министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

подпись

/28 »

иая 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.19 РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Направление подготовки 11.03.01 Радиотехника

Направленность (профиль) Радиотехнические средства передачи, приема и обработки сигналов

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины Б 1.О.19 «Радиотехнические цепи и сигналы» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.01 «Радиотехника».

Программу составил:

К.С. Коротков, д-р техн. наук, профессор кафедры оптоэлектроники

Рабочая программа дисциплины Б1.О.23 «Радиотехнические цепи и сигналы» утверждена на заседании кафедры оптоэлектроники ФТФ, протокол № 1 0 от 17 апреля 2021 г.

Заведующий кафедрой оптоэлектроники д-р техн. наук, профессор Яковенко Н.А.

Рабочая программа дисциплины обсуждена на заседании кафедры радиофизики и нанотехнологий, протокол № 6 от 20 апреля 2021 г. Заведующий кафедрой, д-р физ.-мат. наук Копытов Г.Ф.

Утверждена на заседании учебно-методической комиссии технического факультета, протокол № 9 от 20 апреля 2021 г. Председатель УМК ФТФ

д-р физ.-мат. наук, профессор Богатов Н.М.

физико-

полпись

Рецензенты:

Воеводин Е.М., канд. техн. наук, начальник подразделения надёжности и качества АО «КПЗ «Каскад»

Исаев В.А., д-р физ.-мат. наук, зав. кафедрой теоретической физики и компьютерных технологий

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель дисциплины.

Радиотехнические цепи и сигналы — это наиболее обширный раздел радиотехники, связанный с исследованием, разработкой, созданием и эксплуатацией новых приборов и устройств, направленных на передачу, прием, обработку электрических сигналов различных диапазонов частот.

Основная цель преподавания дисциплины - формирование комплекса устойчивых знаний, умений и навыков в области радиотехнических цепей и сигналов, объединяющих физические представления с математическими моделями основных классов сигналов и устройств для их обработки.

1.2 Задачи дисциплины

Задачами освоения дисциплины «Радиотехнические цепи и сигналы» являются:

- ознакомление студентов с современными методами математического описания сигналов, цепей и их характеристик в сочетании с пониманием физических процессов и явлений;
- формирование навыков экспериментальной работы с радиоизмерительной аппаратурой;
- формирование умения применять на практике вычислительную технику для решения радиотехнических задач.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.Б. 12 «Радиотехнические цепи и сигналы» относится к базовой части Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина базируется на знаниях, полученных по стандарту общего среднего образования. В частности, дисциплина базируется на успешном усвоении сопутствующих дисциплин: Б1.Б.15 «Электродинамика и распространение радиоволн», Б1.Б.9 «Основы теории цепей» и Б1.Б.10 «Электроника». Кроме того, данная дисциплина является основой для изучения следующих дисциплин: Б1.В.ОД.12 «Устройства генерирования и формирования сигналов», Б1.В.ОД.13 «Устройства приема и обработки сигналов», Б1.В.ОД.7 «Радиотехнические системы». Для освоения данной дисциплины необходимо владеть методами, математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических, дифференциальных и интегральных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей модуля Б1.

Программа дисциплины «Радиотехнические цепи и сигналы» согласуется со всеми учебными программами дисциплин базовой Б1.Б и вариативной Б1.В частей модуля (дисциплин) Б1 учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций: ОПК-3, ОПК-5, ПК-18

	Индого		В перми тото ж	зучения учебной ди	ениппини обл
№	Индекс компе-	Содержание компе-	чающиеся долж	•	сциплины ооу-
П.П.	тенции	тенции (или её части)	знать	уметь	владеть
1.	ПК-18	способностью владеть	- принципы	- применять ма-	- Навыками
1.	1110-10	правилами и метода-	функциони-	тематические	самостоя-
		ми монтажа, настрой-	рования ра-	методы анализа	тельной ра-
		ки и регулировки уз-	диотехниче-	детерминиро-	боты с лите-
		лов радиотехнических	ских систем и	ванных и слу-	ратурой, экс-
		устройств и систем	устройств;	чайных сигналов	перименталь-
		JP	– формы	и их преобразо-	ной работы с
			сигналов и	вания в радио-	радиоизмери-
			структуры	технических це-	тельной ап-
			типовых ра-	ПЯХ	паратурой,
			диотехниче-	– осуществлять	использова-
			ских цепей,	синтез цепей,	ния вычисли-
			используемых	проводить ста-	тельной тех-
			для их фор-	тистическое	ники для ре-
			мирования;	описание сигна-	шения радио-
			- совре-	лов и помех, ис-	технических
			менные мето-	пользуемого при	задач.
			ды математи-	разработке оп-	
			ческого опи-	тимальных алго-	
			сания сигна-	ритмов обработ-	
			лов, цепей и	ки сигналов как	
			их характери-	носителей ин-	
			стик в сочета-	формации;	
			нии с пони-	– применять ме-	
			манием физи-	тоды исследова-	
			ческих про-	ния основных	
			цессов и яв-	нелинейных ра-	
			лений;	диотехнических	
			- основ-	преобразований;	
			ные законо-		
			мерности		
			преобразова- ния сигналов		
			как носителей		
			информации;		
			информации, –идеи обеспе-		
			чения поме-		
			хоустойчиво-		
			сти при пере-		
			даче, приеме		
			и преобразо-		
			вании сигна-		
			лов;		
2	ОПК-3	способностью решать	- как выпол-	– осуществлять	- программа-
		задачи анализа и рас-	нять матема-	сбор и анализ	ми экспери-
		чета характеристик	тическое мо-	научно-	ментальных
		электрических цепей	делирование	технической ин-	исследова-
			объектов и	формации,	ний, включая

