Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.23 ОРГАНИЧЕСКАЯ ХИМИЯ

Направление подготовки 04.03.01 Химия

Профиль подготовки Неорганическая химия и химия

координационных соединений

Форма обучения очная

Квалификация бакалавр

Краснодар 2021

Рабочая программа дисциплины «ОРГАНИЧЕСКАЯ ХИМИЯ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки по направлению подготовки 04.03.01 Химия

Программу составил(и): В.Д. Стрелков, профессор, д.х.н

y n

Рабочая программа дисциплины «Органическая химия» утверждена на заседании кафедры органической химии и технологий протокол № 9 «17» мая 2021г. И.о. заведующего кафедрой канд. хим. наук, доцент Кузнецова С.Л.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 7 «24» мая 2021г.

Председатель УМК ФХиВТ канд. хим. наук Беспалов А.В.

Рецензенты:

Дядюченко Л.В., канд. хим. наук, зав. лаб. регуляторов роста растений ГНУ ВНИИБЗР

Буков Н.Н., д-р хим. наук, зав. каф общей, неорганической химии и информационно-вычислительных технологий в химии КубГУ

1. Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целью освоения дисциплины являются освоение теоретических основ органической химии, получение представлений об основных классах органических соединений, их физических, химических свойств и их многообразных превращениях, играющих важную роль в практической деятельности человека и являющихся необходимым этапом развития знаний науки о веществе.

1.2 Задачи дисциплины

Сформировать у студентов:

- знание основных концепций теоретической органической химии,
- знание классификации, номенклатуры и изомерии органических соединений,
- представление общих законов, связывающих строение и свойства органических соединений,
- умение анализировать результаты химических экспериментов, наблюдений, измерений;
- представление о современных методах синтеза органических соединений;
- представление о наиболее главных достижениях и проблемах современной органической химии, ее практических возможностях.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Органическая химия» относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана по направлению подготовки — 04.03.01 Химия (бакалавриат).

Изучению данной дисциплины должно предшествовать изучение дисциплин «Физическая химия», «Неорганическая химия», «Аналитическая химия».

В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе (5 и 6 семестр) по очной форме обучения. Вид промежуточной аттестации: экзамен.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине						
достижения компетенции							
ОПК-1. Способен анализировать и	и интерпретировать результаты химических						
экспериментов, наблюдений и измерени	экспериментов, наблюдений и измерений						
ИОПК-1.1. Систематизирует и	Знает классификацию, номенклатуру и						
анализирует результаты химических	изомерию органических соединений; основы						
экспериментов, наблюдений,	теории строения органических соединений,						
измерений, а также результаты	законы, связывающие строение и свойства						
расчетов свойств веществ и	органических соединений						
материалов	Умеет пользоваться химической символикой;						
	анализировать результаты химических						
	экспериментов, наблюдений, измерений;						
	использовать законы, связывающие строение						
	и свойства органических соединений;						
	Владеет методами анализа результатов						
	химических экспериментов, измерений на						
	основе системы фундаментальных химических						

Код и наименование индикатора*	Результаты обучения по дисциплине
достижения компетенции	
	понятий, базовых знаний разделов
	органической химии с целью их использования
	в рамках профессиональной деятельности
ИОПК-1.2. Предлагает	Знает основные концепции современной
интерпретацию результатов	теоретической органической химии; основные
собственных экспериментов и	синтетические и аналитические методы
расчетно-теоретических работ с	получения и исследования свойств
использованием теоретических основ	органических веществ
традиционных и новых разделов	Умеет применять знания разделов
ХИМИИ	органической химии для интерпретацию
	результатов собственных экспериментов и
	расчетно-теоретических работ; применять
	методологию химии для решения
	профессиональных задач
	Владеет современными методами синтеза и
	анализа органических соединений; навыками
	применять полученные знания по химии для
	решения профессиональных задач
ИОПК-1.3. Формулирует заключения	Знает этапы планирования, проведения и
и выводы по результатам анализа	описания химического эксперимента;
литературных данных, собственных	методологию расчетно- теоретических работ
экспериментальных и расчетно-	химической направленности
теоретических работ химической	Умеет проводить поиск литературных данных
направленности	и сравнительный анализ результатов
	собственных экспериментов и расчетно-
	теоретических работ; проводить
	экспериментальные исследования и
	анализировать результаты,
	Владеет способностью внедрять достижения
	химии при решении профессиональных задач;
	принимать грамотные научно-обоснованные
	решения

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ с формой контроля – экзамен.

Общая трудоёмкость дисциплины составляет 8 зач. ед. (288 часов), их распределение по видам работ представлено в таблице

Вид учебной работы	Всего	Семе	естры
	часов	(ча	сы)
		5	6
Контактная работа, в том числе:			
Аудиторные занятия (всего):	136	68	68
Занятия лекционного типа	68	34	34
Практические занятия	68	34	34

Лабораторные занятия		-	-	-
Иная контактная работа	a:			
Контроль самостоятельно	ой работы (КСР)	20	2	18
Промежуточная аттестаці	ия (ИКР)	0,6	0,3	0,3
Самостоятельная работа	а, в том числе	69	38	31
Изучение теоретического	материала	29	18	11
Подготовка к текущему к	онтролю	20	10	10
Решение задач		20	10	10
Контроль:				
Подготовка к экзамену		62,4	35,7	26,7
Вид промежуточной аттес	стации (зачет, экзамен)		экзамен	экзамен
Общая трудоемкость	288	144	144	
	в том числе контактная работа	156,6	70,3	86,3
	зач. ед.	8	4	4

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре (для студентов ОФО)

No			Количество часов			
	Наименование разделов		A	удиторн	ая	Самостоятельная
раз-	(тем)	Всего		работа		работа
дела			Л	П3	ЛР	
1	2	3	4	5	6	7
1	Введение	8	2	2		4
2	Углеводороды	24	8	8		8
3	Ароматические	12	4	4		4
3	углеводороды	12	4	4		4
4	Галогенпроизводные	12	4	4		4
	углеводородов		-	7		Т
5	Гидроксильные производные	19	6	6		7
6	Простые эфиры	6	2	2		2
7	Карбонильные соединения	25	8	8		9
	Итого:		34	34		38

Разделы (темы) дисциплины, изучаемые в 6 семестре (для студентов ОФО)

No		Количество часов				
pa3-	Наименование разделов		A	удиторн	ая	Самостоятельная
1	(тем)	Всего		работа		работа
дела			Л	ПЗ	ЛР	
1	2	3	4	5	6	7
8	Амины и нитросоединения	18	6	6		6
9	Диазосоединения	18	6	6		6
10	Окси,-кето,-аминокислоты, углеводы	28	10	10		8

11	Металлоорганические соединения	13	4	4	5
12	Гетероциклические соединения	22	8	8	6
	Итого:		34	34	31
	Итого по дисциплине:		68	68	69
	Контроль самостоятельной работы (КСР)	20			
	Промежуточная аттестация (ИКР)	0,6			
	Подготовка к экзамену	62,4			

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

№ раздела	Наименова ниераздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1	Введение	Предмет органической химии. Теория химического строения органических соединений А.М. Бутлерова. Типы связей в органических соединениях. Типы гибридизации атома углерода, электронные эффекты. Классификация органических реакций и реагентов. Типы промежуточных частиц: свободные радикалы, карбкатионы, карбанионы, ион-радикалы.	Устный опрос

2	Углеводороды	Алканы. Гомологический ряд,	Устный опрос,
	a seed a Mark	номенклатура, изомерия углеродного	контрольная
		скелета, физические свойства,	работа
		получение алканов. Химические	1
		свойства. Механизм реакций	
		радикального замещения.	
		Циклоалканы.	
		Алкены. Гомологический ряд,	
		номенклатура. Изомерия:	
		структурная и пространственная.	
		Физические свойства. Методы	
		получения: крекинг,	
		дегидрогалогенирование,	
		дегидратация. Правило Зайцева.	
		Химические свойства. Механизм	
		электрофильного присоединения,	
		правило Марковникова. Окисление	
		алкенов (реакция Вагнера, озонолиз).	
		Алкины. Номенклатура. Физические	
		свойства. Методы получения.	
		Химические свойства алкинов:	
		реакции присоединения водорода,	
		галогенов, галогеноводородов, воды	
		(реакция Кучерова), спиртов.	
		Кислотные свойства алкинов.	
		Алкадиены. Классификация	
		диеновых углеводородов,	
		номенклатура, изомерия.	
		Сопряженные диены, их строение и	
		химические свойства (1,2- и 1,4-	
		присоединение, диеновый синтез,	
		полимеризация).	
3	Ароматические	Арены. Понятие об ароматичности.	Устный опрос,
	углеводороды	Правило Хюккеля. Строение бензола	контрольная
		и его гомологов. Изомерия,	работа
		номенклатура. Реакции	
		электрофильного замещения в	
		ароматическом кольце (нитрование,	
		сульфирование, галогенирование,	
		алкилирование и ацилирование).	
		Правила ориентации. Окисление	
		гомологов бензола, галогенированиев	
		боковую цепь.	
		Полиядерные ароматические	
		соединения: дифенил, нафталин,	
		антрацен. Получение в лаборатории и	
		промышленности; ориентация в	
		реакциях электрофильного	
4	F	замещения.	v
4	Галогенпроизводные	Номенклатура и изомерия.	Устный опрос,
	углеводородов.	Физические свойства. Методы	контрольная
		получения из алканов, алкенов,	работа

