МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

подпись

28 »

мая

2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.02 ФИЗИЧЕСКИЕ ПРИНЦИПЫ МЕДИКО-БИОЛОГИЧЕСКОЙ ИНТРОСКОПИИ

Направление подготовки 03.04.02 Физика

Направленность Медицинская физика

Форма обучения очно-заочная

Квалификация магистр

Рабочая программа дисциплины «Физические принципы медико-биологической интроскопии» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 03.04.02 Физика (профиль) "Медицинская физика"

Программу составил: Ю.Б. Захаров, доцент

подпись

Рабочая программа дисциплины утверждена на заседании кафедры физики и информаци-онных систем протокол № 14 «16» апреля 2021 г. Заведующий кафедрой (разработчика)

Богатов Н.М.

фамилия, инициалы

подпись

Утверждена на заседании учебно-методической комиссии факультетаФизико-технический факультет протокол № 13 «16» апреля 2021 г. Председатель УМК факультета Богатов Н.М.

фамилия, инициалы

подпись

Рецензенты:

Шапошникова Т.Л., зав. кафедрой физики ФГБОУ ВО КубГТУ

Григорьян Л.Р., Генеральный директор ООО НПФ «Мезон»

1. Цели и задачи освоения дисциплины

Целью дисциплины является развитие у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в области исследования, разработки, внедрения и сопровождения информационных технологий и систем в соответствии с требованиями ФГОС ВО по данному направлению подготовки. В частности данная дисциплина ставит своей целью ознакомить студентов с основами интроскопии биообъектов для исследования внутренней структуры организма.

1.1 Цели дисциплины

- удовлетворение потребности личности в профессиональном образовании,
 интеллектуальном, нравственном и культурном развитии;
- получение новых знаний в области информационных систем и технологий посредством развития фундаментальных и прикладных научных исследований, в том числе, по проблемам образования;
- сохранение и приумножение своего потенциала на основе интеграции образовательной деятельности с научными исследованиями;
- обеспечение инновационного характера своей образовательной, научной и социокультурной деятельности;
- создание условий для систематического обновления содержания образования в духе новаторства, созидательности и профессионализма;
- обеспечение конкурентоспособности на мировых рынках научных разработок и образовательных услуг;
- создание условий для максимально полной реализации личностного и профессионального потенциала каждого работника;
- воспитание личностей, способных к самоорганизации,
 самосовершенствованию и сотрудничеству, умеющих вести конструктивный
 диалог, искать и находить содержательные компромиссы,
 руководствующихся в своей деятельности профессионально-этическими
 нормами;

 обеспечение кадрами потребностей экономики и социальной сферы Краснодарского края и Юга России.

1.2 Основные задачи дисциплины:

- изучение использования технических средств в условиях медикобиологических организаций;
- изучение технического обеспечения лечебно-диагностического процесса;
- изучение классификации медицинских электронных приборов, аппаратов, и систем;
- изучение организация диагностических исследований;
- изучение принципов работы диагностических приборов и систем;
- изучение приборов и систем для регистрации и анализа медикобиологических показателей и физиологических процессов, характеризующих различные проявления;
- изучение приборов и систем для оценки физических и физикохимических свойств биологических объектов;
- изучение диагностических комплексов и систем;
- изучение приборов биологической интроскопии; компьютерных томографов и ангиографических систем.

1.3 Место дисциплины в структуре основной образовательной программы высшего профессионального образования

медико-биологической Дисциплина «Физические принципы интроскопии» относится к дисциплинам, включенным в профессиональный цикл, базовая часть, обязательным дисциплинам Б1.В.ОД.8 образовательного шикла основной профессиональной образовательной программы образования специальности 03.04.02 профессионального ПО (Медицинская физика) и всего на ее изучение отводится 24 часов аудиторной работы. В соответствии с учебным планом, занятия проводятся в 3 семестре.

Знания, полученные в этом курсе, используются в последующей профессиональной деятельности.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины студент должен обладать:

- -способность использовать свободное владение профессиональнопрофилированными знаниями в области компьютерных технологий для решения задач профессиональной деятельности, в том числе находящихся за пределами направленности (профиля) подготовки (ОПК-5);
- способность использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе (ОПК-6).