Ma	Индекс	Communication	В результате из	зучения учебной ди	сциплины обу-		
№	компе-	Содержание компе-	чающиеся должны				
П.П.	тенции	тенции (или её части)	знать	уметь	владеть		
			процессов по	обобщать отече-	выбор техни-		
			типовым ме-	ственный и за-	ческих		
			тодикам, в	рубежный опыт	средств и об-		
			том числе с	в области радио-	работку ре-		
			использова-	техники, прово-	зультатов		
			нием стан-	дить анализ па-			
			дартных па-	тентной литера-			
			кетов при-	туры			
			кладных про-				
			грамм				
3	ОПК-5	Способностью ис-	- основы тео-	- осуществлять	- навыками		
		пользовать основные	рии измере-	сбор и анализ	работы с ра-		
		приемы обработки и	ний и метро-	эксперименталь-	диоизмери-		
		представления экспе-	логии;	ных данных в	тельной ап-		
		риментальных данных	- основы тео-	соответствии с	паратурой		
			рии погреш-	общепринятыми	- навыками-		
			ностей	в теории мето-	проведения		
			- основы ана-	диками	измерений		
			литического и		электриче-		
			графического		ских величин		
			анализа экс-		- навыками		
			перименталь-		автоматизи-		
			ных данных		рованного		
					сбора данных		
					с измери-		
					тельных при- боров		
					oohor		
	<u> </u>						

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет $\underline{7}$ зач. ед. ($\underline{252}$ часа), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы	Всего	Семестры (часы)	
	часов	5	6
Контактная работа, в том числе:			
Аудиторные занятия (всего)	102	54	48
Занятия лекционного типа	50	18	32
Занятия семинарского типа (семинары, практические занятия)	18	18	_
Лабораторные занятия	34	18	16
Иная контактная работа:			
Контроль самостоятельной работы (КСР)	6	4	2
Промежуточная аттестация (ИКР) в форме экзамена	0,6	0,3	0,3
Самостоятельная работа, в том числе (всего):	90	59	31

Курсовая работа			_	_
Проработка учебного (те	еоретического) материала	40	25	15
Выполнение индивидуа.	_	_		
ний, презентаций)				
Реферат			_	_
Подготовка к контролю			34	16
Контроль, в том числе:				
Подготовка к экзамену		53,4	26,7	26,7
Общая трудоемкость	час.	252	144	108
	в том числе контактная работа	108,6	58,3	50,3
	зач. ед.	7	4	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в $\underline{\mathbf{5}}$ семестре (очная форма):

		Количество часов					
№	Наименование разделов (тем)	Ауди Всего работ		торная a		КСР	Самостоятельная работа
			Л	П3	ЛР		CPC
1.	Основы общей теории детерми-	20	3	3	3	1	10
1.	нированных сигналов		3	٥	3	1	10
2.	Спектральное представление	22	4	4	4		10
	сигналов		7	7	7		10
3.	Корреляционный анализ детер-	23	4	4	4	1	10
	минированных сигналов				'	•	
4.	Модулированные радиосигналы	23	4	4	4	1	10
5.	Преобразование детерминированных сигналов в линейных	20	3	2	3	1	10
	системах с постоянными пара-	29	3	3	3	1	19
	метрами						
	Итого по дисциплине:	117	18	18	18	4	59

Разделы (темы) дисциплины, изучаемые в 6 семестре (очная форма):

		Количество часов					
No	Наименование разделов (тем)	Аудиторная					Самостоятельная
7.45	таименование разделов (тем)	Всего	работа		ŀ		работа
			Л	П3	ЛР		CPC
	Преобразование сигналов в не-						
1.	линейных радиотехнических	13	5	_	3		5
	цепях, детектирование						
2.	Автогенераторы гармонических	15	6		3	1	5
	колеоании		U		3	1	J
3.	Сигналы с ограниченным спек-	13	5		3		5
	TDOM		3		3		J
4.	Основы теории случайных сиг-	13	5		3		5
	налов		3		3		3
5.	Активные фильтры и преобра-	12	5		2		5
	зователи	14	5		<u> </u>		J

6.	Дискретная и цифровая обра- ботка сигналов	15	6	_	2	1	6
	Итого по дисциплине:	81	32	_	16	2	31

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента.