		спиртов. Химические свойства: реакции	
		нуклеофильного замещения. Понятие о	
		механизмах S_N1 и S_N2 . Реакции	
		элиминирования.	
		Галоформы и их получение.	
		Непредельные галогенпроизводные:	
		винил- и аллилгалогениды, сравнениеих	
		реакционной способности.	
		Галогенпроизводные аренов.	
		Галогенирование бензола и его	
		гомологов. Хлорирование толуола вцепь	
		и в ядро (механизм, условия). Сравнение	
		алкил- и арилгалогенидов в реакциях	
		нуклеофильного замещения галогена.	
		Влияние характера и положения	
		заместителей, стоящих в ядре	
		арилгалогенидов на реакционную	
		способность связи	
		углерод - галоген.	
5	Гидроксильн	Спирты. Классификация,	Устный опрос,
	ые	номенклатура, изомерия.	контрольная
	производные	Одноатомные спирты. Методы	работа
		получения. Физические и химические	1
		свойства. Реакции замещения	
		гидроксильной группы. Окисление	
		спиртов. Многоатомные спирты -	
		гликоли, глицерин. Качественные	
		реакции на многоатомные спирты.	
		Тиоспирты.	
		Фенолы. Фенольные соединения в	
		природе. Сравнение кислотных свойств	
		фенолов и спиртов. Реакции гидроксила:	
		образование фенолятов, простых и	
		сложных эфиров (алкилирование и	
		ацилирование). Замещение атома	
		водорода в ядре действием	
		электрофильных агентов	
		(галогенирование, нитрование);	
		ориентирующее влияние гидроксила.	
		Конденсация с альдегидами. Окисление	
		фенолов в хиноны. Идентификация	
		фенолов: получение производных,	
		цветная реакция. Применение	
		антиоксидантов	
		фенольной природы в пищевой	
		промышленности.	
		Хиноны. Получение о- и п-	
		бензохинонов, антрахинона. Хиноны	
		как диенофилы в реакциях Дильса -	
		Альдера. Тиофенол. Получение из	
		арилмагнийгалогенидов,	
		сульфохлоридов. Окисление азотной	
	1	ульфоллоридов. Окисление азотнои	

 Простые эфиры Строспие, поменклатура. Методы получения, химические свойства. Оксосоединения Строспие карбонильной группы. Номенклатура альдегидов и кетонов. Методы получения. Химические реакции: пуклеофильное присосдинение по карбонильной группе, окисление, реакции с участием α-водородного атома. Непредельные альдегиды и кетоны. Карбоновые кислоты и их производные. Номенклатура и изомерия предельных одноосновных карбоновых карбоновых кислот. Физические свойства. Методы получения. Химические свойства. Методы получения и свойства апитаридов карбоновых кислот. Получение и свойства апитаридов карбоновых кислот. Получение и свойства сложных эфиров. Механизм реакции этерификации. Получение и свойства амидов кислот. Получение и обиства антирилов. Мыла. Жиры. Ароматические карбоновые кислоты: бетзойная, салициловая, фталсвая и терефталевая. Амипы и нитросоединения Амипы и карбоновые кислоты: бетзойная, салициловая, фталсвая и терефталевая. Амипы и нитросоединения Амипы и нитросоединения. Классификация, разывание и алкилирование, действие адотистой кислоты. Диамины и аминостирты (коламин, холин, ацетилхолип). Ароматические амицы, их получение из нитропроизводных (Н.Н. Зинин). Взаимное виляние аминогрупны и бетзольного дра. Реакция с азотистой кислоты. Нитросоединения. Номенклатура и классификация. Методы получения. Химические свойства (восстановление, действие пислочей, реакции, связанные с подвижностью сатомов водорода). Ароматические 	получения, химические свойства. 7 Карбонильные Оксосоединения. Строение Уст	стный опрос
7 Карбонильные сосдинения Строение карбонильной группы. Номенклатура альденилов и кетонов. Методы получения Химические реакции: пуклеофильное присоединение по карбонильной группе, окисление, реакции с участием α-водородного атома. Непредельные альдегиды и кетоны. Ароматические альдегиды и кетоны. Карбоновые кислоты и их производные. Номенклатура и изомерия предельных одноосновных карбоновых кислот. Физические свойства. Методы получения. Химические свойства. Получение и свойства ангидридов карбоновых кислот. Получение и свойства сложицых эфиров. Механизм реакции этерификации. Получение и свойства амидов кислот. Получение и свойства амидов кислоты: бензойная, салициловая, фталевая и терефизисавия. Методы получения. Химические свойства: роль свободной электронной пары в проявлении основных свойств; ащилирование и алкилирование, действие азотистой кислоты. Дламины и аминоспирты (коламин, холип, ацетилхолип). Ароматические амины, их получение из нитрогроизводных (И.Н. Зинин). Взаимное влияние аминогрупны и бензольного ядра. Реакция с азотистой кислотой. Нитроеоединеция. Номенклатура и классификация. Методы получения. Химические свойства (восстановление, действие пелочей, реакции, связанные с подвижностью о-атомов водорода). Ароматические	7 Карбонильные Оксосоединения. Строение Уст	
карбонильной группы. Номенклатура альдегидов и кетонов. Методы получения. Химические реакции: нуклеофильное присоединение по карбонильной группе, окисление, реакции с участием сводородного атома. Непредельные альдегиды и кетоны. Ароматические альдегиды и кетоны. Ароматические альдегиды и из производные. Номенклатура и изомерия предельных одноосновных карбоновых кислот. Физические свойства. Методы получение и свойства ангидридов карбоновых кислот. Получение и свойства ангидридов карбоновых кислот. Получение и свойства ангидридов. Мыла. Жиры. Ароматические карбоновых кислоты: бензойная, салищиловая, фталсвая и терефталевая. 8 Амины и дамины. Классификация, устный опрос изомерия. Амины. Классификация, получение и и изомерия. Образование, действие авотнетой кислоты. Диамины и аминоспирты (коламин, холин, ацетилхолин). Ароматические амины, их получение и из нитропроизводных (Н.Н. Зинин). Взаимное влияние аминогруппы и бензольного ядра. Реакция с азотнетой кислоты. Нитросоединения. Коменклатура и классификация. Методы получения. Химические свойства (восстановление, действие перочей, реакции, связанные с подвижностью о-атомов водорода). Ароматические		
В Амины и нитросоединения номенклатура и изомерия. Физические свойства. Методы получения. Химические свойства: роль свободной электронной пары в проявлении основных свойств; ацилирование и алкилирование, действие азотистой кислоты. Диамины и аминоспирты (коламин, холин, ацетилхолин). Ароматические амины, их получение из нитропроизводных (Н.Н. Зинин). Взаимное влияние аминогруппы и бензольного ядра. Реакция с азотистой кислотой. Нитросоединения. Номенклатура и классификация. Методы получения. Химические свойства (восстановление, действие щелочей, реакции, связанные с подвижностью ф-атомов водорода). Ароматические	альдегидов и кетонов. Методы получения. Химические реакции: нуклеофильное присоединение по карбонильной группе, окисление, реакции с участием α-водородного атома. Непредельные альдегиды и кетоны. Ароматические альдегиды и кетоны. Карбоновые кислоты и их производные. Номенклатура и изомерия предельных одноосновных карбоновых кислот. Физические свойства. Методы получения. Химические свойства. Получение и свойства ангидридов карбоновых кислот. Получение и свойства галогенангидридов. Получение и свойства сложных эфиров. Механизм реакции этерификации. Получение и свойства амидов кислот. Получение и свойства нитрилов. Мыла. Жиры.	контрольная
нитросоединения.	бензойная, салициловая, фталевая и терефталевая. 8 Амины и Амины. Классификация, Ус нитросоединения номенклатура и изомерия. Физические свойства. Методы получения. Химические свойства: роль свободной электронной пары в проявлении основных свойств; ацилирование и алкилирование, действие азотистой кислоты. Диамины и аминоспирты (коламин, холин, ацетилхолин). Ароматические амины, их получение из нитропроизводных (Н.Н. Зинин). Взаимное влияние аминогруппы и бензольного ядра. Реакция с азотистой кислотой. Нитросоединения. Номенклатура и классификация. Методы получения. Химические свойства (восстановление, действие щелочей, реакции, связанные с подвижностью	стный опрос

		проведения. Реакции	контрольная
		диазосоединений с выделением и без	работа
		выделения азота. Условия	1
		азосочетания, азо- и	
		диазосоставляющие.	
10	Окси-, кето-	Оксикислоты. Общие методы их	Устный опрос
	аминокислоты,	синтеза: образование оксикислот при	2 Tilbin Onpoo
	углеводы	окислении гликолей, при	
	уттороды	восстановлении кетонокислот.	
		Различие в направлении	
		дегидратации α-, β- и γ-оксикислот.	
		Лактиды. Лактоны. Гликолевая,	
		молочная, яблочная, лимонная и	
		винные кислоты (нахождение в	
		природе, строение, использование в	
		пищевой промышленности).	
		Стереоизомерия винных кислот.	
		Диастереомеры и мезоформа.	
		Эпимеры. Проекционные формулы	
		Фишера. Способы разделения	
		рацематов.	
		Кетонокислоты. Пировиноградная	
		кислота, ее образование из молочной	
		кислоты, декарбоксилирование,	
		превращение в аланин, образование β-	
		кетонокислот при сложноэфирной	
		конденсации. Ацетоуксусный эфир:	
		таутомерия, конденсация с	
		альдегидами, кислотное и кетонное	
		расщепление. Отдельные	
		представители: глиоксиловая и	
		пировиноградная кислоты, их	
		нахождение в природе.	
		Аминокислоты. Природные аминокислоты. Их стереохимия.	
		Важнейшие представители.	
		Внутрикомплексное (хелатное)	
		строение медных солей. Сравнение	
		свойств α -, β - и γ -аминокислот.	
		Взаимные превращения с окси- и	
		кетонокислотами. Амфотерность.	
		Лактамы. Дикетопиперазины.	
		Пептидная связь. Представление о	
		составе и строении белков.	
		Применение аминокислот в пищевой	
		промышленности в качестве	
		вкусовых добавок. Углеводы.	
		Альдопентозы (рибоза,	
		дезоксирибоза, арабиноза, ксилоза) и	
		альдогексозы (глюкоза, манноза,	
		галактоза), их строение и нахождение	
		в природе. Открытая и циклическая	

	1		1
		формы глюкозы. Гликозидный	
		гидроксил. Кольчато-цепная	
		таутомерия и мутаротация сахаров.	
		Окисление, восстановление,	
		алкилирование, ацилирование альдоз.	
		1	
		Фруктоза как пример кетозы. Ее	
		строение, свойства, нахождение в	
		природе, образование из глюкозы.	
		Связь конфигурации сахаров с	
		геометрией глицеринового альдегида.	
		Дисахариды: мальтоза, целлобиоза,	
		лактоза, сахароза. Полисахариды:	
1.1) / (целлюлоза и крахмал.	3 7 0
11	Металлоорганические	Литий- и магнийорганические	Устный опрос
	соединения	соединения. Методы синтеза:	
		взаимодействие металла с алкил- или	
		арилгалогенидами. Строение	
		реактивов Гриньяра. Литий- и	
		магнийорганические соединения в	
		синтезе углеводородов, спиртов,	
		· · · · · · · · · · · · · · · · · · ·	
		альдегидов, кетонов, карбоновых	
		кислот. Диалкил- и диарилкупраты.	
		Их использование для синтеза	
		алканов, диенов, спиртов,	
		несимметричных кетонов.	
12	Гетероциклические	Пятичленные гетероциклы с одним	Устный опрос
	соединения	гетероатомом: фуран, тиофен,	*
	, ,	пиррол. Их нахождение в природе,	
		строение. Образование из 1,4-	
		дикарбонильных соединений, из	
		l = -	
		углеводов (фурфурол). Изомерия и	
		номенклатура монозамещенных.	
		Ацидофобность, ориентация при	
		электрофильном замещении	
		(конденсация с карбонильными	
		соединениями, галогенирование).	
		Понятие о строении хлорофилла и	
		гемина.	
		Шестичленные гетероциклы.	
		Пиридин, пиримидин, соли пирилия.	
		• • • • • • • • • • • • • • • • • • •	
		Их строение,	
		электронодефицитность, нахождение	
		в природе. Сравнение свойств	
		пиридина, пиррола и бензола при	
		электрофильном замещении.	
		Конденсированные	
		гетероароматические соединения.	
		Индольные, хинолиновые,	
		изохинолиновые производные	
		(алкалоиды, триптофан, серотонин).	
		Образование гетероциклов из	
		ароматических аминов действием α-	

галогенокетонов	(индолы), 1,3
дикетонов или	непредельных
карбонильных	соединений
(хинолины).	