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций:

No	Индекс	Co vonveyore kontrolovyor	В результате изучен	ния учебной дисци	плины
п.п	компет	Содержание компетенции (или ее части)	обучающиеся долж	ны	
	енции	(или се части)	знать	уметь	владеть
1.	ОПК-5	способность	основные законы	использовать	методикам
		использовать свободное	теории	преобразование	И
		владение	реконструкций в	Радона для	использова
		профессионально-	интроскопии,	трансмиссионн	кин
			пути решения	ой	полученны
		профилированными	задач в	рентгеновской	X
		знаниями в области	медицинской	томографии,	теоретичес
		компьютерных	интроскопии,	использовать	ких знаний
		технологий для	получение	интегральные	ПО
		решения задач	основных	преобразования	интроскопи
		профессиональной	представлений	такие как	и для
		1 1	теории	Фурье-,	решения
		деятельности, в том	интегральной	Лапласа- и др.	конкретны
		числе находящихся за	геометрии.	для создания	X
		пределами	Основные	алгоритмов и	(курсовых
		направленности	физические	схем	И
		(профиля) подготовки	законы, лежащие	реконструкции	дипломных

№ п.п	Индекс компет	Содержание компетенции (или ее части)	ния учебной дисци ны	я учебной дисциплины ы		
	енции	(MJIM CC MaCIM)	знать	уметь	владеть	
2.	ОПК-6	способность использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе	в основе интроскопии и схемы реализации регистрации структуры объектов	физических (и медицинских) параметров исследуемого объекта	работ) задач с последующ им анализом и оценкой полученны х результатов	
3.	ОК-3	готовность к саморазвитию, самореализации, использованию творческого потенциала	основные законы теории реконструкций в интроскопии, пути решения задач в медицинской интроскопии, получение основных представлений теории	использовать преобразование Радона для трансмиссионн ой рентгеновской томографии, использовать интегральные преобразования такие как Фурье-,	методикам и использова ния полученны х теоретичес ких знаний по интроскоп ии для решения	
4.	ПК-1	способность самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с	интегральной геометрии. Основные физические законы, лежащие в основе интроскопии и схемы реализации регистрации структуры объектов	Лапласа- и др. для создания алгоритмов и схем реконструкции физических (и медицинских) параметров исследуемого объекта	конкретны х (курсовых и дипломных работ) задач с последующ им анализом и оценкой полученны х	

2. Содержание и структура дисциплины «Физические принципы медикобиологической интроскопии»

2.1 Распределение трудоемкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 3 зачетные единицы, (108 академических часов, из них 24 аудиторных).

Курс «Физические принципы медико-биологической интроскопии» состоит из лекций и практических занятий, сопровождаемых регулярной

индивидуальной работой преподавателя со студентами в процессе самостоятельной работы. В конце третьего семестра зачет. Программой дисциплины предусмотрены 6 часов лекционных, 6 практических занятий, а также 48 часов самостоятельной работы.

Вид учебной работы	Всего	Семестры
	часов	3-й
Аудиторные занятия (всего)	24	24
В том числе:		
Занятия лекционного типа	6	6
Занятия семинарского типа (семинары,		
практические занятия, практикумы,	18	18
лабораторные работы, коллоквиумы и иные	10	10
аналогичные занятия)		
Самостоятельная работа (всего)	84	84
В том числе:		
КСР	36	36
Самостоятельная работа студента	48	48
Вид промежуточной аттестации		зачет
Общая трудоемкость (час)	108	108
(зач. ед.)	3	3

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 3 семестре

$\mathcal{N}_{\underline{0}}$	Наименование разделов			Колич	нество ч	асов
раздела		Всего	Аудиторная работа Самостоятель		Самостоятельная	
			Л	П3	ЛР	работа
1	2	3	4	5	6	7
1	Электромагнитное излучение в медико- биологической интроскопии		1			6
2	Радиоволны в медико- биологической интроскопии		1		2	12
3	Оптический диапазон электромагнитного излучения в медикобиологической интроскопии		1	1	2	12
4	Лазерное излучение в медико-биологической интроскопии		1	1	1	12
5	Рентгеновское излучение в медико-биологической интроскопии		1	1	1	10
6	Гамма-излучение в медико-биологической интроскопии		1	1	1	10
7	Элементарные частицы в медико-биологической интроскопии			1	2	10
8	Ультразвуковое излучение в медико- биологической интроскопии			1	3	12
	Итого	108	6	6	12	84