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	теории детерми-	Классификация радиотехнических сигналов. Математические модели радиотехнических сигналов. Сигнал, информация, сообщение. Принцип динамического представления сигналов. Функция Хевисайда и функция Дирака. Геометрические методы в теории сигналов.	КВ
2	Спектральное представление сигналов	Периодические сигналы и их представление в базисе комплексных гармонических функций. Комплексная и тригонометрическая формы ряда Фурье. Дискретный спектр периодического сигнала. Распределение мощности в спектре периодического сигнала. Спектральное представление непериодических сигналов. Прямое и обратное преобразования Фурье. Спектральная плотность сигнала. Основные свойства преобразований Фурье (теоремы о спектрах). Явление Гиббса	
3	Корреляционный анализ детерминированных сигналов	Взаимная корреляционная функция (ВКФ) сигнала. Автокорреляционная функция (АФК) сигнала.	КВ
4	Модулированные радиосигналы	Виды модуляции радиотехнических сигналов. Радиосигналы с амплитудной модуляцией. Спектральный состав АМ-колебаний. Векторное представление АМ-колебаний. Колебания с балансной и однополосной модуляцией. Радиосигналы с угловой модуляцией. Понятие мгновенной частоты и фазы. Фазовая модуляция (ФМ) и частотная модуляция (ЧМ). Девиация частоты и индекс угловой модуляции. Связь между ЧМ и ФМ. Спектр однотонального ЧМ-колебания при малых и больших значениях индекса модуляции. Реальная ширина спектра. Спектр колебания при амплитудно-частотной модуляции. Сигналы для стереофонии.	

_	П	п	ICD
5	Преобразование	Линейная система и ее математическая модель.	KB
	детерминирован-	Классификация систем. Электрическая цепь как	
		частный вид системы. Активные четырехполюсники	
		и их схемы замещения. Основы теории линейных	
	мах с постоянны-	систем с постоянными параметрами. Системный	
	ми параметрами	оператор. Собственные значения и собственные	
		функции. Интеграл Дюамеля. Комплексная частот-	
		ная характеристика цепи и ее связь с импульсной	
		характеристикой. Роль фазочастотной характери-	
		стики цепи. Групповое время запаздывания. Прин-	
		цип физической реализуемости линейной системы.	
		Критерий Пэли—Винера.	
6	Преобразования	Понятие нелинейной безынерционной системы.	КВ
	сигналов в нели-	Способы математического описания характеристик	
	нейных радиотех-	нелинейных элементов. Спектральный состав тока	
	нических цепях,	при возбуждении безынерционного нелинейного	
	детектирование	элемента гармоническим колебанием. Воздействие	
		бигармонического колебания на нелинейный рези-	
		стивный элемент. Нелинейные искажения в усили-	
		теле с резистивной нагрузкой. Нелинейное резо-	
		нансное усиление. Умножение частоты. Амплитуд-	
		ное ограничение. Реализация амплитудной модуля-	
		ции. Детектирование АМ, ФМ и ЧМ сигналов. Вза-	
		имодействие слабого и сильного сигналов в нели-	
		нейном безынерционном элементе.	
		Гетеродинное преобразование частоты. Явление ин-	
		термодуляции. Параметрическое преобразование	
		частоты, теорема Мэйнли – Роу, принцип парамет-	
		рического усиления.	
7	Автогенераторы	Теория автогенератора, баланс фаз, баланс ампли-	КВ
	гармонических ко-	туд. Дифференциальное уравнение автогенератора,	
	лебаний	понятие отрицательного сопротивления. LC автоге-	
		нераторы, емкостная и индуктивная трёхточки. Ре-	
		жим слабого сигнала. Мягкий и жесткий режимы	
		самовозбуждения автогенератора. Автогенераторы в	
		режиме больших колебаний. Устойчивость стацио-	
		нарного режима. LC – и RC-генераторы. Кварцевая	
		стабилизация частоты автогенераторов.	
8	_	Математические модели сигналов с ограниченным	
	ченным спектром	спектром. Узкополосные сигналы. Аналитический	
		сигнал и преобразование Гильберта	
9		Принципы математического описания случайных	КВ
	случайных сигна-	сигналов. Статистические характеристики случай-	
	ЛОВ	ных величин. Плотность вероятности и функция	
		распределения. Моменты. Гауссовские случайные	
		величины. Основные понятия теории случайных	
		процессов. Ансамбль реализации. Классификация	
		случайных процессов. Моментные функции. Функ-	
		ция корреляции и ее физический смысл. Свойство	
		эргодичности. Алгоритмы измерения статистиче-	
		ских характеристик стационарных случайных про-	
		цессов. Спектральное представление реализации.	