2.3.2 Занятия семинарского типа

№	Наименование раздела (темы)	тематика практических занятии (семинаров)	Форма текущего контроля
1	2	3	4
1.	Введение	Типы химических связей в органических соединениях. Электронные эффекты и их влияние на реакционную способность органических молекул. Решение задач и упражнений. Качественный анализ органических соединений.	Устный опрос
2.	Углеводороды	Алканы. Алкены. Решение задач и упражнений. Алкадиены. Алкины. Решение задач и упражнений. Получение и функциональный анализ предельных и непредельных углеводородов.	Устный опрос Т
3.	Ароматические углеводороды	Ароматические углеводороды. Реакции электрофильного замещения в ароматическом ядре. Решение задач и упражнений.	Т
4.	Галогенпроизводные углеводородов	Галогенпроизводные углеводородов. Решение задач и упражнений.	Устный опрос
5.	Гидроксильные производные	Спирты. Фенолы. Решение задач и упражнений. Выполнение функционального анализа гидроксилсодержащих соединений.	Устный опрос
6.	Простые эфиры	Простые эфиры. Решение задач и упражнений.	Устный опрос
7.	Карбонильные соединения	Оксосоединения. Решение задач и упражнений. Выполнение функционального анализа на карбонильную группу.	Устный опрос
8.	Амины и нитросоединения	Амины и нитросоединения. Решение задач и упражнений.	Устный опрос Т
9.	Диазосоединения	Диазосоединения. Решение задач и упражнений.	Устный опрос
10.	Окси-, кето-, аминокислоты, углеводы	Карбоновые кислоты и их производные. Решение задач и упражнений. Проведение функционального анализа карбоновых кислот.	Устный опрос
11.	Металлоорганические соединения	Металлоорганические соединения. Решение задач и упражнений.	Устный опрос
12.	Гетероциклические соединения	Гетероциклические соединения. Решение задач и упражнений.	Устный опрос

2.3.3 Лабораторные занятия Не предусмотрены учебным планом.

2.3.4.Примерная тематика курсовых работ (проектов) Не предусмотрены учебным планом

2.4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Изучение теоретического материала	1. Травень, Валерий Федорович. Органическая химия : учебник для студентов вузов : [в 2 т.]. / В. Ф. Травень М. : Академкнига, 2006. — 727+582 с. : ил (Учебник для вузов) Библиогр.: с. 562-564. 2. Травень, В. Ф. Органическая химия : учебное пособие / В. Ф. Травень. — 7-е изд. — Москва : Лаборатория знаний, 2020 — Том 3 — 2020. — 391 с. — ISBN 978-5-00101-748-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/151524 3. Смит, В. А. Основы современного органического синтеза : учебное пособие / В. А. Смит, А. Д. Дильман. — 5-е изд. — Москва : Лаборатория знаний, 2020. — 753 с. — ISBN 978-5-00101-761-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/135517 4. Петров, Анатолий Александрович. Органическая химия : учебник для студентов химико-технологических вузов и факультетов / А. А. Петров, X. В. Бальян, А. Т. Трощенко ; под ред. М. Д. Стадничука Изд. 5-е, перераб. и доп. Репр. воспр. изд. 2002 г Москва : Альянс, 2012 622 с 5. Шабаров, Ю. С. Органическая химия : учебник / Ю. С. Шабаров. — 5-е изд., стер. — Санкт-Петербург : Лань, 2021. — 848 с. — ISBN 978-5-8114-1069-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/167911

	П	1 T D
2.	Подготовка к текущему контролю	1. Травень, Валерий Федорович. Органическая химия : учебник для студентов вузов : [в 2 т.]. / В. Ф. Травень М. : Академкнига, 2006. — 727+582 с. : ил (Учебник для вузов) Библиогр.: с. 562-564.
		2. Травень, В. Ф. Органическая химия: учебное пособие / В. Ф. Травень. — 7-е изд. — Москва: Лаборатория знаний, 2020 — Том 3 — 2020. — 391 с. — ISBN 978-5-00101-748-6. — Текст: электронный // Лань: электронно-библиотечная система. —
		URL: https://e.lanbook.com/book/151524
		Шабаров, Ю. С. Органическая химия: учебник / Ю. С. Шабаров. — 5-е изд., стер. — Санкт-Петербург: Лань, 2021. — 848 с. — ISBN 978-5-8114-1069-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/167911
		4. Синтез органических соединений: учебно-методическое пособие / В. В. Доценко, А. В. Беспалов, Д. Ю. Лукина; Министерство науки и высшего образования Российской Федерации, Кубанский государственный университет Краснодар: Кубанский государственный университет, 2020
		171 с.: ил Библиогр.: с. 170 ISBN 978-5-8209-1758-5: 80 р Текст: непосредственный
		5. Органическая химия: учебно-методическое пособие / А. В. Беспалов, В. В. Доценко, Д. Ю. Лукина, В. Д. Стрелков; Министерство науки и высшего образования Российской Федерации, Кубанский государственный университет Краснодар: Кубанский государственный университет, 2019 156 с.: ил Авт. указаны на обороте тит. л Библиогр.: с. 155 ISBN 978-5-8209-1709-7: 80 р Текст:
3	Решение задач	1. Беспалов, А.В. Органическая химия: сборник задач / А.В. Беспалов, В.Д. Стрелков. – Краснодар: Изд-во КубГУ, 2017.—69 с.
		2. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. — Краснодар: Кубанский гос. унт, 2018 89 с

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3. Образовательные технологии

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

2. Оценочные средства для текущего контроля успеваемости и промежуточнойаттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «*Органическая химия*».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме вопросов и заданий в рамках семинарских занятий, контрольных вопросов к практическим занятиям , тестовых заданий и **промежуточной аттестации** в форме вопросов к экзамену.

Структура оценочных средств для текущей и промежуточной аттестации

№	Код и наименование	Результаты обучения (в	Наименовани средства	е оценочного
п/п	индикатора (в соответствии с п. 1.4)	соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
	ИОПК-1.1. Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также результаты	Знает классификацию, номенклатуру и изомерию органических соединений; основы теории строения органических соединений, законы, связывающие строение и свойства органических соединений	Устный опрос ПР Т	Вопросы к экзамену
1	расчетов свойств веществ и материалов	Умеет пользоваться химической символикой; анализировать результаты химических экспериментов, наблюдений, измерений; использовать законы, связывающие строение и свойства органических соединений;	Устный опрос ПР	Вопросы к экзамену
		Владеет методами анализа результатов химических экспериментов, измерений на основе системы фундаментальных химических понятий, базовых знаний разделов органической химии с целью их использования в рамках профессиональной деятельности	ПР	
	ИОПК-1.2. Предлагает интерпретацию результатов собственных экспериментов и расчетно-теоретических	Знает основные концепции современной теоретической органической химии;	Устный опрос ПР Т	Вопросы к экзамену

2	работ с использованием теоретических основ традиционных и новых разделов химии	Умеет применять знания разделов органической химии для интерпретацию результатов собственных экспериментов и расчетнотеоретических работ; применять методологию химии для решения профессиональных задач	Устный опрос ПР Т	- Вопросы к экзамену
		Владеет современными методами синтеза и анализа органических соединений; навыками применять полученные знания по химии для решения профессиональных задач	Устный опрос ПР	- Вопросы к экзамену
		Знает этапы планирования, проведения и описания химического эксперимента; методологию расчетно- теоретических работ химической направленности	ПР	Вопросы к экзамену
	собственных экспериментальных и расчетно- теоретических работ химической направленности	Умеет проводить поиск литературных данных и сравнительный анализ результатов собственных экспериментов и расчетнотеоретических работ; проводить экспериментальные исследования и анализировать результаты,	Устный опрос ПР	
		Владеет способностью внедрять достижения химии при решении профессиональных задач; принимать грамотные научно-обоснованные решения	Устный опрос ПР	

Типовые контрольные задания или иные материалы, необходимые для оценкизнаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры тестовых заданий

Тема: Формулы и названия органических соединений Структуре СН₃СН₂СН₂СС(СН₃)₃ отвечает систематическое название: A) 1,1,1-триметилпентан Б) 5,5-диметилгексан В) 2,2-диметилгексан Г) бутилтриметилметан Структуре $(CH_3)_2CHCH_2CH(CH_3)_2$ отвечает систематическое название: А) 1,1,3,3-тетраметилпропан Б) 2,4-диметилпентан В) диизопропилметан Г) изогептан Структуре (СН₃)₄С отвечает систематическое название: А) тетраметилметан Б) изопентан В) 2-метилбутан Г) 2,2-диметилпропан Структуре (СН₃)₂С=СНСН₂СН₃ отвечает систематическое название А) 1,1-диметилбутен-1 Б) 2-метилпентен-2 В) 2-метилпентен-3 Γ) 4-метилпентен-3 5. CTPYKTYPE CH₃CH₂C(CH₃)₂CH₂CH₂CH₂CH₂CH(CH₃)₂ отвечает систематическое название А) 1,1,6,6-тетраметилоктан Б) 2,7,7-триметилнонан В) 3,3,8-триметилнонан Г) 1-изопропил-5,5-диметилгептан

- 6. В данном ряду перечислены радикалы $CH_3(CH_2)_2CH_2$ -, $(CH_3)_2CHCH_2$ -, $CH_3CH_2CHCH_3$, $(CH_3)_3C$ -
 - А) н-бутил, втор-бутил, изобутил, трет-бутил
 - Б) н-бутил, изобутил, втор-бутил, трет-бутил
 - В) н-бутил, трет-бутил, втор-бутил, изобутил
 - Γ) н-бутил, втор-бутил, трет-бутил, изобутил
- 7. Для радикалов: CH_2 = $CHCH_2$ и $C_6H_5CH_2$ в систематической номенклатуре используются названия
 - А) винил и фенил

Б) 1-пропенил и фенилметил

В) алленил и бензоил

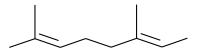
- Г) аллил и бензил
- 8. Систематическое название нормального углеводорода С21 Н44
- А) генэйкозан Б) ундекан В) ундокозан Г) гентриаконтан
- 9. Фторотан, применяющийся для ингаляционного наркоза, имеет структуру HBrClC-CF3, которой соответствует систематическое название
 - А) 1,1,1-трифтор-2-хлор-2-бромэтан
- Б) 2-бромтрифтор-2-хлорэтан
- В) 2-бром-1,1,1-трифтор-2-хлорэтан
- Г) 1-бром-2,2,2-трифтор-1-хлорэтан
- 10. Формула известного инсектицида ДДТ:

Каково систематическое название этого соединения?

