Аннотация дисциплины «Компьютерные технологии в науке образовании» по направлению подготовки 01.04.01 Математика

1. Цели и задачи изучения дисциплины

1.1 Цель дисциплины: формирование знаний и умений, содействие становлению компетентностей магистров в области ряда направлений развития современных компьютерных технологий, связанных с актуальными областями приложений в других науках; развитие навыков самостоятельной работы с литературой; воспитание абстрактного и логического мышления; подготовка студентов к практическому применению полученных знаний.

1.2. Задачи дисциплины:

- 1) освоение информационных технологий, необходимых для самостоятельной научно-исследовательской деятельности;
- 2) формирование практических навыков использования научно-образовательных ресурсов Internet в образовательной деятельности;
- 3) владеть навыками создания учебных материалов с использованием компьютерных технологий;
- 4) использование возможностей образовательной среды для обеспечения качества образования, в том числе с применением информационных технологий;
- 5) изучение методов онлайн-поиска общетехнической и специализированной информации, работа с онлайн базами данных.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Компьютерные технологии в науке и образовании» для магистров по направлению «Математика и компьютерные науки» относится к обязательной части Блока 1. Дисциплины (модули). Дисциплина базируется на знаниях, полученных по стандарту высшего образования в области математики и информатики, является основой для решения исследовательских задач. Для успешного освоения дисциплины магистрант должен владеть обязательным минимумом содержания основных образовательных программ по математике и информатике для бакалавров.

Для успешного освоения дисциплины студенты должны иметь знания, полученные в рамках ранее пройденных дисциплин: «Объектно-ориентированное программирование», «Экстремальные задачи в математических моделях», «Интеллектуальные системы и технологии», «Символьная вычислительная математика», «Математическая теория оптимального эксперимента». Требования к начальной подготовке, необходимые для успешного усвоения дисциплины: навыки работы на персональном компьютере, знание логики организации интерфейса в стандарте современных операционных систем, умение работать с ними, знать принципы построения автоматизированных систем управления; знать принципы построения реляционных баз данных; уметь создавать презентации с мультимедиа информацией, владеть решением типовых инженерных задач. Уровень языковой подготовки (английский язык) достаточный для чтения и перевода специальных терминов и изучения новых программных средств.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций (ОПК-2)

достижения компетенции			
	ледовать новые математические модели в и разрабатывать концепции, теории и методы		
ОПК-2.1. Применяет в профессиональной деятельности методику создания и исследования новых моделей, методов и технологий в математике, механике и естественных науках	Знает основные численные методы, используемые исследовании моделей математике механике и естественных науках. Умеет разрабатывать моделирования моделирования с использованием численных методов на языке программирования высокого уровня.		
	Владеет методами и технологиями разработки современных программ моделирования.		
ОПК-2.2. Применяет современные методы разработки и реализации алгоритмов математических моделей на базе языков высокого уровня и пакетов прикладных программ моделирования	Знает методы и технологии разработки параллельных алгоритмов используемых при моделировании.		
	Умеет разрабатывать параллельные приложения.		
	Владеет навыками тестирования современных параллельных программ геометрической иллюстрации работы итерационных методов построения приближенных решений математических задач.		
ОПК-2.3. Описывает математические модели, формулирует, теоретически обосновывает и реализует программно численные методы для решения поставленных задач	Знает современные программные средства математического и компьютерного моделирования с использованием методом параллельного программирования.		
	Умеет использовать программные средства математического и компьютерного моделирования с использованием методом параллельного программирования.		
	Владеет навыками программирования в объёме необходимом для построения и использования средств математического и компьютерного моделирования.		
ОПК-2.4. По итогам вычислительного эксперимента оценивает адекватность	Знает современные методы вычислительного эксперимента.		
математической модели, корректирует ее постановку с целью максимально	Умеет разрабатывать и реализовывать програмы решения задач вычислительного		

Код и наименование индикатора* достижения компетенции

Результаты обучения по дисциплине

Код и наименование индикатора* достижения компетенции		k	Результаты обучения по дисциплине			
возможного реальному явлен	соответствия ию	ee	эксперимента. Владеет навыками анализа адекватности математической модели.			

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице (для студентов О Φ O).

Вид учебной работы	Всего	Семестры		
	часов	3	4	
Контактная работа, в то	80,5	44,2	36,3	
Аудиторные занятия (во	80	44	36	
Занятия лекционного тип	a	40	22	18
Лабораторные занятия		22	22	
Занятия семинарского	о типа (семинары,	18	10	
практические занятия, пр	рактикумы, лабораторные			18
работы, коллоквиумы	и иные аналогичные			10
занятия)				
Иная контактная работа	0,5	0,2	0,3	
Контроль самостоятельно				
Промежуточная аттестаці	ия (ИКР)	0,5	0,2	0,3
Самостоятельная работ	82,8	27,8	45	
Проработка и повторение	е лекционного материала,			
материала учебной и	60,8	17,8	35	
подготовка к семинарски				
Выполнение индивидуали				
рефератов, докладов, по	20	10	10	
контрольных работ)				
Подготовка к текущему к				
Контроль:	26,7		26,7	
Подготовка к экзамену	26,7		26,7	
Общая трудоемкость	час	180	72	108
	в том числе	80,5	44,2	36,3
	контактная работа			·
	зач. ед.	5	2	3

Курсовые работы не предусмотрены Форма проведения аттестации по дисциплине: зачет в 3 семестре, экзамен в 4 семестре.

Автор: кандидат технических наук, доцент Алексеев Е.Р.