		Спектральная плотность мощности. Теорема Винера—Хинчина. Понятие белого шума и формула Найквиста. Помехи при в усилении слабых сигналов. Шумовая температура и коэффициент шума. Рассмотрение входного тракта приёмника. Воздействие случайных сигналов на линейные системы с постоянными параметрами. Спектральная плотность и корреляционная функция случайного колебания на выходе линейной стационарной системы. Шумовая полоса пропускания цепи. Характеристики собственных шумов в радиотехнических устройствах. Тепловой шум резистора. Дробовой шум электронных приборов. Формула Шоттки. Коэффициент шума линейного четырехполюсника.	
10	Активные филь-	Теория операционных усилителей. Идеальные уси-	КВ
	_	лители напряжения и тока. Преобразователи сопро-	TCD
	ватели	тивления.	
11	Дискретная и циф-	Принцип дискретной и цифровой обработки сигна-	КВ
	ровая обработка	лов. Преобразование аналог-цифра, шумы кванто-	
	сигналов	вания. Преобразование цифра-аналог и восстанов-	
		ление континуального сигнала. Передача сигналов	
		через дискретные (цифровые) фильтры. Передаточ-	
		ная функция и импульсная характеристика цифро-	
		вого фильтра. Характеристики детерминированных	
		и случайных цифровых сигналов. Применение ме-	
		тода z-преобразования для анализа дискретных сиг-	
		налов и систем. Соотношение между плоскостями р	
		и z. Обратное z-преобразование. Понятие систем-	
		ной функции фильтра. Трансверсальный и рекур-	
		сивный цифровые фильтры. Формы реализации	
		цифровых фильтров. Устойчивость цифровых филь-	
		тров. Цифровые фильтры с комплексными весовы-	
		ми коэффициентами. Быстродействие арифметиче-	
		ского устройства цифрового фильтра. Алгоритмы	
		цифровой фильтрации во временной и частотной	
		областях. Недостатки алгоритма дискретной свертки. Быстрое преобразование Фурье. Спектральный	
		анализ сигналов на базе быстрого преобразования	
		Фурье. Постановка задачи синтеза цифрового филь-	
		тра. Синтез цифровых фильтров по заданным харак-	
		теристикам аналогового прототипа: метод стан-	
		дартного Z-преобразования, метод инвариантного	
		преобразования импульсной характеристики, метод	
		билинейного Z-преобразования. Прямые методы	
		синтеза цифровых фильтров.	
	1	1 1 1	

2.3.2 Занятия семинарского типа

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текущего
	le marriage	(*************************************	контроля

2	рии детерминиро- ванных сигналов	Пространство сигналов. Линейное пространство. Норма, энергия и метрика. Расстояние между сигналами. Ортонормированные базисы в пространстве сигналов. Неравенство Бесселя. Обзор наиболее распространенных ортогональных систем базисных функций. Связь между преобразованиями Фурье и Лапласа. Полюсы на комплексной плоскости и вид сигнала. Теорема Котельникова (теорема отсчетов). Свойства базисных функций ряда Котельникова (ортогональных сигналов с ограниченной полосой частот). Представление сигнала с ограниченным спектром в виде ряда Котельникова. Разложение в ряд Котельникова сигналов ограниченной длительности, ошибка аппроксимации. Ряд Котельникова в частотной области.	КВ
3	Корреляционный анализ детерминированных сигналов	Соотношение между ВКФ сигналов и их взаимным спектром. Корреляционная функция дискретных сигналов с большой базой. Коды Баркера.	
4	Модулированные радиосигналы	Аналитический сигнал. Комплексная огибающая узкополосного сигнала, Квадратурное представление. Сопряженное колебание. Преобразование Гильберта и его свойства. Спектральная плотность аналитического сигнала, спектральная плотность комплексной огибающей. Квадратурная модуляция. Импульсный сигнал с линейной частотной модуляцией (ЛЧМ—импульс). Спектральная плотность ЛЧМ—импульса с большой базой. Корреляционная функция ЛЧМ—импульса и фазоманипулированного сигнала с большими базами. Длительность сигнала и время корреляции, сжатие сигнала с большой базой.	
5	терминированных сигналов в линей- ных системах с по-	Передаточная функция линейной системы с постоянными параметрами. Нули и полюсы передаточной функции. Устойчивые линейные системы. Сопоставление временных, частотных и операторных методов анализа прохождения сигналов через линейные стационарные цепи. Свойства цепей с обратной связью. Положительная и отрицательная обратная связь. Влияние обратной связи на частотную характеристику линейной системы. Использование отрицательной обратной связи для стабилизации коэффициента усиления и для снижения уровня нелинейных искажений. Использование отрицательной обратной связи при дифференцировании и интегрировании сигналов. Гребенчатые фильтры. Устойчивость линейных активных цепей с обратной связью. Критерии устойчивости Найквиста и Рауса—Гурвица.	

No	Наименование лабораторных работ	Форма текущего
	1 1 1	контроля
1	Спектральный анализ и синтез периодических сигналов	ЛР
2	Исследование модулированных радиосигналов	ЛР
3	Исследование статистических характеристик случайных сигна-	ЛР
	лов.	J11
4	Прохождение радиоимпульсов через узкополосный усилитель.	ЛР
5	Прохождение случайных сигналов через линейные цепи.	ЛР
6	Нелинейное резонансное усиление гармонических колебаний.	ЛР
7	Получение сигналов с амплитудной модуляцией.	ЛР
8	Детектирование модулированных сигналов.	ЛР
9	Автогенераторы гармонических колебаний	ЛР
10	Преобразование частоты	ЛР
11	Исследование согласованных фильтров	ЛР
12	Исследование цифровых фильтров	ЛР

Примечание: Ответы на контрольные вопросы (КВ), защита лабораторной работы (ЛР).