- А) 1,1-бис(4-хлорфенил)-2,2,2-трихлорэтан
- Б) 1,1,1-трихлор-2,2-бис(4-хлорфенил)этан
- В) 2,2-бис(4-хлорфенил)-1,1,1-трихлорэтан
- Г) 2,2,2-трихлор-1,1-бис(4-хлорфенил)этан
- 11. Углеводород следующей структуры

H₃C-C≡C-CH=CH-CH=CH-CH₃

Имеет систематическое название


А) октин-2-ен-4,6 Б) октин-2-диен-4,6 В) октадиен-2,4-ин-6 Г) октадиен-2,3-ин-6

12. Непредельный спирт следующей структуры

CH₃CH=CHCH₂CHOHCH₃

Имеет систематическое название

- А) гексен-4-ол-2 Б) гексен-2-ол-5 В) гексен-5-ол-2 Г) 2-гидроксигексен-4
- 13. Непредельный галогенуглеводород CH₂=C(CH₃)CH₂Cl имеет систематическое название
 - А) 2-метил-1-хлорпропен-2
- Б) 1-хлор-2-метилпропен-2
- В) 3-хлор-2-метил-пропен-1
- Γ) 2-метил-3-хлорпропен-1

- 14. Выбрать правильное систематическое название соединения:
- А) 3,7-диметилоктадиен-2,6
- Б) 3,7-диметилоктадиен-3,7
- В) 2,6-диметилоктадиен-2,6
- Г) 1,2,6-триметилгептадиен-1,5
- 15. Систематическое название соединения HOC(CH₃)₂C°CC(CH₃)₂OH
- А) 2,4-диметилгексин-3-диол-2,4
- Б) 1,1,4,4-тетраметилбутин-2-диол-1,4
- В) 2,4-дигидрокси-2,4-диметилгексин-3
- Г) 1,4-дигидрокси-1,1,4,4,тетраметилбутин-2
- 16. Систематическое название яблочной кислоты НООССН2СН(ОН)СООН
- А) 3-гидроксибутандиовая кислота
- Б) гидроксибутандиовая кислота

- В) 2-гидроксибутандиовая кислота Г) 2-гидроксиянтарная кислота
- Структура феромона (привлекающего вещества) бабочки яблонной плодожорки

Ей отвечает систематическое название

- А) додекадиен-Е8,Е10-ол-1,
- Б) додекадиен-Z8,Z10-ол-1,
- В) додекадиен-Е2,Е4-ол-12
- Г) додекадиен-Z2,Z4-ол-12
- Систематическое название сорбиновой кислоты СН₃СН=СН-СН=СНСООН
- А) гексен-3,5-диовая кислота
- Б) гексадиеновая кислота
- В) гексадиен-2,4-овая кислота
- Г) гексадиен-3,5-диовая кислота
- 19. Дать название соединению, имеющему следующую структуру:

- А) 4(1-бромэтил)-2,8-диметил-5-хлорнонан
- Б) 7-бром-6-изобутил-2-метил-5-хлороктан
- В) 6(1-бромэтил)-2,8-диметил-5-хлорнонан
- В) 4(1-бромэтил)-5хлор-2,8-диметилнонан

Тема: ХИМИЧЕСКАЯ СВЯЗЬ И ЭЛЕКТРОННОЕ СТРОЕНИЕ

Будьте внимательны! возможно любое количество правильных ответов.

- 1. В соединении 2-бромпропен-1 атом галогена влияет на двойную связь посредством:
 - A) I и M эффектов \mathbf{B}) — \mathbf{I} и + \mathbf{M} эффектов
- B) + I и + M эффектов Γ)
- только М эффекта Д) только І эффекта
- 2. В соединении 3-метоксипропен-1 атом кислорода влияет на двойную связь посредством:
 - А) только І эффекта
- Б) только М эффекта
- B) I и M эффектов Γ)
- I и + M эффектов Д) + I и + M эффектов
- 3. В каком из перечисленных соединений связь C^2 - C^3 будет являться неполярной ковалентной:
 - А) 2,3-диметилбутан
- Б) 2-метилбутан
- В) 2,2-диметилбутан
- Г) 2,2.3-диметилбутан Д) бутадиин-1-3
- 4. Дипольный момент молекулы равен 0 для следующих соединений:
- А) трихлорметан
- Б) дибромдихлорметан В) циклогексанГ)

- триметиламин
- Д) этанол
- 5. Выбрать соединения, в которых структурные факторы способствуют образованию внутримолекулярной водородной связи
 - А) этандиол-1,2

- Б) 1,4-бензолдикарбоновая кислота
- В) 2-гидроксибензальдегид
- Г) 1,4-циклогександиол
- Д) бутиндиовая-1,4 кислота
- 6. Выбрать соединения, в которых гетеролитический разрыв одной связи углеродгалоген приведет к образованию резонансно-стабилизированного карбокатиона.
 - А) 1-хлорпропен-1
- Б) 1,1-дихлорбутан
- В) 1,2-дихлорбутан
- Г) 2-метокси-2-хлорбутан Д) 2-метил-2-хлорпропан
- 7. Какие из приведенных ниже структур дестабилизированы под действием электронных эффектов

- Б) CH₃COO⁻ В) N≡CCH₂CH ⁺₂ Г) ⁺CH₂OCH₃ Д) CH₃OCH₂⁻ A) Cl₃C⁻
- 8. Отметить фрагменты молекул, которые могут вносить вклад в стабилизацию карбаниона (несвязывающей электронной пары, расположенной на соседнем сфрагментом атоме углерода)
 - В) н-пропил Г) трет-бутил Д) трифторметил А) нитро-Б) винил-
 - 9. Какой из перечисленных карбанионов будет обладать наибольшей основностью:
 - А) цианометил Б) метил В) трихлорметил Г) винил Д) этинил
- Наименьшей энергией и соответственно наибольшим временем жизни будет обладать частица с неспаренным электроном
 - А) ди(4-метоксифенил)метил

Б) изопропил

В) метил

 Γ) бис(2,4,6-трифторфенил)метил

Д) 2,2,2-трифторэтил

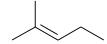

- Нуклеофугом называют частицу
- А) частицу, образовавшуюся в результате гомолитического разрыва химической связи
 - Б) образующую новую химическую связь за счет собственной электронной пары
- В) образовавшеюся в результате разрыва химической связи и уходящую с электронной парой связи
- Г) образующую новую химическую связь за счет электронной пары молекулы, подвергаемой воздействию данной частицы
- Д) образовавшуюся в результате разрыва химической связи и ушедшую с электронной парой связи.
- 12. Комплексное соединение, образующееся при взаимодействии иодид-аниона с молекулой иода относится к комплексам типа
 - A) s-V
- Б) p-V
- B) s-s
- Γ) p-p
- Д) n-σ
- 13. Наиболее короткая связь С2-С3 присутствует в соединении
- А) 2,3-диметилбутан
- Б) бутадиин-1,3
- В) бутен-1

- Г) бутин-1
- Д) н-бутан
- Взаимодействие между 1-хлорбутаном и водным раствором гидроксида натрия, сопровождающееся образованием бутанола-1 относится к следующему типу реакций:
 - А) электрофильное замещение
- Б) нуклеофильное замещение
- В) нуклеофильное присоединение
- Г) электрофильное присоединение

- Д) b-элиминирование
- Какие из приведенных ниже формул соответствуют резонансным структурам, с помощью которых можно отражать электронное строение молекулы пропенамида (амида пропеновой кислоты):

16. Возможными путями превращения карбокатиона

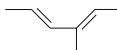
являются:



- А) димеризация с образованием 2,3,4,5-диметилгексана
- Б) потеря протона с образованием 2-метилбутена-2
- В) взаимодействие с частицей обладающей несвязывающей парой электронов
- Г) взаимодействие с частицей, обладающей вакантной орбиталью
- Д) изомеризация с образованием 2-метилбутил-2 катиона
- 17. В процессе химического превращения, состояние системы, отвечающее максимуму внутренней энергии, описывается термином:
 - А) переходное состояние
- Б) возбужденное состояние
- В) исходное состояние
- Г) активированное состояние
- Д) интермедиат
- 18. Кинетическим фактором, определяющим направление химического превращения является
 - А) разность свободных энергий начального и конечного состояния системы
 - Б) разность энтальпий начального и конечного состояния системы
 - В) энтропийный вклад в свободную энергию системы
 - Г) энергия активации обратной реакции
 - Д) энергия активации прямой реакции
- 19. Образование карбокатионов характерно для следующих химических превращений:
 - А) Нуклеофильного замещения
 - Б) Электрофильного присоединения
 - В) Электрофильного замещения
 - Г) Элиминирования под действием оснований
 - Д) Радикальных процессов.
- 20. Какое из соединений является более сильным основанием (донором электронных пар):
 - А) иодметан
- б) диэтиловый эфир
- В) триметиламин

- Г) гидроксид-анион
- Д) амид-анион

Тема: АЛКЕНЫ И АЛКАДИЕНЫ


1. Структура, приведенная ниже является:

- А. Цис-изомером.
- Б. Транс-изомером.
- В. S-Цис-изомером.
- Г. Не существует в виде геометрических изомеров.
- 2.Структура, приведенная ниже является

- А. Е-изомером. Б. Z-изомером. В. Е, Z-изомером. Г. Не существует в виде геометрических изомеров.
 - 2. Структура, приведенная ниже является

A. E,E(s-E)-изомером.

Б. Z,Z(s-E)-изомером.

