Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Факультет химии и высоких технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б.18 БИОХИМИЯ

Направление подготовки – 12.03.04 Биотехнические системы и технологии

Профиль подготовки – Инженерное дело в медико-биологической практике

Программа подготовки – академическая

Форма обучения – очная

Квалификация выпускника – бакалавр

Рабочая программа дисциплины «БИОХИМИЯ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки **12.03.04 Биотехнические системы и технологии**

Программу составила:

Н.А. Рыжкова, доцент, кандидат химических наук

Рабочая программа дисциплины «Биохимия» утверждена на заседании кафедры органической химии и технологий, протокол № 9 от «17» мая 2021г.

И.о. заведующий кафедрой Кузнецова С.Л., к.х.н., доцент

Рабочая программа обсуждена на заседании кафедры физики и информационных систем, протокол № от « 20 » мая 2021 г.

Заведующий кафедрой д.т.н. Богатов Н.М.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий, протокол № 7 от «24» мая 2021 г.

Председатель УМК факультета Беспалов А.В.

Рецензенты:

Строганова Т.А, к.х.н., доцент кафедры биоорганической химии и технической микробиологии ФГБОУ ВО «Кубанский государственный технологический университет»

Зеленов В.И., к.х.н., доцент кафедры общей, неорганической химии и ИВТ в химии факультета химии и высоких технологий ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Дисциплина «Биохимия» ставит своей целью получение студентами прочных теоретических знаний и практических навыков в области изучения химического состава, закономерностей синтеза и химического поведения веществ живых организмов, их превращений в процессе жизнедеятельности.

1.2 Задачи дисциплины.

- 1. Обобщение и систематизирование знаний студента по основам химии веществ живой материи.
- 2. Формирование у студента практических навыков проведения экспериментов по предлагаемым методикам с объектами живой материи, анализа и обработки полученных данных.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Биохимия» относится к части, формируемой участниками образовательных отношений Блока 1 "Дисциплины (модули)" учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 2 курсе. Вид промежуточной аттестации: экзамен.

Изучению дисциплины «Биохимия» должно предшествовать изучение следующих дисциплин: «Математика», «Физика», «Информатика».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК1

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ОПК-1. Способен представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	знает особенности строения основных классов биохимических веществ, их физико-химические и химические свойства; группы биологически активных веществ, их биологические функции; пути биосинтеза важнейших биополимеров умеет пользоваться оборудованием, химической посудой, химическими реактивами и вспомогательными материалами при проведении экспериментов по предлагаемым методикам владеет понятийным аппаратом в области химии живой материи; методами и методиками выделения и изучения химических объектов живой материи, навыками обработки результатов эксперимента.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице $(\partial ля\ cmv \partial e hmos\ O\Phi O)$.

Вид учебной работы	Всего	Семестры
	часов	(часы)
		3
Контактная работа, в том числе	54,2	54,2

Аудиторные занятия (всего)		
Занятия лекционного типа	16	16
Занятия семинарского типа (семинары, практические		
занятия)		
Лабораторные занятия	34	34
Иная контактная работа:		
Контроль самостоятельной работы (КСР)	4	4
Промежуточная аттестация (ИКР)	0,2	0,2
Самостоятельная работа, в том числе:	32	32
Курсовая работа		
Проработка учебного (теоретического) материала	12	12
Выполнение индивидуальных заданий (подготовка	10	10
сообщений, презентаций)		10
Реферат		
Подготовка к текущему контролю	10	10
Контроль:	экзамен	
Общая трудоемкость (час)	108	108
В том числе контактная работа	54,2	54,2
Зач.ед.	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 3 семестре (очная форма)

	Наименование разлелов (тем)		Количество часов			
№		Всего	Аудиторная работа		Внеаудит орная работа	
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1.	Молекулярная организация клетки. Метаболизм	4	2			2
2.	Аминокислоты. Пептиды. Белки	16	2		8	6
3.	БАВ. Ферменты. Витамины	12	2	2 6		4
4.	Углеводы	16	2	2 8		6
5.	Липиды. Биомембраны	14	2	2 8		4
6.	Нуклеиновые кислоты. Наследственность	6	2		4	
7.	Гормоны. Нейроэндокринная регуляция	8	2	2 4		2
8.	Биологическое окисление	6	2			4
	ИТОГО по разделам дисциплины		16		34	32
	Контроль самостоятельной работы (КСР)	4	-	-	-	-
	Промежуточная аттестация (ИКР)	0.2	-	-	-	-
	Подготовка к текущему контролю		-	-	-	-
	Общая трудоемкость по дисциплине	108	-	-	-	-