В результате выполнения лабораторных работ у студентов формируются и оцениваются все требуемые Φ ГОС и ООП для направления 11.03.01 Радиотехника (профиль: Радиотехнические средства передачи, приема и обработки сигналов) компетенции: ПК-18, ОПК-3, ОПК-5.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	твил (РС	Перечень учебно-методического обеспечения дисциплины по
		выполнению самостоятельной работы
1	Проработка	1 Харкевич, А.А. Основы радиотехники [Электронный ресурс]:
	учебного (теоре-	учеб. пособие — Электрон. дан. — Москва: Физматлит, 2007. —
	тического мате-	512 с. — Режим доступа: https://e.lanbook.com/book/48189 . — Загл. с
	риала), подго-	экрана.
	3	2 Мощенский, Ю.В. Теоретические основы радиотехники. Сигна-
	и промежуточ-	лы [Электронный ресурс]: учеб. пособие / Ю.В. Мощенский, А.С.
		Нечаев. — Электрон. дан. — Санкт-Петербург: Лань, 2016. — 216 с.
	(зачёту и вопро-	— Режим доступа: https://e.lanbook.com/book/87585 . — Загл. с экра-
	сам)	на.
		3 Методические указания по организации самостоятельной
		работы студентов, утвержденные кафедрой оптоэлектроники,
		протокол № 6 от «01» марта 2017 г.
2	Подготовка к	1 Методические указания по организации самостоятельной
	практическим	работы студентов, утвержденные кафедрой оптоэлектроники,
	занятиям	протокол № 6 от «01» марта 2017 г.
		2 Нефедов, В. И. Радиотехнические цепи и сигналы: учебник для
		СПО / В. И. Нефедов, А. С. Сигов; под ред. В. И. Нефедова. — М.:
		Издательство Юрайт, 2017. — 266 с. — Режим доступа:
		<u>http://urait.ru/catalog/403829</u> — Загл. с экрана.

	3 Радиотехнические цепи и сигналы [Текст]: руководство к решению задач: учебное пособие для студентов вузов, обуч. по спец. "Радиотехника" 2-е изд., перераб. и доп М.: Высшая школа, 2002 214 с.: ил Библиогр.: с. 213.
выполнению ла-	1 Радиотехника + компьютер + Mathcad: [учебное пособие для студентов] / Каганов, Вильям Ильич; В. И. Каганов М.: Горячая линия-Телеком, 2001 413 с. 2 Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой оптоэлектроники, протокол № 6 от «01» марта 2017 г.

Перечень учебно-методического обеспечения дисциплины по темам программы для проработки теоретического материала

).		Наименование	Перечень учебно-методического обеспечения дисциплины по
№		раздела	выполнению самостоятельной работы
	1	Основы общей тео-	1 Харкевич, А.А. Основы радиотехники [Электронный ре-
		рии детерминиро-	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
		ванных сигналов	лит, 2007. — 512 с. — Режим доступа:
			https://e.lanbook.com/book/48189. — Загл. с экрана.
			2 Мощенский, Ю.В. Теоретические основы радиотехники.
			Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
			щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
			Петербург: Лань, 2016. — 216 с. — Режим доступа:
			https://e.lanbook.com/book/87585. — Загл. с экрана.
	2	Спектральное пред-	
		ставление сигналов	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
			лит, 2007. — 512 с. — Режим доступа:
			https://e.lanbook.com/book/48189. — Загл. с экрана.
			2 Мощенский, Ю.В. Теоретические основы радиотехники.
			Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
			щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
			Петербург: Лань, 2016. — 216 с. — Режим доступа:
	2	Корреляционный	https://e.lanbook.com/book/87585. — Загл. с экрана. 1 Харкевич, А.А. Основы радиотехники [Электронный ре-
		корреляционный анализ детерминиро-	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
		ванных сигналов	лит, 2007. — 512 с. — Режим доступа:
		bannibix em nasiob	https://e.lanbook.com/book/48189. — Загл. с экрана.
			2 Мощенский, Ю.В. Теоретические основы радиотехники.
			Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
			щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
			Петербург: Лань, 2016. — 216 с. — Режим доступа:
			https://e.lanbook.com/book/87585. — Загл. с экрана.
	4	Модулированные	1 Харкевич, А.А. Основы радиотехники [Электронный
		радиосигналы	ресурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
			лит, 2007. — 512 с. — Режим доступа:
			https://e.lanbook.com/book/48189. — Загл. с экрана.
			2 Мощенский, Ю.В. Теоретические основы радиотехни-
			ки. Сигналы [Электронный ресурс]: учеб. пособие / Ю.В.
			Мощенский, А.С. Нечаев. — Электрон. дан. — Санкт-
			Петербург: Лань, 2016. — 216 с. — Режим доступа:
			https://e.lanbook.com/book/87585. — Загл. с экрана.

5	Преобразование де-	1 Харкевич, А.А. Основы радиотехники [Электронный
		ресурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
	сигналов в линейных	
	системах с постоян-	https://e.lanbook.com/book/48189. — Загл. с экрана.
	ными параметрами	2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.
6	Преобразования сиг-	-
		ный ресурс]: учеб. пособие — Электрон. дан. — Москва:
	радиотехнических	Физматлит, 2007. — 512 с. — Режим доступа:
	I =	https://e.lanbook.com/book/48189. — Загл. с экрана.
	ние	2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.
7	Автогенераторы	1 Харкевич, А.А. Основы радиотехники [Электронный
		ресурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
	баний	лит, 2007. — 512 с. — Режим доступа:
		https://e.lanbook.com/book/48189. — Загл. с экрана.
		2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.
8	Сигналы с ограни-	1 Харкевич, А.А. Основы радиотехники [Электронный ре-
	ченным спектром	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
		лит, 2007. — 512 с. — Режим доступа:
		https://e.lanbook.com/book/48189. — Загл. с экрана.
		2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.
9	Основы теории слу-	
	чайных сигналов	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
		лит, 2007. — 512 с. — Режим доступа:
		https://e.lanbook.com/book/48189. — Загл. с экрана.
		2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
17	Α 1	https://e.lanbook.com/book/87585. — Загл. с экрана.
10	Активные фильтры и	
	преобразователи	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
		лит, 2007. — 512 с. — Режим доступа:
		https://e.lanbook.com/book/48189. — Загл. с экрана.
		2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-