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование	Содержание раздела	Форма текущего
п/п	раздела		контроля
1	Электромагнитное	Волновая природа	Выполнение
	излучение в медико-	электромагнитного излучения	индивидуальных
	биологической	Основные понятия квантовой	заданий
	интроскопии	механики	

		I	
2	Радиоволны в медико- биологической интроскопии	Ядерный магнитный резонанс Томография на основе ядерномагнитного резонанса ЯМР-томографы Применение ЯМР-томографии в медицине	Выполнение индивидуальных заданий
3	Оптический диапазон электромагнитного излучения в медикобиологической интроскопии	Инфракрасное излучение 1. Общие характеристики ИК 2. Источники ИК-излучения 3. Приемники ИК-излучения 4. Применение ИК-излучения в медицине Ультрафиолетовое излучение 1. Общие характеристики 2. Источники УФ-излучения 3. Приемники УФ-излучения 4. Применение УФ-излучения в медицине Видимое излучение 1. Общие характеристики ВИ 2. Источники ВИ 3. Приемники ВИ 4. Человеческий глаз как приемник светового излучения 5. Оптические приборы Спектрометрия оптического излучения Применение ВИ в медицине	выполнение индивидуальных заданий
4	Лазерное излучение в медико-биологической интроскопии	Физические основы возникновения лазерного излучения Основные типы лазеров Применение лазеров в медицине	Выполнение индивидуальных заданий
5	Рентгеновское излучение в медико- биологической интроскопии	Общие характеристики РИ Источники РИ Детекторы РИ Рентгенография Основы компьютерной рентгеновской томографии Рентгеновские томографы Применение РИ в медицине	Выполнение индивидуальных заданий
6	Гамма-излучение в медико-биологической интроскопии	Гамма-излучение 1. Общие характеристики ГИ 2. Взаимодействие гамма-излучения с веществом 3. Естественные источники гамма-излучения 4. Искусственные источники гамма-излучения 5. Детекторы гамма-излучения Получение изображений с помощью радиоизотопов	Выполнение индивидуальных заданий

	I		10
		1. Эмиссионная компьютерная томография 2. Позитроная эмиссионная томография 3. Применение гамма-излучения в медицине	
7	Элементарные частицы в медикобиологической интроскопии	Общие свойства элементарных частиц, применяемых в современной медицине Основные процессы взаимодействия заряженных частиц с веществом 1. Ионизационное торможение заряженных частиц 2. Рассеяние заряженных частиц Источники элементарных частиц Источники элементарных частиц Применение элементарных частиц Применение элементарных частиц в медицине 1. Электронные микроскопы 2. Сканирующие зондовые микроскопы 3. Протонная и ионная лучевая терапия 4. Нейтронная терапия 5. Нейтрон-захватная терапия	Выполнение индивидуальных заданий
8	Ультразвуковое излучение в медикобиологической интроскопии	Общие характеристики УЗ и его медицинские применения Параметры ультразвукового поля и основные законы распространения УЗ-волн Характерные особенности ультразвука 1. Направленность ультразвука 2. Фокусировка ультразвука 3. Нелинейные ультразвуковые эффекты 4. Акустический эффект Доплера Источники и приемники ультразвука 1. Основные типы пьезоэлектрических преобразователей ультразвука 2. Концентраторы ультразвука 3. Фокусирующие ультразвук элементы 4. Приемно-излучающие решетки пьезоэлектрических преобразователей Взаимодействие ультразвука с биологической средой 1. Влияние характеристик биологических тканей на параметры УЗ-поля	выполнение индивидуальных заданий

	11
2. Воздействие ультразвука на	
биологическую среду	
3. Критерии безопасности	
применения ультразвука в медицине	
Ультразвуковая медицинская	
интроскопия и диагностика	
1. Эхоимпульсные методы	
визуализации и измерения	
2. Доплеровские методы	
визуализации и измерения	
3. Прочие методы ультразвуковой	
визуализации	
4. Области применения методов	
ультразвуковой визуализации в	
медицинской диагностике	
5. Ультразвуковые диагностические	
приборы	
6. Место ультразвука в медицинской	
визуализации	