В. Е, Z(s-Z)-изомером.

- Γ . E,E(s-Z)-изомером
- 3. При обработке 2,3-диметил-3-хлорпентана гидроксидом калия в среде

	ться преимущественное образование в качестве
продукта реакции	Г 22 жүүлжүү жүгүү 2
А. 2,3-диметилпентанола-3. В. 2,3-диметилпентена-3.	Б. 2,3-диметилпентена-2. Г. 2-метил-3-этил-бутена-3
4. При нагревании до 200 ^о С ги	идроксид изобутилтриметиламмония разлагается
с преимущественным образованием	
А. 2-метилбутена-3,	Б. 2-метилбутена-2.
В. 2-метил-бутена-1.	Г. 3-метилбутанола.
	тв для получения 2-метилгептена-2 по реакции
Виттига следует выбрать	•
А. 1-бром-2-метилбутан и бутаналь.	. Б. Бромметан и гептанон-2.
	Г. пропанон-2 и 1-бромпентан.
	ого изобутилена в концентрированную уксусную
	неское количество серной кислоты, в качестве
основного продукта взаимодействия образ	
А. н-Бутиловый эфир уксусной кисл	
Б. Изобутиловый эфир уксусной кис	
В. трет-Бутиловый эфир уксусной к	сислоты.
Г. втор-Бутиловый эфир уксусной к	
	а 2-метилбутена-1 одним молем бромоводорода
и одним молем метилата натрия в метилов	
В. 2-метилбутена-3.	Б. 2-метилбутена-2. Г. 2-метил-2-метоксибутана.
	тве одного моля к смеси, содержащей одинмоль
	роксида натрия при температуре 00С приведет к
образованию следующего органического п	
А. 1-бромгексанол-2.	Б. 2-бромгексанол-1.
В. 1,2-дибромгексан.	Г. 2-бромгексен-1.
	динение, с целью определения его структуры,
<u> </u>	щим окислением продуктов реакции перекисью
	и были выделены бутандиовая и муравьиная
кислоты в мольном соотношении 1:2. Назв	
Тема: АЛКИНЫ	
Возможно любое количество прави	
1. В молекуле непредельного у	углеводорода 2,2,8-триметилнонадиен-5,7-ина-3
максимальное число атомов углерода распо	
	Г) 5, Д) 6.
2. Число π-электронов в соедин	ении, приведенном в задании 1 составляет
	Г) 10, Д) 12.
3. Бутинилнатрий будет образо	вываться при взаимодействии бутина-1 со
следующими реагентами:	
А) водный раствор гидроксида натр	ук,
Б) раствор амида натрия в жидком а	
В) раствор метилата натрия в метано	
Г) суспензия металлического натриз	
Д) раствор иодида натрия в ацетоне	
	разующееся при взаимодействии октакарбонила
дикобальта с бутином-2 является комплекс	

- A) π - π , B) σ - π , B) π -V, Γ) π -V, Π) π - σ
- 4. Какие из приведенных ниже карбидов при разложении водой образуют ацетилен:
 - A) Na_2C_2 , B) CaC_2 , B) Al_4C_3 , Γ) SiC, II) Fe₃C.
- 5. Оптимальным способом превращения октин-3-ола-1 в Z-октен-3-ол-1 является
- **А)** гидрирование в присутствии палладия, нанесенного на карбонат свинца в среде хинолина.
 - Б) гидрирование в присутствии платиновой черни в среде метанола,
- **B)** взаимодействие с алюмогидридом лития в среде диметилового эфира этиленгликоля при 140° C,
 - Г) взаимодействие с металлическим литием в жидком аммиаке,
- Д) взаимодействие с водородом, получаемым из соляной кислоты и цинка, в момент выделения.
- 6. При контакте бутина-1 с метанольным раствором гидроксида натрия возможно образование:
 - А) бутинилида калия;

Б) бутена-1;

В) бутанона-2;

 Γ) бутина-2 и бутадиена-1,2,

- Д) 1-мето-ксибутина-1
- 7. Пропускание воздуха в раствор, содержащий воду, аммиак, хлорид меди (I) и пропаргиловый спирт приводит к образованию
 - А) 2-гидроксиметилпентен-1-ин-3-ола-5,
 - **Б)** гексадиин-2,4-диола-1,6,
 - **В)** 3-гидроксипропи-нилмеди (I),
 - Г) бис(3-гидроксипропинил)меди (II),
 - Д) пропин-2-аля.
- 8. Превращение, которое претерпевает пропин-1 на катализаторе активированный уголь (350°С) приводит к образованию:
 - А) карбоцепного полимера полиметилацетилена,
 - **Б)** смеси 1,2,3-триметилбензола, 1,2,4-триметилбензола и 1,3,5-триметилбензола,
 - В) смеси 1,2,4-триметилбензола и 1,3,5-триметилбензола,
 - **Г)** 1,3,5-триметилбензола,
 - Д) гексадиен-1,7-диина-3,5.
- 9. Дать систематическое название вещества, которое будет выделено в результате следующих операций: Бром добавлен к раствору двукратного мольного количества гидроксида калия при температуре не превышающей 0°С, через полученную смесь при той же температуре пропускали бутин-1. Органические вещества экстрагировали хлористым метиленом и после перегонки экстракта выделяли целевое органическое соединение.

Тема: СПИРТЫ, ПРОСТЫЕ ЭФИРЫ

Внимание! Возможно любое количество правильных ответов.

- 1. Выберите из упомянутых ниже характеристик те, которые относятся к следующему соединению: 2,5-диметилгексен-4-ол-2.
 - А) Первичный спирт
- Б) Енольная форма карбонильного соединения
- В) Третичный спирт

Г) Меди (II) гидроксид

- Г) Двухатомный спирт
- Д) гидроксильная группа находится в аллильном положении.
- 2. Пропанол-1 способен к взаимодействию со следующими веществами с образованием алкоголятов.
 - А) Калия амид
- Б) Натрия гидрид В) Натрия сульфид
- Д) Иодид метилмагния
- 3. Наибольшими кислотными свойствами из ниже перечисленных спиртов

- 4. обладает
- А) Пропанол-2
- Б) Пропанол-1
- В) 2-Метилпропанол-2

- Г) 2-аминопропанол-1
- Д) 2-Хлорпропанол-1
- 5. Укажите соединения, способные к образованию устойчивых донорноакцепторных комплексов с метанолом
 - А) Бария хлорид
- Б) Калия хлорид
- В) Бора хлорид

- Г) Алюминия бромид
- Д) Калия перхлорат
- 6. Выбрать те процессы, которые приводят к эффективному замещению гидроксильной группы бутанола-1 на галоген
 - А) Взаимодействие с раствором хлороводорода в воде (10 %)
 - Б) Взаимодействие с насыщенным раствором хлорида калия
 - В) Взаимодействие с хлоридом фосфора (III)
 - Г) Взаимодействие с четыреххлористым углеродом
- Д) Взаимодействие с хлорангидридом сернистой кислоты (SOCl₂) в присутствии пиридина
- 7. Водные растворы этанола и этандиола-1,2 можно распознать по характеру взаимодействия со следующим веществом:
 - А) Гидроксид натрия

- Б) Гидроксид меди (II)
- В) Гидроксид железа (III)
- Г) Натрий
- Д) Аммиачный раствор оксида серебра
- 8. Указать процессы, которые приведут к эффективному образованию метилтрет-бутилового эфира
 - А) Взаимодействие метилата натрия с 2-метил-2-хлорпропаном
 - Б) Взаимодействие бромметана с трет-бутилатом натрия
 - В) Взаимодействие метана с 2-метил-2-хлорпропаном
- Γ) Взаимодействие метанола с 2-метилпропеном в присутствии катал. кол-в кислоты
- Д) Взаимодействие трет-бутанола с метилацетатом в присутствии катал. кол-в кислоты
- 9. Указать уравнения тех процессов которые приводя к образованию винилбутилового эфира
 - A) $H_2C=CHBr + n-C_4H_9ONa$
 - Б) $H_2C=CH_2 + n-C_4H_9OH$
 - B) $CH_3CHClO(CH_2)_3CH_3 + (C_2H_5)_3N$
 - Γ) n-C₄H₉OH + CH₂=CH₂Br + NaOH
 - Д) $HC \equiv CH + n C_4H_9OH (KOH_{TB.})$
- 10. При взаимодействии винилэтилового эфира с метанолом в присутствии каталитического количества кислоты образуется
 - А) 1-Метокси-1-этоксиэтан
- Б) Этаналь и метилэтиловый эфир
- В) 1-Метокси-2-этоксиэтан
- Г) Метаналь и диэтиловый эфир
- Д) Этен и метилэтиловый эфир
- 11. Написать систематическое название конечного продукта цепи превращений:

Ацетилен подвергают взаимодействию с этанолом в присутствии твердого гидроксида калия под давлением. Продукт этого превращения вводят в реакцию с хлороводородом. Полученное вещество обрабатывают метанолом в присутствии органического основания (пиридина)

Тема: КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ.

Внимание! Возможно любое количество правильных ответов.