		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.
1	1Дискретная и цифро-	1 Харкевич, А.А. Основы радиотехники [Электронный ре-
	вая обработка сигна-	сурс]: учеб. пособие — Электрон. дан. — Москва: Физмат-
	ЛОВ	лит, 2007. — 512 с. — Режим доступа:
		https://e.lanbook.com/book/48189. — Загл. с экрана.
		2 Мощенский, Ю.В. Теоретические основы радиотехники.
		Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мо-
		щенский, А.С. Нечаев. — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 216 с. — Режим доступа:
		https://e.lanbook.com/book/87585. — Загл. с экрана.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа или в печатной форме увеличенным шрифтом.
 Для лиц с нарушениями слуха:
- в форме электронного документа или печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа или печатной форме.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3 Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- проведение практических занятий;
- домашние задания;
- опрос;
- индивидуальные практические задания;
- контрольные работы;
- -защита лабораторных работ;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение домашних работ и индивидуальных типовых расчетов, подготовка к опросу, тестированию и экзамену).

Для проведения всех лекционных и практических (семинарских) занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемого материала, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Интерактивные аудиторные занятия с использованием мультимедийных систем позволяют активно и эффективно вовлекать учащихся в учебный процесс и осуществлять обратную связь. Помимо этого, становится возможным эффективное обсуждение сложных и дискуссионных вопросов и проблем.

По изучаемой дисциплине студентам предоставляется возможность открыто пользоваться (в том числе копировать на личные носители информации) подготовленными ведущим данную дисциплину преподавателем материалами в виде электронного комплекса сопровождения, включающего в себя:

– электронные конспекты лекций;

- электронные планы практических (семинарских) занятий;
- электронные варианты учебно-методических пособий для выполнения лабораторных заданий;
 - списки контрольных вопросов к каждой теме изучаемого курса;
- разнообразную дополнительную литературу, относящуюся к изучаемой дисциплине в электронном виде (в различных текстовых форматах *.doc, *.rtf, *.htm, *.txt, *.pdf, *.djvu и графических форматах *.jpg, *.png, *.gif, *.tif).

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний, получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- интерактивная лекция с мультимедийной системой с активным вовлечением студентов в учебный процесс и обратной связью;
 - лекции с проблемным изложением;
- обсуждение сложных и дискуссионных вопросов и проблем и разрешение проблем;
- компьютерные занятия в режимах взаимодействия «преподаватель студент», «студент преподаватель», «студент студент»;
- технологии смешанного обучения: дистанционные задания и упражнения, составление глоссариев терминов и определений, групповые методы Wiki, интернет-тестирование и анкетирование.

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- технология развития критического мышления;
- лекции с проблемным изложением;
- использование средств мультимедиа;
- изучение и закрепление нового материала (интерактивная лекция, работа с наглядными пособиями, видео- и аудиоматериалами, использование вопросов, Сократический диалог);
 - работа в малых группах;
 - использование средств мультимедиа (компьютерные классы);

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля

Текущий контроль осуществляется путем проведения контрольных работ и устных опросов с использованием следующих контрольных вопросов:

Раздел 1.

- 1 Динамическое представление сигналов с помощью функций Хевисайда и Дирака;
- 2 Геометрические методы в теории сигналов, типы линейных пространств, координатный базис, норма, метрическое пространство;

Раздел 2.

- 1 Ортогональные и ортонормированные сигналы;
- 2 Обобщённый ряд Фурье и его основные свойства;
- 3 Спектральный анализ непериодических сигналов, интеграл Фурье, прямое и обратное преобразование Фурье, спектральная плотность;
- 4 Основные свойства преобразования Фурье;
- 5 Комплексная форма ряда Фурье;
- 6 Явление Гиббса;
- 7 Преобразование Лапласа;

Раздел 3.

- 1 Корреляционный анализ сигналов и его принципы;
- 2 Понятие автокорреляционной функции сигнала (АКФ);
- 3 Понятие взаимокорреляционной функции сигнала (ВКФ);

Раздел 4.

- 1 Сигналы с амплитудной модуляцией;
- 2 Балансная и однополосная модуляция.
- 3 Сигналы с угловой модуляцией.
- 4 Полярная модуляция;
- 5 Сигналы с ЛЧМ, база сигнала, условия реализации и области применения;
- 6 Сигналы с импульсно-кодовой модуляцией;

Раздел 5.

- 1 Теория синхронного детектора, фазовый детектор;
- 2 Типы амплитудных детекторов, теория расчёта работы амплитудного детектора в линейном режиме и его входное сопротивление;
- 3 Теория квадратичного детектирования и способы её реализации;

Раздел 6.

- 1 Воздействие двух синусоидальных сигналов на нелинейное сопротивление;
- 2 Понятие преобразования частоты;
- 3 Параметрическое преобразование частоты, принцип Мэйнли-Роу;

Раздел 7.