2.3.2 Занятия семинарского типа

No	Наименование	Содержание раздела	Форма
Π/Π	раздела		текущего
			контроля
1	Электромагнитное	Волновая природа электромагнитного	Устный
	излучение в медико-	излучения	опрос
	биологической	Основные понятия квантовой механики	
	интроскопии		
2		Ядерный магнитный резонанс	Устный
	Do wyono wyy i p wowyto	Томография на основе ядерно-	опрос
	Радиоволны в медико- биологической	магнитного резонанса	
		ЯМР-томографы	
	интроскопии	Применение ЯМР-томографии в	
		медицине	
3		Инфракрасное излучение	Устный
		1. Общие характеристики ИК	опрос
		2. Источники ИК-излучения	
		3. Приемники ИК-излучения	
		4. Применение ИК-излучения в	
	Оптический диапазон	медицине	
	электромагнитного	Ультрафиолетовое излучение	
	излучения в медико-	1. Общие характеристики	
	биологической	2. Источники УФ-излучения	
	интроскопии	3. Приемники УФ-излучения	
		4. Применение УФ-излучения в	
		медицине	
		Видимое излучение	
		1. Общие характеристики ВИ	
		2. Источники ВИ	

ения
ения
ения
ения
ч Устный
опрос
Устный
опрос
_
кой
Устный
опрос
ия с
1 -
1-
Y0
Ю
1
рафия
тиц, Устный
цине опрос
цине опрос
в в
в копы
в в
в копы
в копы апия
в копы
1

 	13
основные законы распространения УЗ-	
волн	
Характерные особенности ультразвука	
1. Направленность ультразвука	
2. Фокусировка ультразвука	
3. Нелинейные ультразвуковые эффекты	
4. Акустический эффект Доплера	
Источники и приемники ультразвука	
1. Основные типы пьезоэлектрических	
преобразователей ультразвука	
2. Концентраторы ультразвука	
3. Фокусирующие ультразвук элементы	
4. Приемно-излучающие решетки	
пьезоэлектрических преобразователей	
Взаимодействие ультразвука с	
биологической средой	
1. Влияние характеристик	
биологических тканей на параметры УЗ-	
поля	
2. Воздействие ультразвука на	
биологическую среду	
3. Критерии безопасности применения	
ультразвука в медицине	
Ультразвуковая медицинская	
интроскопия и диагностика	
1. Эхоимпульсные методы визуализации	
и измерения	
2. Доплеровские методы визуализации и	
измерения	
3. Прочие методы ультразвуковой	
визуализации	
4. Области применения методов	
ультразвуковой визуализации в	
медицинской диагностике	
5. Ультразвуковые диагностические	
приборы	
6. Место ультразвука в медицинской	
визуализации	
приборы 6. Место ультразвука в медицинской	

2.4 Самостоятельное изучение разделов дисциплины

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям (16 недель):

№ уч. недели	Темы учебной дисциплины, рекомендуемые для обязательного изучения	Темы учебной дисциплины, рекомендуемые для самостоятельного изучения
1	Физические излучения в интроскопии.	Алгоритмы восстановления изображений; теорема Шеннона -

		17	
		Котельникова; Фурье - синтез,	
		свертка, обратная проекция (метод	
		фильтрованных обратных проекций).	
2	Трансмиссионная	Аппаратное обеспечение и контроль	
	рентгеновская томография.	качества томографов.	
	Медицинские рентгеновские	Достоинства, недостатки и области	
	аппараты и комплексы.	применения ЯМР томографии.	
16			
	Объемные волны. Отражение и	Перспективы развития методик	
	преломление объемных волн.	неинвазивного оценивания.	
	1	·	

3. Образовательные технологии

При изучении данного курса используются лекции, практические занятия.

Формы контроля

Текущий контроль:

- контрольные вопросы по разделам учебной программы.
- практические задания.

Промежуточный контроль:

контрольные работы (4, во время самостоятельной работы, итоговая контрольная работа);

Итоговый контроль:

- зачет (3 семестр).

При реализации учебной работы по освоению курса «Физические принципы медико-биологической интроскопии» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- проектные методы обучения;
- исследовательские методы в обучении;

Успешное освоение материала курса предполагает большую самостоятельную работу бакалавров и руководство этой работой со стороны преподавателей.