1. Выберите из упомянутых ниже характеристик те, которые относятся к следующему соединению: 2,2,4-диметилпентанон-3

А) 2,2-дихлорпентан Б) 1,1-димето Г) 2-диметиламино-пропен Д) Ме	оксиметан В) Винилэтиловый эфир тиловый эфир пропеновой кислоты
3. Отметить вещества, с кото	орыми 3-метилбутаналь вступает во
взаимодействие.	эрыми 5-метилоуганаль ветупает во
А) Буген-2 Б) Гидроксил	амин В) Фенилгидразин
Г) Гидроксид меди (II) Д) Хлорид ж	, 1
, 1	ние продукта взаимодействия ацетона с
бромидом н-бутилмагния (после проведения ги	* *
	енклатуре вещество, образующееся при
взаимодействии бутин-1-иллития с формальдег	
	йствия бутаналя с синильной кислотой
приведет к образованию:	J
	таннитрила В) Бутаннитрила
	идроксипентаннитрила
, , , , , , , , , , , , , , , , , , ,	ние продукта альдольной конденсации
ацетона.	1
	ние продукта кротоновой конденсации
пропаналя с 1 молем формальдегида.	
9. Бутен-2-аль при взаимодействии	с метанолом (катализатор-метилат натрия)
образует	
А) 1,1-диметоксибутен-2	Б) 2-метоксибутаналь
В) 3-метоксибутаналь	Г) метиловый
эфир бутен-2-овой кислоты.	
	ние конечного продукта цепи превращений:
2-метоксибутен-1 подвергается гид	
взаимодействует с циановодородом в присутс	
гидролизуется в кислой среде и дегидратируетс	я действием гидросульфата калия.
T. MARCHONAN W. MACHONAN AND	WW. HINGWORD WWW. HE
Тема: КАРБОНОВЫЕ КИСЛОТЫ И	
Внимание! Возможно любое количество	•
	кислот выберите сначала самую сильную, а
затем самую слабую.	р) Положения Г) Положения П)
	ая В) Пропандиовая Г) Пропеновая Д)
2-Метилпропандиовая.	
углерода с реактивом Гриньяра, необходимое	вой кислоты при взаимодействии двуокиси
действием магния на	магнийорганическое соединение получают
	В) 2-Метил-2-хлорпропан
Г) 2-Метил-1-хлорпропан	Д) 2,2-Диметил-1-хлорпропан
	иводит к образованию пропановой кислоты
A) CH ₃ CH ₂ CH(Cl)OCH ₂ CH ₃ b) CH	
	3CH ₂ C(OCH ₃) ₃ Д) CH ₃ CH ₂ CN
4. Пропилацетат можно получить	
соединения (при необходимости используя доб	
	етамид В) Ацетат калия
· · · · · · · · · · · · · · · · · · ·	етонитрил
5. Реакцией Гелля-Фольгарда-Зелинско	
•	
24	

А) Енолизующийся альдегид Б) Енолизующийся кетон Г) Неенолизующийся кетон.

соединений

Какие из этих веществ при гидролизе не образуют карбонильных

- А) взаимоодействия эфиров 2-галогенкарбоновых кислот с карбонильными соединениями в присутствии цинка
- Б) восстановления хлорангидридов карбоновых кислот до альдегидов водородом в присутствии палладия на сульфате бария
- В) бромирования карбоновых кислот в положение 2 под действием брома и трибромида фосфора
- Г) взаимоодействия эфиров 2-галогенкарбоновых кислот с карбонильными соединениями в присутствии основания, который приводит 2,3-эпоксиэфирам
- Д) перегруппировки амидов карбоновых кислот под действием брома в щелочной среде, сопровождающейся образованием первичного амина, углеродная цепь которого на один атом короче чем у исходного амина.
- 6. При взаимодействии с избытком магний органического соединения ангидриды и галогенангидриды карбоновых кислот образуют
 - А) Кетоны
- Б) Вторичные спирты
- В) Третичные спирты

- Г) Сложные эфиры
- Д) Простые эфиры
- 7. Процесс превращения карбоновых кислот в углеводороды, углеродный скелет которых короче исходного на один атом углерода называется
 - А) Декарбоксилирование
- Б) Декарбонилирование
- В) Дегидрирование
- Г) Дегидратация
- Д) Гидролиз
- 8. Электролиз водного раствора 6-хлорбутаноата натрия приведет к образованию в прианодном пространстве следующего соединения
 - А) 4-Хлорбутан

- Б) 3-Хлорпропан
- В) Пропан

- Г) 1,6-дихлоргексан
- Д) 1,8-дихлороктан
- 9. Основность атома азота в амидах карбоновых кислот по сравнению с аминами, имеющими такой же углеродный скелет
 - А) Снижена
- Б) Повышена
- В) имеет примерно тот же уровень
- Г) Ниже в случае незамещенных амидов и выше в случае N,N-диалкиламидов
- 10. Привести систематическое название непредельной карбоновой кислоты, продукта следующих превращений: ацетон взаимодействует с этиловым эфиром бромуксусной кислоты в присутствии избытка цинковой пудры, продукт реакции обрабатывается водой в кислой среде и в процессе нагревания подвергается гидролизу и дегидратации.
- 11. Преимущественным продуктом взаимодействия бутен-2-овой кислоты с бромоводородом является
 - А) 2,3-дибромбутановая кислота
- Б) 2-бромбутановая кислота
- В) 3-бромбутановая кислота
- Г) 4-бутановая кислота

- Д) бутановая кислота
- 12. Привести систематическое название дикарбоновой кислоты, получаемой в результате преращений: этиловый эфир 2-хлорпропановой кислоты взаимодействует с цианидом натрия, полученный продукт подвергается гидролизу при нагревании в кислой среде.
- 13. Привести систематическое название соединения, образующегося при взаимодействии двух сложных эфиров метилформиата и этилацетата под действием метилата натрия.
- 14. Привести систематическое название продукта взаимодействия кетена с метанолом.
 - 15. Разложение пропионата кальция при нагревании приводит к образованию
 - А) этана Б) пропана В) бутана Г) гексана Д) диэтилкетона

Тема: АРОМАТИЧЕСКИЕ АМИНО- И ДИАЗОСОЕДИНЕНИЯ

(возможно любое количество правильных ответов)

1. Указать правильные названия азотсодержащих ароматических соединений:

2. C₆H₅NO, C₆H₅NHOH, C₆H₅NHNH₂, C₆H₅N(CH₃)NO, C₆H₅CN **Б** фенилгидразин. В нитробензол. А азобензол. Γ нитрозобензол Д азоксибензол, Е фенилгидроксиламин, Ж N-метиланилин, 3 N-метилнитрозоанилин, И бензонитрил, **К** фенилизоцианат, Л N-ацетиланилин, М гидразобензол, Н. Фенилазид 3. Указать реагенты обеспечивающие превращение: $4-CH_3C_6H_4NO_2 \rightarrow 4-CH_3C_6H_4NH_2$ Б гидросульфид аммония, А хромовая смесь, В водород, катализ скелетным никелем, давление, Γ гидроксид натрия в среде этанола, Д водный раствор аммиака, Е железо+соляная кислота, Ж азотная кислота 3 азотистая кислота 2. Указать продукт реакции: орто-толуидин + $NaNO_2$ + HCl**А** 2-нитротолуол, **Б** 2-метилфенол, В хлорид 2-метилфенилдиазония, Γ 2-нитрозотолуол, Д 2-метил-N-нитрозоанилин 3. Среди перечисленных соединений указать способные к взаимодействию с соляной кислотой с образовнием соли: А пара-толуидин, Б орто-анизидин, В трифениламин, Д 2,4-динитроанилин, Γ ацетанилид, Е пара-фенилендиамин 4. Ацетанилид получают по реакции анилина с: А. Ацетальдегидом, Б. Формальдегидом, В Уксусным ангидридом, Д. Хлористым ацетилом, Е. Акриловой кислотой. Г. Ацетиленом, 5. Изонитрильная проба это реакция, позволяющая обнаруживать А ароматические амины, Б ароматические первичные и вторичные амины, В. ароматические первичные амины, Γ . ароматические третичные амины, Д. диазосоединения 6. Известно, что анилин реагирует с бромом чрезвычайно легко с образованием 2,4,6-триброманилина. Какой путь позволяет синтезировать 4-броманилин: А. Использование разбавленного раствора брома при -20 °C, Б Обработка анилина бромистоводородной кислотой, В Обработка бромом нитробензола в присутствии бромида железа, с последующим восстановлением нитрогруппы, Г. Ацилирование анилина уксусным ангидридом, бромирование бромом, гидролиз продукта в кислой среде, Д. Обработка анилина серной кислотой, с получением сульфаниловой кислоты и последующее замещение сульфогруппы на бром под действием бромида калия. 7. Указать диметиланилины, способные при обработке азотистой кислотой образовывать соли диазония: **А.** 2,5-диметиланилин, **Б** N,4-диметиланилин, В N,N-диметиланилин, Г. 2,4-диметиланилин

8. При последовательной обработке пара-анизидина NaNO₂/HBr и дальнейшем нагревании полученного вещества с суспензией CuBr в воде полуают

А. 4-бромметоксибензол, **Б.** 4-нитроанилин,

В. N-нитрозоанизидин, Г. 4-нитрометоксибензол

9. Во что превратится 3,5-дихлоранилин при обработке его нитритом натрия в среде фосфорноватистой кислоты

А. 1,3-дихлорбензол, **Б**. 3,5-дихлорфенол,

В. фосфорноватистокислый 3,5-дихлордиазоний,

Г. 3,5-дихлорфенилфосфорную кислоту

1. Привести структурную формулу соединения, образующегося при взаимодействии хлорида 4-метоксифенилдиазония с 4- метоксифенолом

Критерии оценки теста: правильных ответов 90-100% - «отлично», от 75 % до 90%— «хорошо», от 60 % до 75%— «удовлетворительно», меньше 60 % -«неудовлетворительно

Задачи:

- 2. Расположите все изомерные хлорбутаны в порядке увеличения их реакционной способности в реакциях S_N 2.
 - 3. Относительные скорости взаимодействия алкоголята натрия в безводном этаноле при 55°C с бромистым метилом, этилом, пропилом, бутилом и амилом составляют соответственно: 17,6:1:0,3:0,23:0,21. Как объяснить этот факт?
 - 4. Предложите схемы синтеза из циклогексанола циклогексанкарбоновой кислоты; нитрила циклогексил-3-карбоновой кислоты.
 - 5. Получите из толуола не прибегая к реакциям окисления бензиловый спирт; бензальдегид; бензойную кислоту; перекись бензоила.
 - 6. Предскажите стереохимический результат превращения, приведенного на схеме (для исходного спирта $\alpha = +33,02^{\circ}$):

Можно ли ожидать, что полученный продукт будет оптически активным?

