925-0
 - 4. Электронно-библиотечная система Издательства «Лань» http://e.lanbook.com.
- 5. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp

7. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, рассматриваются основные приёмы решения задач и решаются примеры практических задач.

На лабораторных занятиях студенты, решая семестровые задания, приобретают практические навыки применения компьютерных пакетов, написания и отладки программ, программной реализации алгоритмов компьютерной графики.

Важнейшим этапом курса является самостоятельная работа по дисциплине «Компьютерная геометрия и геометрическое моделирование», во время которой студенты осуществляют проработку необходимого материала, используя литературу из основного и дополнительного списков, готовятся к текущему контролю, изучая примеры задач, рассмотренных на лекциях и на практических занятиях, и образцы программ по темам лабораторных занятий (выдаются студентам в электронном виде).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).
 - 8.1 Перечень информационных технологий.

Освоение курса «Компьютерная геометрия и геометрическое моделирование» предполагает теоретическое изучение компьютерных технологий и проведение практических занятий с использованием компьютера.

8.2 Перечень необходимого программного обеспечения.

Пакет компьютерной (символьной) алгебры MATHCAD 14.

8.3 Перечень информационных справочных систем:

- 1. Очков В.Ф. MathCAD 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2007. 369 с.
- 2. Мурашкин В. Г. Инженерные и научные расчеты в программном комплексе MathCAD: учебное пособие. Самара: СГАСУ, 2011. 84 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.
- 3. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные	Лекционная аудитория
	занятия	
2.	Лабораторные	Лаборатория, укомплектованная компьютерами для
	занятия	работы студентов и компьютером для преподавателя,
		подключенным к интерактивной доске.
3.	Текущий контроль,	Лаборатория, укомплектованная компьютерами для
	промежуточная	работы студентов и компьютером для преподавателя,
	аттестация	подключенным к интерактивной доске.
4.	Самостоятельная	Лаборатория, укомплектованная компьютерами для
	работа	работы студентов