Самостоятельная работа студентов является неотъемлемой частью процесса подготовки. Под самостоятельной работой понимается часть учебной планируемой работы, которая выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Самостоятельная работа направлена на усвоение системы научных и профессиональных знаний, формирования умений и навыков, приобретение опыта самостоятельной творческой деятельности. СРС помогает формировать культуру мышления студентов, расширять познавательную деятельность.

Виды самостоятельной работы по курсу:

- *а)по целям:* подготовка к лекциям, к итоговому контролю.
- *б) по характеру работы:* изучение литературы, конспекта лекций; поиск литературы в библиотеке; конспектирование рекомендуемой для самостоятельного изучения научной литературы; решение задач, тестов.
- В течение семестра студенты выполняют задания, указанные преподавателем.

В ходе лекционных и практических занятий предполагается использование компьютерных технологий (презентации по некоторым темам курса).

В учебном процессе используются активные и интерактивные формы проведения занятий: метод проектов, метод поиска быстрых решений в группе, мозговой штурм.

Интерактивные технологии, используемые при изучении дисциплины

Семестр	Вид занятия (Л,	Используемые интерактивные	Количество
	ПР, ЛР)	образовательные технологии	часов
7	Л	метод проектов	1
	ЛР	метод поиска быстрых решений в группе,	1
		мозговой штурм	
Итого:			2

Интерактивность подачи материала предполагает не только взаимодействия вида «преподаватель - студент» и «студент - преподаватель», но и «студент - студент».

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

К инновационным технологиям, используемым в преподавании дисциплины, относятся следующие технологии:

3.1. Дискуссия

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно излагать мысли. Полезны следующие задания: составление плана решения задачи, поиск другого способа решения, проведение выкладок в обратном порядке, рассмотрение задач с лишними и недостающими данными, реферативные или творческие доклады студентов: фрагмент теоретического материала, интересный пример, нестандартная задача. Студентам предлагается сравнить и проанализировать варианты решения, обсудить доклад, высказать своё мнение, задать вопросы.

Вопросы, вынесенные на дискуссию:

1. Составление плана и поиск решения задачи.

- 2. Решение задач различными способами.
- 3. Взаимная и самопроверка знаний и обсуждение полученных результатов.
- 4. Самостоятельное составление задач по указанной теме.
- 5. Овладение приемами и методами самоконтроля при обучении математики.

3.2 Интерактивные методы обучения

Существенную помощь оказывают специально составленные задания (методические разработки, рабочие тетради) по курсу, в которых дается краткое изложение теоретической части, приводятся решения типовых примеров, предлагаются задания для самостоятельной работы разного уровня сложности. Студент имеет возможность ознакомиться с теоретическим материалом, разобраться в предложенном решении типового примера, затем самостоятельно решить задачи. Все это:

- позволяет каждому студенту перейти от деятельности под руководством преподавателя к самостоятельной и дает возможность проведения самоконтроля;
 - повышает эффективность и качество обучения;
 - обеспечивает мотивы к самостоятельной познавательной деятельности;
- способствует углублению межпредметных связей за счет интеграции информационной и предметной подготовки.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций.

Оценочными средствами дисциплины являются средства текущего контроля (ответ у доски, тестирование и проверка домашних заданий) и итоговая аттестация (зачет).

Оценка успеваемости осуществляется по результатам устного опроса, ответа, в ходе которого выявляются уровень знаний и понимания теоретического материала.

Важным элементом образовательной технологии является самостоятельная работа студента, включающая выполнение индивидуальных заданий.

Критерий оценивания усвоенных знаний обучающихся

Оценка **«отлично»** - выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач;

Оценка **«хорошо»** - выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности;

Оценка **«удовлетворительно»** - выставляется студенту, показавшему разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы в некотором объеме, необходимом для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

Оценка **«неудовлетворительно»** - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

4.1 Фонд оценочных средств для проведения текущей аттестации

Обязательными при изучении дисциплины являются следующие виды самостоятельной работы:

- разбор теоретического материала по пособиям и конспектам лекций;
- самостоятельное изучение указанных теоретических вопросов;
- решение задач по темам.