- 7. Расположите указанные бромиды в порядке уменьшения скорости замещения галогена на гидроксильную группу при нагревании в водной муравьиной кислоте: тритил бромид, 2-бром-2-фенилпропан, дифенилбромметан, 2-бром-2-метилпропан.
- 8. Раскрытие оксиранового кольца аминами происходит так, что аминогруппа предпочтительно атакует первичный атом углерода, нежели вторичный и третичный. Какие выводы о механизме реакции можно сделать исходя из этого факта?
- 9. Определите строение трех первичных хлоридов $C_5H_{11}Cl$, если известно, что изомер A в реакции Вильямсона с этилатом натрия в этаноле реагирует в 100 раз медленнее, чем изомер Б. Изомер В в этой реакции реагирует в 105 раз медленнее, чем Б. Обсудите механизм протекающих процессов.
- 10.Исходя из бутина-1, иодметана, бромэтана и других необходимых реагентов, получите 5-метилгексаналь.
- 11. Получите фенилуксусную кислоту, а также ее этиловый эфир и нитрил из толуола и простейших реагентов.
- 12. Охарактеризуйте полярность и поляризуемость связей С-Н и углерод-галоген. Почему иодистые алкилы обладают наибольшей реакционной способностью?
- 13. Каково преимущественное направление реакции хлористого кротила с цианистым калием в воде; ДМСО; н-гексане?
- 14. Исходя из (R)-бутанола-2, фенилацетилена и других необходимых реагентов, получите Z- и Е-изомеры (S)-3-метил-1-фенилпентена-1.
- 15. Галогениды типа $ROCH_2Hal$ вступают предпочтительно в реакции SN1, а галогениды RCH_2Hal в реакции S_N2 . Чем можно это объяснить?
- 16. Сравните скорости реакции гидролиза трет-бутилхлорида в воде и водном 1,4-диоксане; бромэтана с гидросульфидом натрия в воде и ДМФА.
- 17. Известно, что третичные Алкилгалогениды очень быстро вступают в реакцию с водно-спиртовым раствором нитрата серебра. Исключение составляет 1-хлоркамфан

который не реагирует с раствором азотнокислого серебра даже при нагревании в течении 48 часов. Объясните этот факт.

- 18. Исходя из гексена-3 необходимой конфигурации, иодметана, бромоформа, однобомистой меди и других необходимых реагентов получите транс-1,1-диметил-2,3-диэтилциклопропан.
- 19. Исходя из толуола и неорганических реагентов получите дибензилкетон; бензилбензоат.

- 20. Сравните реакционную способность в реакциях нуклеофильного замещения циклогексилхлорметана и хлористого бензила в различных условиях.
 - 21. Из гексена-3 и других необходимых реагентов получите гексанон-2.
- 22. Расположите соединения в порядке уменьшения реакционной способности в реакции Финкельштейна с иодидом калия в ацетоне: 1-хлорпропан, 2-хлорбутан, хлорметан, винилхлорид, хлористый аллил, хлористый бензил, α-хлорацетон.
- 23. Какие соединения могут образовываться в результате гидролиза хлористого кротила водням раствором КОН и водным ацетоном.
 - 24. Предложите схему синтеза этил-трет-бутилового эфира.
 - 25. Из этилена, ацетилена, этилбромида и других необходимых реагентов получите
- 26. Гидролиз третичного аллилгалогенида A с брутто формулой $C_6H_{11}Cl$ и изомерного ему первичного аллильного галогенида B приводит к смеси двух изомерных спиртов B и Γ в одном и том же соотношении. Приведите структурные формулы соединений A- Γ , уравнения реакций гидролиза и его механизм.
- 27. Из фенола и этилового спирта получите, не прибегая к другим органическим реагентам фенетол; 1,2-дифеноксиэтан; феноксиуксусную кислоту.
- 28. Получите 3-метилбутен-1 и 2-метилбутен-2 из изо-пропанола, этанола и неорганических реагентов.
- 29. Предложите оптимальные условия для превращения бромистого изо-пропила в 2-нитропропан и в изо-пропил нитрит. Ответ обоснуйте.
- 30. Из ацетилена и неорганических реагентов синтезируйте динитрил гексен-3-диовой кислоты.
- 31. Как синтезировать из этанола антирадиационный защитный препарат β -меркаптоэтиламин.
- 32. Объясните устойчивость к водной щелочи хлорбензола, хлористого винила и хлористого неопентила.
- 33. Скорость щелочного гидролиза этиловых эфиров триметилуксусной кислоты и трихлоруксусной кислоты относятся как 1 : 107. Какова причина такого различия?
 - 34. Из ацетилена и неорганических реагентов получите гексатриен-1,3,5.
- 35. Исходя из 3-метилбутина-1, иодэтана и других необходимых реагентов, получите 5-метилгексанон-2 и 5-метилгексаналь. Оба соединения должны быть получены из одного и того же предшественника.
- 36. Бромиды А, Б и В имеют брутто-формулу С4Н7Вг. В результате обработки их литием или магнием в ТГФ, последующего гидролиза и гидрирования образуется н-бутан. А и Б не сразу реагируют со спиртовым раствором нитрата серебра, в случае В выпадение бромида серебра начинается сразу же после прибавления реагента. Галогенид А относительно инертен к спиртовому раствору едкого кали, а галогенид Б реагирует с ним при нагревании, в то время как В реагирует с ним уже на холоду. Предложите возможные структуры веществ А-В.

Зачетно- экзаменационные материалыдля промежуточной аттестации (экзамен)

Список вопросов для подготовки к экзамену (1 часть, 5 семестр)

- 1. Состав и строение органических соединений, типы структур. Гомология и изомерия.
- 2. Номенклатура органических соединений, исторически сложившиеся виды номенклатур, принципы современной систематической номенклатуры.
- 3. Типы химических связей в молекулах органических соединений.
- 4. Электронные и пространственные эффекты в органических молекулах:
- 5. Пространственное строение органических соединений. Геометрические,

конформационные и оптические изомеры. Хиральность.

- 6. Классификация органических реакций. Представления о механизмах реакций. Кинетический и термодинамический контроль.
- 7. Карбокатионы в качестве интермедиатов органических реакций. Методы их генерирования и реакционная способность.
- 8. Карбанионы- интермедиаты химических реакций. Генерирование и реакционная способность
- 9. Радикалы и карбены качестве интермедиатов химических реакций. Пути образования и их превращения.
- 10. Лабораторные и промышленные методы получения алканов.
- 11. Химические свойства алканов. Механизм радикального галогенирования алканов.
- 12. Лабораторные и промышленные методы синтеза алкенов.
- 13. Реакции присоединения к алкенам.
- 14. Окислительные превращения алкенов.
- 15. Типы алкадиенов, методы их получения, электронное строение кумулированных и сопряженных диенов.
- 16. Химические свойства сопряженных диенов.
- 17. Методы получения ацетиленовых углеводородов.
- 18. Алкины: электронное строение, С-Н кислотность 1-алкинов, реакции с участием С-Н связи алкинов.
- 19. Реакции присоединения, характерные для ацетиленовых углеводородов.
- 20. Промышленные синтезы на основе ацетилена.
- 21. Галогенпроизводные углеводородов- особенности строения и методы их получения.
- 22. Общие закономерности в реакциях нуклеофильного замещения у насыщенного атома углерода.
- 23. Общая характеристика спиртов. Основные методы синтеза спиртов.
- 24. Химические превращения спиртов.
- 25. Многоатомные спирты: особенности строения. Методы получения и химические свойства.
- 26. Простые эфиры. Общие методы получения простых эфиров и алкилвиниловых эфиров.
- 27. Свойства простых эфиров. Использование α- галогенэфиров в органическом синтезе.
- 28. Получение и свойства циклических эфиров. Окись этилена и её применение.
- 29. Альдегиды и кетоны: номенклатура, строение кабонильной группы. Характерные реакционные центры и типы реакций.
- 30. Превращения альдегидов и кетонов с участием карбонильной группы.
- 31. Реакции окисления и восстановления, характерные для альдегидов и кетонов.
- 32. Енолизация карбонильных соединений. Реакции альдегидов и кетонов с участием α-СН-связей.
- 33. Строение сопряженных непредельных альдегидов и кетонов. Основные типы превращений, винилогия.
- 34. Особенности химических свойств сопряженных непредельных карбонильных соелинений.
- 35. Карбоновые кислоты: номенклатура, строение карбоксильной группы и карбоксилат аниона, зависимость кислотных свойств от строения.
- 36. Общие методы синтеза карбоновых кислот.
- 37. Хлорангидриды и ангидриды карбоновых кислот.
- 38. Сложные эфиры карбоновых кислот. Механизм реакции этерификации.
- 39. Кетен. Способы получения, строение и характерные превращения.
- 40. Амиды карбоновых кислот. Электронное строение, основность, методы синтеза и химические превращения.
- 41. Нитрилы. Электорнные эффекты цианогруппы. Взаимосвязь с другими производными карбоновых кислот.

- 42. Особенности реакций присоединения к непредельным карбоновым кислотам и их производным.
- 43. Акрилонитрил. Реакция цианоэтилирования. Использование акрилонитрила в качестве мономера.
- 44. Эфиры акриловой и метакриловой кислот. Свойства, использование в качестве мономеров.
- 45. Жиры и входящие в их состав кислоты. Гидрогенизация и омыление жиров. Мыла.
- 46. Природные ненасыщенные карбоновые кислоты. Незаменимые жирные кислоты. Строение, биологическая роль.

Список вопросов для подготовки к экзамену (2 часть, 6 семестр)

- 1. Свойства, методы синтеза и реакции оксиальдегидов и оксикетонов. Стереохимия.
- 2. Углеводы. Свойства моно-и дисахаридов. Муторотация.
- 3. Методы синтеза двухосновных карбоновых кислот и их применение.
- 4. Методы синтеза оксикислот и их значение.
- 5. Свойства и реакции оксикислот.
- 6. Асимметрия молекул оксикислот и их стереохимия.
- 7. Синтез и реакции альдегидо- и кетокислот и их эфиров.
- 8. Таутомерия ацетоуксусного эфира и его реакции кетонной и енольной форм, использование в синтезе.
- 9. Аминокислоты: природа, свойства и реакции.
- 10. Методы синтеза аминокислот
 - 11. Свойства и реакции аминокислот. Их значение.
 - 12. Алициклические соединения. Способы замыкания циклов. Изомеризация с расширением и сжатием циклов.
 - 13. Важнейшие представители алициклов. Прочность циклов и конформации. Полученией свойства.
 - 14. Ароматические соединения. Природа ароматичности. Строение бензола.
 - 15. Небензоидные ароматические системы.
 - 16. Способы получения ароматических соединений.
 - 17. Механизм реакции электрофильного замещения в ароматическом ядре.
 - 18. Свойства и реакции бензола и его гомологов.
 - 19. Ароматические соединения группы дифенила.
 - 20. Полициклические ароматические соединения. Синтез, реакции.
 - 21. Нафталин: синтез, реакции.
 - 22. Антрацен, фенантрен: синтез и реакции.
 - 23. Получение, свойства и реакции соединений ряда дифенила.
 - 24. Получение, свойства и реакции соединений ряда дифенил- и трифенилметана.
 - 25. Получение ароматических галогенпроизводных.
 - 26. Механизм реакции нуклеофильного замещения в ароматических соединениях.
 - 27. Методы синтеза фенолов.
 - 28. Свойства и реакции фенолов.
 - 29. Методы синтеза ароматических альдегидов.
 - 30. Свойства и реакции ароматических альдегидов.
 - 31. Способы получения ароматических кетонов.
 - 32. Свойства и реакции ароматических альдегидов и кетонов.
 - 33. Получение ароматических карбоновых кислот.
 - 34. Свойства и реакции одноосновных ароматических карбоновых кислот
 - 35. Многоосновные ароматические карбоновые кислоты: получение, свойства, реакции.
 - 36. Способы получения ароматических нитросоединений.