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 9 – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1.	Молекулярная организация клетки. Метаболизм.	Отличия живой и неживой материи. Химический состав живых организмов. Молекулярная организация клетки. Роль воды в живых системах. Источники энергии для живых организмов. Особенности метаболических процессов	устный опрос
2.	Аминокислоты. Пептиды. Белки	Классификация, стереохимия, физико-химические и химические свойства аминокислот. Строение пептидной связи. Определение первичной структуры пептида. Химический синтез пептидов. Классификация и уровни организации белков. Строение и функции гемоглобина.	ЛР1-2, Т, Кр
3.	БАВ. Ферменты. Витамины	Классификация, строение и свойства ферментов. Факторы, влияющие на активность. Коферменты и простетические группы. Принципы ферментативного катализа. Водорастворимые и жирорастворимые витамины. Биологическая роль витаминов. Антивитамины	ЛР3,Т
4.	Углеводы	Основные функции. Классификация. Простые и сложные углеводы. Моносахариды. Строение, свойства, таутомерия. Олигосахариды. Восстанавливающие и невосстанавливающие сахара. Полисахариды. Катаболизм и анаболизм углеводов. Гликолиз. Цикл Кребса (трикарбоновых кислот). Фотосинтез	ЛР4-5, Кр
5.	Липиды. Биомембраны	Классификация. Отдельные представители. Природные жиры. Функции, превращения в организме. Терпены, стероиды, холестерол. Основные направления метаболизма. Строение и функции биомембран.	ЛР6-7
6.	Нуклеиновые кислоты. Наследственность	Компоненты нуклеиновых кислот. Нуклеозиды. Нуклеотиды. Строение, свойства. РНК. ДНК. Двойная спираль ДНК. Правило Чаргаффа. Макроструктура ДНК. Матричные биосинтезы. Репликация ДНК. Транскрипция. Синтез белка на рибосомах. Генетический код и его свойства.	Т
7.	Гормоны. Нейроэндокринная регуляция	Роль гормонов в регуляции метаболизма. Эндокринные железы. Классификация и строение гормонов. Гормоноподобные вещества. Связь между нервной и эндокринной системами.	ЛР8; Т
8.	Биологическое окисление	Дыхательная цепь. Энергетика биосинтетических реакций. Регуляция энергетического обмена.	Т

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабораторные работы)

Jiao	ораторные раооты)		
№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.	Аминокислоты.	Разделение белков методом диализа и высаливания	ЛР1
	Пептиды. Белки		
2.	Аминокислоты.	Выделение казеина из молока и определение его	ЛР2
	Пептиды. Белки	изоэлектрической точки	
3.	БАВ. Ферменты.	Исследование свойств амилазы слюны	ЛР3
	Витамины		
4.	Углеводы	Количественное определение крахмала в растительном	решение задач,
		материале	ЛР4
5.	Углеводы	Выделение растворимого пектина и его количественное	решение задач,
		определение	ЛР5
6.	Углеводы	Определение сахаров методом тонкослойной	решение задач,
		хроматографии	ЛР6
7.	Липиды. Биомембраны	Определение констант жиров	ЛР7

Защита лабораторной работы (ЛР)

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы	
1	2	3	
1	Самостоятельное изучение теоретического материала	Гидранович В.И. Биохимия — Учебное пособие. Минск: ТетраСистемс, 2012 — 528 с., Аминокислоты, пептиды, белки. (http://www.chem.msu.su/rus/elibrary/jakubke/). Нельсон Д. Основы биохимии Ленинджера в 3 т./ Д. Нельсон, М. Кокс// М.: Лаборатория знаний 2017. — 694 с.;	
2	Оформление лабораторных работ	Рыжкова Н.А., Биологическая химия. Лабораторный практикум / Н.А. Рыжкова// Краснодар: Изд-во КубГУ - 2014. – 57 с.	
3	Самостоятельное решение задач	Методические рекомендации по решению задач, утвержденные кафедрой органической химии и технологий, протокол № 7 от 22.04.2015 г.	
4	Подготовка к текущему контролю	Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018 89 с.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование следующих образовательных технологий: лекции, лабораторные занятия, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Биохимия».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме заданий для самостоятельного решения, задач для решения в аудитории, контрольных работ, контрольных вопросов к лабораторным работам, и **промежуточной аттестации** в форме вопросов и задач к экзамену.