Задание для самостоятельной работы

- 1 Оптические методы.
- 2 Электронная микроскопия и ее роль в молекулярной биологии, примеры конкретного применения.
- 3 Использование ультразвука.
- 4 Особенности распространения ультразвука (УЗ) в живых средах.
- 5 Задачи, решаемые с применением УЗ.
- 6 Формирование сигнала.
- 7 Измерение линейных размеров.
- 8 Разрешающая способность по линейной координате.
- 9 Измерение угловых координат.
- 10 Разрешающая способность по углу.
- 11 Рентгеновская томография и ее недостатки.
- 12 Компьютерная томография.
- 13 Схемы сбора исходных данных.
- 14 Алгебраические методы восстановления изображения внутренней структуры объектов.
- Преобразование Радона. Связь преобразования Радона с многомерным преобразованием Фурье.
- Восстановление изображения путем двухмерного преобразования Фурье.
- 17 Обратное преобразование Радона.

- 18 Сравнение методов восстановления структуры по вычислительной сложности.
- 19 Спектры ЯМР жидкостей и твердых тел.
- 20 Связь времен релаксаций с шириной линии спектра.
- 21 Импульсные методы наблюдения ЯМР.
- 22 Фурье спектроскопия.
- 23 Двухмерная Фурье спектроскопия.
- 24 ЯМР интроскопия.
- 25 Связь методов интроскопии и спектроскопии.
- 26 Преимущества ЯМР интроскопии.
- 27 ЯМР томография. Способы формирования изображения.
- 28 Радиоизотопная интроскопия: методика, оборудование, область применения, достоинства.
- 29 Ультразвук как метод исследования функции движения биологических объектов.
- 30 Регистрация отраженного сигнала: А-режим, В-режим, М-режим; формирование 2-D изображения; проблемы, возникающие при регистрации сигнала и пути их решения.
- 31 Формирования 3-D изображения.
- 32 Проблема временной синхронизации для наблюдения движущихся объектов.
- 33 Вторичная обработка УЗ изображений.
- 34 Проблемы автоматизации обработки.
- 35 Эффект Доплера и измерение скорости движения крови и органов.
- 36 Точность измерения скорости.
- 37 Совместное измерение скорости и линейной координаты.

Вопросы к зачету (3 семестр)

- 1 Волновая природа электромагнитного излучения
- 2 Основные понятия квантовой механики

3	Ядерный магнитный резонанс
4	Томография на основе ядерно-магнитного резонанса
5	ЯМР-томографы
6	Применение ЯМР-томографии в медицине
7	Инфракрасное излучение
8	Ультрафиолетовое излучение
9	Видимое излучение
10	Оптические приборы
11	Спектрометрия оптического излучения
12	Применение ВИ в медицине
13	Физические основы возникновения лазерного излучения
14	Основные типы лазеров
15	Применение лазеров в медицине
16	Общие характеристики рентгеновского излучения
17	Рентгенография
18	Основы компьютерной рентгеновской томографии
19	Рентгеновские томографы
20	Гамма-излучение
21	Детекторы гамма-излучения
22	Эмиссионная компьютерная томография
23	Позитроная эмиссионная томография
24	Применение гамма-излучения в медицине
25	Общие свойства элементарных частиц, применяемых в современной
	медицине
26	Основные процессы взаимодействия заряженных частиц с веществом
27	Источники элементарных частиц

28

29

30

Детекторы элементарных частиц

Применение элементарных частиц в медицине

Общие характеристики УЗ и его медицинские применения

- 31 Параметры ультразвукового поля и основные законы распространения УЗ-волн
- 32 Характерные особенности ультразвука
- 33 Акустический эффект Доплера
- 34 Источники и приемники ультразвука
- 35 Взаимодействие ультразвука с биологической средой
- 36 Эхоимпульсные методы визуализации и измерения
- 37 Доплеровские методы визуализации и измерения
- 38 Прочие методы ультразвуковой визуализации
- 39 Области применения методов ультразвуковой визуализации в медицинской диагностике
- 40 Ультразвуковые диагностические приборы
- 41 Место ультразвука в медицинской визуализации