- 1 Общая теория автогенератора, баланс фаз и баланс амплитуд;
- 2 Вывод дифференциального уравнения автогенератора, понятие отрицательного сопротивления;
- 3 Теория индуктивной и ёмкостной трёхточки автогенератора;
- 4 Мягкий и жёсткий режимы возбуждения автогенератора и способы их реализации;
- 5 Типовые схемы LC автогенераторов, схема Колпица;
- 6 RC автогенераторы, принципы работы и схемы построения;
- 7 Кварцевая стабилизация частоты автогенераторов;

Раздел 8.

- 1 Сигналы с ограниченным спектром и их математические модели;
- 2 Теорема Котельникова и области её применения;
- 3 Узкополосные сигналы и их математическая модель;
- 4 Аналитический сигнал и преобразование Гильберта;

Разлел 9.

- 1 Основы теории случайных сигналов, функция распределения, плотность вероятности, математическое ожидание, дисперсия, среднеквадратическое отклонение;
- 2 Функция корреляции;
- 3 Воздействие случайных сигналов на линейные стационарные цепи, функция корреляции, источники шумов в радиотехнических устройствах;
- 4 Белый шум и формула Найквиста, шумовая температура и коэффициент шума;
- 5 Расчёт коэффициента шума каскадно включённых четырёхполюсников, зависимость коэффициента передачи пассивного четырёхполюсника от шума;

Разлел 10.

- 1 Теория операционного усилителя;
- 2 Преобразователи сопротивления, гираторы;

Раздел 11.

- 1 Типы дискретных сигналов, процессы дискретизации и квантования;
- 2 Теория Z –преобразования;
- 3 Некоторые свойства передаточных функций четырёхполюсников;
- 4 Особенности фазочастотных свойств четырёх полюсников;
- 5 Связь между АЧХ и ФЧХ четырёхполюсника;
- 6 Математические модели четырёхполюсников.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Вопросы, выносимые на экзамен по дисциплине «Радиотехнические цепи и сигналы» для направления подготовки: 11.03.01 Радиотехника

- 1 Динамическое представление сигналов с помощью функций Хевисайда и Дирака.
- 2 Геометрические методы в теории сигналов, типы линейных пространств, координатный.
 - 3 базис, норма, метрическое пространство.
 - 4 Ортогональные и ортонормированные сигналы.
 - 5 Обобщённый ряд Фурье и его основные свойства.
- 6 Спектральный анализ непериодических сигналов, интеграл Фурье, прямое и обратное преобразование Фурье, спектральная плотность.
 - 7 Основные свойства преобразования Фурье.
 - 8 Комплексная форма ряда Фурье.
 - 9 Явление Гиббса.
 - 10 Преобразование Лапласа.
 - 11 Корреляционный анализ сигналов и его принципы.

- 12 Понятие автокорреляционной функции сигнала (АКФ).
- 13 Понятие взаимокорреляционной функции сигнала (ВКФ).
- 14 Сигналы с амплитудной модуляцией.
- 15 Балансная и однополосная модуляция.
- 16 Сигналы с угловой модуляцией.
- 17 Полярная модуляция.
- 18 Сигналы с ЛЧМ, база сигнала, условия реализации и области применения.
- 19 Сигналы с импульсно-кодовой модуляцией.
- 20 Теория синхронного детектора, фазовый детектор.
- 21 Типы амплитудных детекторов, теория расчёта работы амплитудного детектора в линейном режиме и его входное сопротивление.
 - 22 Теория квадратичного детектирования и способы её реализации.
 - 23 Общая теория автогенератора, баланс фаз и баланс амплитуд.
- 24 Вывод дифференциального уравнения автогенератора, понятие отрицательного сопротивления.
 - 25 Теория индуктивной и ёмкостной трехточки автогенератора.
- 26 Мягкий и жёсткий режимы возбуждения автогенератора и способы их реализации.
 - 27 Типовые схемы LC автогенераторов, схема Колпица.
 - 28 RC автогенераторы, принципы работы и схемы построения
 - 29 Кварцевая стабилизация частоты автогенераторов.
 - 30 Сигналы с ограниченным спектром и их математические модели
 - 31 Теорема Котельникова и области её применения.
 - 32 Узкополосные сигналы и их математическая модель.
 - 33 Аналитический сигнал и преобразование Гильберта.
- 34 Основы теории случайных сигналов, функция распределения, плотность вероятности, математическое ожидание, дисперсия, среднеквадратическое отклонение.
 - 35 Функция корреляции
- 36 Воздействие случайных сигналов на линейные стационарные цепи, функция корреляции, источники шумов в радиотехнических устройствах.
- 37 Белый шум и формула Найквиста, шумовая температура и коэффициент шума.
- 38 Расчёт коэффициента шума каскадно включённых четырёхполюсников, зависимость коэффициента передачи пассивного четырёхполюсника от шума.
 - 39 Воздействие двух синусоидальных сигналов на нелинейное сопротивление.
 - 40 Понятие преобразования частоты
 - 41 Параметрическое преобразование частоты, принцип Мэйнли-Роу.
 - 42 Теория операционного усилителя.
 - 43 Преобразователи сопротивления, гираторы.
 - 44 Типы дискретных сигналов, процессы дискретизации и квантования.
 - 45 Теория Z –преобразования.
 - 46 Некоторые свойства передаточных функций четырёхполюсников.
 - 47 Особенности фазочастотных свойств четырёхполюсников.
 - 48 Связь между АЧХ и ФЧХ четырёхполюсника.
 - 49 Математические модели четырёхполюсников.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