Структура оценочных средств для текущей и промежуточной аттестации

No	Код и наименование	Результаты обучения	Наименование оценочн	юго средства
п/п	индикатора	(в соответствии с п. 1.4)	Текущий контроль	Промежуточная
11/11	(в соответствии с п. 1.4)	(в соответствии с п. т.4)	текущий контроль	аттестация
	ОПК-1.	знает особенности	Контрольная работа;	Вопрос на
		строения основных	Задачи для решения в	экзамене
	Способен представлять	классов биохимических	аудитории	
	адекватную	веществ, их физико-		
	современному уровню	химические и		
	знаний научную	химические свойства;		
	картину мира на основе	группы биологически		
	знания основных	активных веществ, их		
	положений, законов и	биологические функции;		
	методов естественных	пути биосинтеза		
	наук и математики	важнейших		
		биополимеров		
		умеет пользоваться	Лабораторная работа	-
		оборудованием,		
		химической посудой,		
		химическими		
1		реактивами и		
		вспомогательными		
		материалами при		
		проведении		
		экспериментов по		
		предлагаемым		
		методикам		
		владеет понятийным	Лабораторная работа	-
		аппаратом в области		
		химии живой материи;		
		методами и методиками		
		выделения и изучения		
		химических объектов		
		живой материи,		
		навыками обработки		
		результатов		
		эксперимента.		

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Варианты контрольных работ

Кр1. Тема «Аминокислоты, пептиды, белки» Вариант 1.

- 1. Охарактеризуйте классификацию аминокислот по типу бокового радикала. Приведите примеры неполярных, кислых и основных аминокислот.
- 2. Какие соединения образуются при декарбоксилировании следующих аминокислот: лизин, фенилаланин, цистеин, серин. Напишите уравнения реакций, назовите полученные вещества.
- 3. Приведите формулу гексапептида, содержащего разные аминокислоты.
- 4. Какой объем азота (н.у.) выделится из 0.001 моль лейцина, лизина и пролина при действии на эти аминокислоты азотистой кислоты?

При действии HNO_2 на 5.85 мл природной α -аминокислоты получено 1.12 мл азота. Определите аминокислоту.

Вариант 2.

- 1. Дайте понятие первичной структуры белка и укажите методы ее определения. Опишите метод Эдмана .
- 2. Приведите реакцию аланина с нингидрином.
- 3. Получите дипептид серилвалин твердофазным методом Меррифилда.
- 4. Что такое оптическая активность? Как определяется принадлежность аминокислот к D или L-ряду?

Кр2. Тема «Углеводы»

Вариант 1.

- 1. Изобразите все формы глюкозы в водном растворе.
- 2. Объясните понятие «оптическая активность». Какие соединения обладают оптической активностью?
- 3. Напишите схему постадийного гидролиза крахмала в присутствии минеральной кислоты. Где используется крахмал? Перечислите биологические функции углеводов.
- 4. Почему при восстановлении Д-маннозы боргидридом натрия образуется один шестиатомный спирт Д-маннит, а при восстановлении Д-фруктозы два спирта?

Вариант 2.

- 1. Напишите структурные формулы соединений: альдогексоза, кетопентоза, кетогептоза, альдотетроза. Обозначьте звездочками хиральные атомы углерода в этих соединениях.
- 2. Приведите классификацию углеводов. Укажите их биологические функции. Дайте понятие олигосахаридов. Объясните, почему мальтоза является восстанавливающим сахаром, а сахароза нет.
- 3. Приведите формулу амилозы.
- 4. В трех пробирках находятся рибоза, сахароза и крахмал. Как их распознать? Приведите формулы указанных соединений и необходимые реакции.

Контрольные вопросы к лабораторной работе «Определение констант жиров.

- 1. На чем основана классификация липидов?
- 2. Какие константы служат для определения качества жира?
- 3. Какие соединения называются фосфолипидами? Какова их биологическая роль?
- 4. Приведите примеры гликолипидов.
- 5. Приведите формулы нейтральных жиров жидкой и твердой консистенции.
- 6. Перечислите основные функции липидов.

Контрольные вопросы к лабораторной работе «Разделение альбуминов и глобулинов методом диализа и высаливания»

- 1. Чем обусловлены реакции осаждения белков?
- 2. Перечислите цветные реакции на белки.
- 3. Что такое обратимое и необратимое осаждение белков?
- 4. При каких температурах возможно осаждение белков?