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- Физические методы медицинской интроскопии: учебное пособие / С.Е. Улин, В.Н. Михайлов, В.Г. Никитаев, А.Н. Алексеев, В.Г. Кириллов-Угрюмов, Ф.М. Сергеев. М.: МИФИ, 2009. 308 с.
- 2. Н.А. Кореневский, Е.П. Попечителев, С.П. Серегин Медицинские приборы, аппараты, системы и комплексы.. Курск, 2009 986 с.
- 3. Марусина М.Я., Казначеева А.О. Современные виды томографии. Учебное пособие. – СПб: СПбГУ ИТМО, 2006. – 132 с.
- 4. М. Прокоп, М. Галански, Спиральная и многослойная компьютерная томография, учебное пособие в двух томах (том10) / Под ред. А.В.Зубарева, Ш.Ш.Шотемора.— Москва, «МЕДпресс-информ», 2009.-416 с.
- 5. Агаханян Т.М, Никитаев В.Г. Электронные устройства в медицинских приборах. Учебное пособие. Бином, 2005. 510 с.

5.2 Дополнительная литература:

- 1 Информационно-измерительная техника и технологии/ Под ред. Проф. Г.Г. Раннева, ФГУП Высшая школа, 2002. С453.
- 2 Кудряшов Ю.Б. Радиоионная биофизика (ионизирующее излучение) М: ФИЗМАТЛИТ, 2004.-448с.
- 3 Бердников А.В., Семко М.В., Широкова Ю.А. Медицинские приборы, аппараты, системы и комплексы. Часть 1. Технические методы и аппараты для экспресс-диагностики: Учебное пособие. Казань: Изд-во Казан. гос. техн. ун-та, 2004. 176 с.
- 4 Медицинские приборы. Разработка и применение. —М. Медицинская книга. 2004. 560 с.
- Уэбб С, Дане Д., Эванс С., Суинделл Б., Доббс Дж., Отт Р., Флауэр М.,
 Бабич Дж., Марсден П. Физика визуализации изображений в медицине:
 В 2-х т.-Т. 1: Пер. с англ./Под ред. С. Уэбба, М.: Мир, 1991. 408 с.
- 6 В.Ф. Антонов Биофизика / В.Ф. Антонов, А.М. Черныш и др. под редакцией Антонова В.Ф. М: Владос. 2000.-288с.
- 7 А.Н. Ремизов Медицинская и биологическая физика: учебник для ВУЗов/ А.Н. Ремизов, А.Г. Максина. 6 издание. М: Дрофа, 2005.-558с.
- 8 Мухин К.Н. Экспериментальная ядерная физика. Т.1. М.: Наука, 1983.
- 9 Пассивный неразрушающий анализ ядерных материалов / Д. Райлли, Н. Энсслин, Х. Смит, С. Крайнер. М.: Бином, 2004.
- 10 Уйба В.В., Бежина Л.Н., Михайлов В.Н. и др. Ультразвук в медицине: теория и применение: учебное пособие. М.: МИФИ, 2006.
- 11 Никитаев В.Г., Воробьев И.А., Блиндарь В.Н. Компьютерные системы гематологической диагностики. Введение: учебное пособие. М.: МИФИ, 2006.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. http://www.kubsu.ru/node/1145 Информационно-образовательный комплекс (портал) КубГУ.
- 2. http://e.lanbook.com Электронно-библиотечная система издательства «Лань». Доступ: свободный (из локальной сети КубГУ); авторизованный (из внешней сети).
- 3. http://elibrary.ru/defaultx.asp Научная электронная библиотека eLIBRARY.RU. Доступ: авторизованный (свободная онлайн регистрация).
- 4. http://biblioclub.ru Электронно-библиотечная система «Университетская библиотека онлайн». Доступ: свободный (из локальной сети КубГУ); авторизованный (из внешней сети).
- 5. http://www.netbook.perm.ru/soj.html -образовательный журнал на сайте www.issep.rssi.ru;

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Студенту необходимо ознакомиться с теоретическим материалом, разобраться с предложенным решением типовых примеров, затем самостоятельно решить приведённые задачи. Если студент не смог понять приведенный в указанных задачниках разбор типовых примеров в той степени, чтобы самостоятельно использовать предложенный алгоритм для решения задания, то он может получить консультацию преподавателя.