- 37. Ароматические амины: синтез, строение, реакции.
- 38. Свойства и реакции ароматических аминов. Анилиновые красители.
- 39. Получение ароматических диазосоединений.
- 40. Реакции ароматических диазосоединений без выделения азота.
- 41. Пятичленные гетероциклические соединения. Общая характеристика.
- 42. Фуран. Методы синтеза и основные реакции.
- 43. Тиофен: методы синтеза и основные реакции.
- 44. Пиррол: синтез, строение, реакции.
- 45. Индол: синтез, строение, реакции.
- 46. Пиридин: синтез, строение, реакции

Примерные образцы билетов на экзамен

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ») Факультет химии и высоких технологий Кафедра органической химии и технологий

БИЛЕТ №1

Направление подготовки – 04.03.01 Химия Дисциплина: Органическая химия

- 1. Оксикислоты. Получение, свойства и реакции. Стереохимия.
- 2. Галогенарены. Методы введения галогена в арены.
- 3.Задача

Заведующий кафедрой органической химии и технологий

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ») Факультет химии и высоких технологий Кафедра органической химии и технологий

БИЛЕТ №2

Направление подготовки – 04.03.01 Химия Дисциплина: Органическая химия

- 1. Оксокислоты. Методы синтеза, строение и свойства. Таутомерия. Ацетоуксусный эфир и его применение.
- 2. Нитроарены. Синтез моно- и полинитроаренов и механизм нитрования. Свойства и реакции.
- 3. Задача

Заведующий кафедрой органической химии и технологий

Федеральное государственное бюджетное образовательное учреждениевысшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ») Факультет химии и высоких технологий Кафедра органической химии и технологий

БИЛЕТ №3

Направление подготовки – 04.03.01 Химия Дисциплина: Органическая химия

- 1. Углеводы. Свойства и реакции моносахаридов. Стереохимия, таутомерия.
- 2. Ароматические амины. Получение, свойства, эффект заместителей и реакционная способность.
- 3.Задача

Заведующий кафедрой органическойхимии и технологий

Критерии оценивания результатов обучения

Оценка знаний по дисциплине «*Органическая* химия» предполагает дифференцированный подход к студенту, учет его индивидуальных способностей, степень усвоения и систематизации знаний учебного курса, умения делать доказательные выводы и обобщения, формирования общекультурных компетентностей

Оценка	Критерии оценивания по экзамену
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы. Студент свободно владеет теоретическим материалом (знает как основные, так и специфические синтетические методы, а также механизмы основных реакций) и способен самостоятельно решить экзаменационную задачу.
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки. Студент хорошо владеет теоретическим материалом, знает базовые синтетические методы и имеет представление о механизмах основных синтетически важных реакций, способен справиться с экзаменационной задачей при незначительной помощи со стороны преподавателя.
Пороговый уровень «3» (удовлетворите льно)	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы. Студент знает базовые синтетические методы, однако плохо разбирается в специфических методах и механизмах основных

	реакций, с трудом справляется с экзаменационной задачей при существенной помощи со стороны преподавателя.	
Минимальный уровень «2» (неудовлетвори тельно)	оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы. Студент не способен решить экзаменационную задачу даже с помощью преподавателя и плохо владеет теоретическим материалом (наблюдаются существенные ошибки при обсуждении базовых синтетических методов).	

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Травень, В. Ф. Органическая химия : учебное пособие : в 3 т. Т. 1 / Травень В. Ф.
- изд. М.: Лаборатория знаний, 2015. 401 с. https://e.lanbook.com/book/84108#authors.
- 2. Травень, В. Ф. Органическая химия : учебное пособие : в 3 т. Т. 2 / Травень В. Ф. 4-е изд. М. : Лаборатория знаний, 2015. 550 с. https://e.lanbook.com/book/84109#authors.
- Травень, В. Ф. Органическая химия : учебное пособие : в 3 т. Т. 3 / Травень В. Ф. 4-е изд. М. : Лаборатория знаний, 2015. 391 с. https://e.lanbook.com/book/84110#authors
- 3. Травень, В. Ф. Органическая химия : учебное пособие / В. Ф. Травень. 7-е изд. Москва : Лаборатория знаний, 2020 Том 3 2020. 391 с. ISBN 978-5-00101-748-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/151524
- 3.Смит, В. А. Основы современного органического синтеза: учебное пособие / В. А. Смит, А. Д. Дильман. 5-е изд. Москва: Лаборатория знаний, 2020. 753 с. ISBN 978-5-00101-

- 761-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/135517
- 4. Шабаров, Ю. С. Органическая химия: учебник / Ю. С. Шабаров. 5-е изд., стер. Санкт-Петербург: Лань, 2021. 848 с. ISBN 978-5-8114-1069-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167911
- 5. Органическая химия: учебно-методическое пособие / А. В. Беспалов, В. В. Доценко, Д. Ю. Лукина, В. Д. Стрелков; Министерство науки и высшего образования Российской Федерации, Кубанский государственный университет. Краснодар: Кубанский государственный университет, 2019. 156 с.: ил. Авт. указаны на обороте тит. л. Библиогр.: с. 155. ISBN 978-5-8209-1709-7: 80 р. Текст:
- **5.** Беспалов, А.В. Органическая химия: сборник задач / А.В. Беспалов, В.Д. Стрелков. Краснодар: Изд-во КубГУ, 2017. 69 с.

5.2. Периодическая литература

- 1. Успехи химии российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.
- 2. Журнал органической химии российский научный журнал, публикующий статьи по теоретическим проблемам органической химии, механизмам реакций органических соединений, соотношениям между физическими свойствами, реакционной способностью и строением, по новым реакциям и методам получения органических соединений, по основным проблемам развития важнейших направлений органического синтеза.
- 3. Журнал общей химии один из крупнейших российских научных журналов, отражающих основные направления развития химии, публикующий работы, посвящённые актуальным общим вопросам химии и проблемам, возникающим на стыке различных разделов химии, а также на границах химии и смежных с ней наук (металлоорганические соединения, элементоорганическая химия, органические и неорганические комплексы, механохимия, нанохимия и т. д.).

5.3.Интернет-ресурсы, в том числе современные профессиональные базы данныхи информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 96C «BOOK.ru» https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
 - 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
 - 7. Национальная электронная библиотека (доступ к Электронной библиотекедиссертаций Российской государственной библиотеки (РГБ)

https://rusneb.ru/

- 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
- 9. Springer Journals https://link.springer.com/
- 10. Nature Journals https://www.nature.com/siteindex/index.html

- 11. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 12. Springer Materials http://materials.springer.com/
- 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
 - 4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 5. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
 - 2. База учебных планов, учебно-методических комплексов, публикаций и конференцийhttp://mschool.kubsu.ru/
 - 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «Органическая химия» требует от студентов регулярного посещения лекций, а также активной работы на практических занятиях, выполнения тестовых проверочных работ, выполнения и защиты лабораторных работ, ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал слово в слово.

При подготовке к практическому занятию рекомендуется:

- 1) ознакомиться с темой и планом занятия, чтобы выяснить круг вопросов, которые будут обсуждаться на занятии;
- 2) поработать с конспектом лекции по теме занятия, а также ознакомиться с рекомендуемой литературой и (при необходимости) дополнительными источниками информации в виде периодических изданий и Интернет-ресурсов.

При выполнении практической работы студентам необходимо отмечать те вопросыи разделы, которые вызывают у них затруднения. с целью последующей консультации у преподавателя. Каждый студент должен стремиться активно работать на практических занятиях и успешно выполнять тестовые проверочные работы.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения

представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных	Оснащенность специальных	Перечень
помещений	помещений	лицензионного
		программного
		обеспечения
• •	Мебель: учебная мебель	Microsoft Windows;
±	Технические средства обучения:	Microsoft Office
лекционного типа типа ауд. 322,		
корп. С (улица Ставропольская,		
149):		
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows;
Проведения занятий	Технические средства обучения:	Microsoft Office
семинарского типа, групповых,	экран, проектор, компьютер	
индивидуальных		
консультаций,		
текущего контроля и		
промежуточной аттестации ауд.		
410,и 414, корп. С (улица		
Ставропольская, 149):		
Vyofyyya ayyyyaayyy ===	Vyracanyya nafariyy	
• •	Курсовые работы не	
курсового проектирования (выполнения курсовых работ)	предусмотрены учебным планом	
(выполнения курсовых расот)		

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений	Оснащенность помещений	Перечень лицензионного
для самостоятельной работы	для самостоятельной работы	программного обеспечения
обучающихся	обучающихся	• •

П	M-5	M:
	Мебель: учебная мебель	Microsoft Windows; Microsoft
	Комплект	Office
обучающихся (читальный зал		
Научной библиотеки)	ймебели: компьютерные	
	столы Оборудование:	
	компьютерная	
	техника с подключениемк	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную	
	информационно-	
	образовательную среду	
	образовательной	
	организации, веб-камеры,	
	коммуникационное	
	оборудование,	
	обеспечивающее доступ к	
	сети интернет (проводное	
	соединение и	
	беспроводное соединение по	
-	технологии Wi-Fi)	26' 0 777' 1 26' 0
Помещение для	Мебель: учебная мебель	Microsoft Windows; Microsoft
самостоятельной работы	Комплект	Office
обучающихся (ауд.	специализированно	
401C)	ймебели: компьютерные	
	столы Оборудование:	
	компьютерная	
	техника с подключениемк	
	информационно-	
	коммуникационной сети	
	«Интернет» и доступом в	
	электронную	
	информационно-	
	образовательную среду	
	образовательной	
	организации,	
	веб-камеры,	
	коммуникационное оборудование,	
	обеспечивающее доступ к	
	сети интернет (проводное	
	соединение и беспроводное	
	соединение по	
	технологии Wi-Fi)	