- 5. Перечислите белки основного и кислого характера.
- 6. Какова форма белковых молекул?
- 7. Что такое изоэлектрическая точка и почему она различна для разных белков?

Контрольные вопросы к лабораторной работе «Количественное определение крахмала»

- 1. В каких пищевых продуктах содержатся углеводы?
- 2. Как действует амилаза на полисахариды?
- 3. Приведите примеры восстанавливающих и невосстанавливающих сахаров. Объясните различия в свойствах.
- 4. Изобразите схему взаимопревращений различных форм глюкозы в водном растворе.
- 5. Дайте определение гликанам. Приведите примеры гомо- и гетерогликанов.

Тест по теме «Ферменты. Витамины» (Т-2)

- 1. Ферменты это: а) катализаторы углеводной природы;
 - б) катализаторы неорганической природы;
 - в) катализаторы белковой природы;
 - г) катализаторы липидной природы.
- 2. В состав кофермента ФМН входит: а) витамин А;
 - б) витамин В₆;
 - в) витамин В2;
 - г) витамин К;
 - д) витамин В_{12.}
- 3. Ферменты, катализирующие синтез биологических молекул с участием АТФ, относятся к классу: a) трансфераз;
 - б) гидролаз;
 - в) лигаз;
 - г) лиаз;
 - д) изомераз.
 - 4. Абсолютную специфичность к субстрату проявляет фермент: а) лизоцим;
 - б) карбоксипептидаза;
 - в) уреаза;
 - г) хемотрипсин;
 - д) папаин.
 - 5. Пепсин проявляет оптимальную активность при рН: а) 1.5-2.5;
 - б) 4-5;
 - в) 6-7;
 - г) 8-9;
 - д) 10-11.
 - 6. Ферменты, катализирующие внутримолекулярный перенос групп, называются:
 - а) гидроксилазами;
 - б) мутазами;
 - в) киназами;
 - г) рацемазами;
 - д) оксигеназами.
 - 7. Простетической группой родопсина рецепторного белка сетчатки глаза –

является а) рибофлавин; б) кальциферол; в) ретиналь; г) токоферол; д) филлохинон. 8. Превращение, протекающее в соответствии с уравнением R_1 -O- $R_2 + H_3$ PO₄ = R_1 OPO₃H₂ + R_2 -OH является реакцией: а) гидролиза; б) протеолиза; в) фосфоролиза; г) трансметилирования; д) изомеризации. Тест по теме «Аминокислоты. Пептиды. Белки» (Т-1) 1. Какие из следующих аминокислот относятся к моноаминомонокарбоновым: а) серин; б) лизин; в) аланин; г) глутаминовая кислота; д) аспарагиноая кислота? 2. Какое значение рН среды может иметь раствор лизина: a) 3; б) 5; в) 7; г) 8? 3. Добавление каких из указанных веществ вызывает обратимое осаждение белков: а) нитрат свинца; б) азотная кислота; в) калия хлорид; г) метиловый спирт; д) двухлористая ртуть? 4. Добавление каких из указанных веществ вызывает необратимое осаждение белков: а) этанол; б) медный купорос; в) калия сульфат; г) конц. серная кислота; д) гидроксид калия? 5. С каким из перечисленных веществ аминокислоты не реагируют: а) гидроксид калия; б) этанол; в) серная кислота; г) этанол + хлороводород? 6. Глицин взаимодействует с: а) этином;

б) нитратом натрия;

г) серной кислотой; д) гидроксидом калия;

в) метанолом;

е) гептаном?

Тест по теме «Обмен белков и аминокислот» (Т-3)

- 1. Источником азота, содержащегося в живых организмах нашей планенты, являются:
 - а) соли азотной кислоты, содержащиеся в земной коре;
 - б) азот атмосферы, фиксированный микроорганизмами;
 - в) аммонийные удобрения, попадающие в почву при подкормке растений.
- 2. Ферментативная система, катализирующая превращение азота в аммиак, носит название:
 - а) дегидрогеназа;
 - б) трансаминаза;
 - в) нитрогеназа;
 - г) декарбоксилаза.
- 3. Первичное усвоение аммиака у живых организмов приводит к образованию:
 - а) аспарагиновой кислоты;
 - б) глутамина;
 - в) лизина;
 - г) АТФ;
 - д) карбамоилфосфата;
 - е) аргинина.
- 4. Биосинтез аминокислот протекает по следующим направлениям:
 - а) переаминирование кетокислот;
 - б) переаминирование оксикислот;
 - в) прямое аминирование ненасыщенных кислот;
 - г) карбоксилирование аминов;
 - д) ферментативная изомеризация отдельных аминокислот.
- 5. Конечными продуктами распада белков являются:
 - а) щавелевая кислота;
 - б) мочевая кислота;
 - в) гиппуровая кислота;
 - г) фолиевая кислота;
 - д) аллантоин;
 - е) мета-оксибензойная кислота.