Методические указания к самостоятельной подготовке студентов к докладу

Каждый студент должен подготовить доклад по одной из тем, предназначенных для самостоятельного изучения. Для подготовки доклада необходимо кроме основных источников литературы

использовать источники из дополнительного списка, а также источник из Интернет-ресурса. О подготовке доклада по темам студент может отчитаться на консультации или представить отчет в письменной форме. Доклад по одной и той же теме готовят не более двух студентов одной группы. Оформление письменного отчета по докладу должно удовлетворять требованиям: а) текст набирается 14 шрифтом на бумаге формата A4; б) на титульном листе кроме темы также указывается факультет, направление (бакалавриат), курс, группа, ФИО студента; в) содержание материала по объему составляет 3-4 страницы; г) список литературы содержит не менее двух источников (возможно из списка литературы).

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)
- **8.1 Перечень необходимого программного обеспечения** Не требуется.
- **8.2** Перечень необходимых информационных справочных систем Не требуется.
- 9. Материально-техническая база, необходимая для осуществления образовательногопроцесса по дисциплине

Для проведения занятий имеется необходимая материальнотехническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

 – лекционная аудитория, оснащенная мультимедийными проекторами с возможностью подключения к Wi-Fi, документ-камерой, маркерными досками для демонстрации учебного материала;

- специализированные компьютерные классы с подключенным к ним периферийным устройством и оборудованием;
- аппаратурное и программное обеспечение (и соответствующие методические материалы) для проведения самостоятельной работы по дисциплине.

Рецензия

на рабочую учебную программу по курсу «Физические принципы медико-

биологической интроскопии» для студентов направления подготовки

03.04.02 Физика (Медицинская физика)

Рабочая программа дисциплины «Физические принципы медикобиологической интроскопии» включает в себя структурные части, необходимые ДЛЯ документации такого рода. Учебная программа предусматривает формирование у обучающихся аппарата, включающего в себя необходимые дальнейшей знания, умения И навыки ДЛЯ профессиональной деятельности.

Программа отвечает современным требованиям к обучению и отражает современные тенденции в обучении и воспитании личности. Содержание рабочей программы охватывает весь материал, необходимый для обучения студентов высших учебных заведений по направлению Физика (Инженерное дело в медико-биологической практике).

Рабочая программа дает целостное представление о дисциплине. Структура и содержание курса взаимно дополняют друг друга. Также в программе приведены примеры заданий для самостоятельной работы, вопросы к зачету, перечень основной и дополнительной литературы, доступной для обучающихся.

В целом, рабочая программа по дисциплине «Физические принципы медико-биологической интроскопии» составлена в соответствии с требованиями ФГОС ВО и отвечает современным требованиям к качественному образовательному процессу. Данная рабочая программа может быть использована для обеспечения основной образовательной программы по направлению подготовки 03.04.02 Физика (Медицинская физика) по дисциплине «Физические принципы медико-биологической интроскопии».

Рецензент:

Д.ф.-м.н., профессор заведующий кафедрой теоретической физики и компьютерных технологий ФГБОУ ВО «КубГУ»

Тумаев Е.Н.

Рецензия

на рабочую учебную программу по курсу «Физические принципы медико-

биологической интроскопии», предназначенную для студентов

направления подготовки

03.04.02 Физика (Медицинская физика)

Рабочая программа «Физические принципы ПО курсу медикобиологической формирование интроскопии» предусматривает математического обучающихся аппарата, включающего себя математические знания, умения и навыки необходимые для дальнейшей профессиональной деятельности.

Программа отвечает современным требованиям к обучению и отражает современные тенденции в обучении и воспитании личности. Содержание рабочей программы охватывает весь материал, необходимый для обучения студентов высших учебных заведений по направлению 03.04.02 Физика (Инженерное дело в медико-биологической практике).

Рабочая программа дает целостное представление о дисциплине. Структура и содержание курса взаимно дополняют друг друга. Также в программе приведены примеры заданий для промежуточной аттестации, перечень вопросов выносимых на зачет, перечень основной и дополнительной литературы, доступной обучающимся.

В целом, рабочая программа по дисциплине «Физические принципы медико-биологической интроскопии» составлена соответствии ΦΓΟС требованиями BO И отвечает современным требованиям качественному образовательному процессу. Данная рабочая программа может быть использована для обеспечения основной образовательной программы по направлению подготовки 03.04.02 Физика (Медицинская физика) по дисциплине «Физические принципы медико-биологической интроскопии».

Рецензент:

Д.м.н., профессор кафедры нормальной физиологии ФГБОУ ВО «КГМУ»

Абушкевич В.Г.