 при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Харкевич, А.А. Основы радиотехники [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Физматлит, 2007. 512 с. Режим доступа: https://e.lanbook.com/book/48189. Загл. с экрана.
- 2. Мощенский, Ю.В. Теоретические основы радиотехники. Сигналы [Электронный ресурс]: учеб. пособие / Ю.В. Мощенский, А.С. Нечаев. Электрон. дан. Санкт-Петербург: Лань, 2016. 216 с. Режим доступа: https://e.lanbook.com/book/87585. Загл. с экрана.
- 3. Радиотехнические цепи и сигналы: руководство к решению задач: учебное пособие для студентов вузов, обуч. по спец. "Радиотехника" // Баскаков, Святослав Иванович. 2-е изд., перераб. и доп. М.: Высшая школа, 2002. 214 с.

5.2 Дополнительная литература:

- 1 Нефедов, В. И. Радиотехнические цепи и сигналы: учебник для СПО / В. И. Нефедов, А. С. Сигов; под ред. В. И. Нефедова. М.: Издательство Юрайт, 2017. 266 с. Режим доступа: http://urait.ru/catalog/403829 Загл. с экрана.
- 2 Радиотехнические цепи и сигналы [Текст] : руководство к решению задач : учебное пособие для студентов вузов, обуч. по спец. "Радиотехника". 2-е изд., перераб. и доп. М. : Высшая школа, 2002. 214 с. : ил. Библиогр. : с. 213.
- 3 Радиотехника + компьютер + Mathcad: [учебное пособие для студентов] / Каганов, Вильям Ильич; В. И. Каганов. М.: Горячая линия-Телеком, 2001. 413 с.

5.3. Периодические издания:

Радиотехника, Радиотехника и электроника, Измерительная техника

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

1 Сайт кафедры теоретической радиотехники Московского авиационного института:

http://www.mai-trt.ru/?option=com_content&task=view&id=44&Itemid=49

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению 11.03.01 Радиотехника (профиль: Радиотехнические средства передачи, приема и обработки сигналов), отводится около 27 % времени (68 час. СРС) от общей трудоемкости дисциплины (252 час.). Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде. В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам дисциплины.

Контроль осуществляется посредством выполнения письменных контрольных работ.

По итогам выполнения каждой лабораторной работы студент составляет подробный письменный отчет, опираясь на который должен в беседе с преподавателем продемонстрировать знание теоретического и экспериментального материала, относящегося к работе. Проверка знаний студента основана на контрольных вопросах, приведенных в описании работы и дополнительных вопросах, касающихся соответствующих разделов основной дисциплины.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

- 1 Операционная система MS Windows.
- 2 Интегрированное офисное приложение MS Office.
- 3 Программное обеспечение для организации управляемого и безопасного доступа в Интернет.
- 4 Программное обеспечение для безопасной работы на компьютере файловый антивирус, почтовый антивирус, веб-антивирус и сетевой экран.
- 5 Система компьютерной математики MATHCAD с необходимыми пакетами расширений.
 - 6 Система схемотехнического моделирования LTspice, Microcap.

8.2 Перечень необходимых информационных справочных систем

1 Википедия – свободная энциклопедия. http://ru.wikipedia.org/wiki/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Реализация Профиля предполагает наличие минимально необходимого для реализации бакалаврской программы перечня материально-технического обеспечения:

- лекционные аудитории (оборудованные видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, и имеющие выход в Интернет),
- классы, оборудованные стендами для проведения лабораторных работ.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выходом в Интернет в соответствии с объемом изучаемых дисциплин.

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные за-	Лекционная аудитория, оснащенная презентационной техни-
	нятия	кой (проектор, экран, компьютер/ноутбук) и соответствую-
		щим программным обеспечением (ПО) для воспроизведения
		файлов формата jpg и avi. Достаточным количеством поса-
		дочных мест: № 205С
2.	Практические	Аудитория оснащенная тремя меловыми или маркерными дос-
	занятия	ками, достаточным количеством посадочных мест со столами:
		№211C
3.	Лабораторные	Лаборатория, укомплектованная специализированной мебелью
	занятия	и техническими средствами обучения. Проведение занятий ла-
		бораторного практикума предусмотрено в «Лаборатории ана-
		логовой и цифровой электроники» №211С на учебном обору-
		довании.
5.	Групповые (индивидуаль-	Помещение с достаточным количеством посадочных мест и меловой или маркерной доской: №205С,211С
	ные)	
	консультации	
6.	Промежуточная	Помещение с достаточным количеством посадочных мест:
	аттестация	№205C,211C
7.	Самостоятель-	Кабинет для самостоятельной работы, оснащенный компью-
	ная	терной техникой с возможностью подключения к сети «Интер-
	работа	нет», программой экранного увеличения и обеспеченный до-
		ступом в электронную информационно-образовательную среду
		университета: № 208с