Тест по теме «Углеводы» (Т-4)

- 1. Какие функциональные группы содержит глюкоза:
 - а) карбоксил;
 - б) альдегидная группа;
 - в) гидроксогруппа;
 - г) аминогруппа;
 - д) кетогруппа?
- 2. Какие моносахариды получаются в результате гидролиза сахарозы:
 - а) α-глюкоза;
 - б) α-фруктоза;
 - в) α-рибоза;
- г) β-глюкоза;
 - д) β-фруктоза?
 - 3. Для распознавания глюкозы, сахарозы и крахмала нужен набор реактивов:

Тест по теме «Нуклеиновые кислоты. Наследственность»

- 1. При полном кислотном гидролизе нуклеиновых кислот образуются все перечисленные вещества, кроме:
- а) фосфорной кислоты;
- б) пентозы;
- в) пуриновых оснований;
- г) аденозинтрифосфорной кислоты;
- д) аденина.
 - 2. С цитозином не сочетается водородными связями:
- а) ксантин;
- б) гуанин;
- в) гипоксантин;
- г) 5-оксиметилцитозин;
- д) 2-аминопурин.
 - 3. Конечным продуктом катаболизма пуринов у человека является:
- а) аллантоин;
- б) мочевина;
- в) аммиак;
- г) мочевая кислота;
- д) гипоксантин.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

1. Список вопросов для подготовки к экзамену

- 1. Отличия живой и неживой материи. Химический состав живых организмов. Молекулярная организация клетки. Роль воды в живых системах. Источники энергии для живых организмов. Особенности метаболических процессов.
- 2. Классификация, стереохимия, физико-химические и химические свойства аминокислот. Строение пептидной связи. Определение первичной структуры пептида. Химический синтез пептидов. Классификация и уровни организации белков. Строение и функции гемоглобина.
- 3. Классификация, строение и свойства ферментов. Факторы, влияющие на активность. Коферменты и простетические группы. Принципы ферментативного катализа. Водорастворимые и жирорастворимые витамины. Биологическая роль витаминов. Антивитамины.
- 4. Основные функции. Классификация. Простые и сложные углеводы. Моносахариды. Строение, свойства, таутомерия. Олигосахариды. Восстанавливающие и невосстанавливающие сахара. Полисахариды. Катаболизм и анаболизм углеводов. Гликолиз. Цикл Кребса (трикарбоновых кислот). Фотосинтез.
- 5. Классификация. Отдельные представители. Природные жиры. Функции, превращения в организме. Терпены, стероиды, холестерол. Основные направления метаболизма. Строение и функции биомембран.
- 6. Компоненты нуклеиновых кислот. Нуклеозиды. Нуклеотиды. Строение, свойства. РНК. ДНК. Двойная спираль ДНК. Правило Чаргаффа. Макроструктура ДНК. Матричные биосинтезы. Репликация ДНК. Транскрипция. Синтез белка на рибосомах. Генетический код и его свойства.

- 7. Роль гормонов в регуляции метаболизма. Эндокринные железы. Классификация и строение гормонов. Гормоноподобные вещества. Связь между нервной и эндокринной системами.
- 8. Дыхательная цепь. Энергетика биосинтетических реакций. Регуляция энергетического обмена.

2. Дополнительные вопросы для подготовки к экзамену:

- 1. Как связаны между собой молекулы аминокислот в белке?
- 2. Перечислите цветные реакции на белки. Напишите тетрапептид, состоящий из различных и аминокислот.
- 3. В чем состоят отличия живой и неживой материи?
- 4. Укажите основные особенности метаболических процессов. Дайте определение явлению гомеостаза.
- 5. Укажите основные методы фракционирования белков. В чем состоит их различие?
- 6. Каково строение ферментов? Перечислите особенности действия ферментов по сравнению с небиологическими катализаторами.
- 7. Назовите известные вам коферменты и простетические группы. Какую роль выполняют коферменты. Приведите строение кофермента дегидрогеназ НАД+.
- 8. На чем основана классификация ферментов? Приведите строение кофермента ацетилирования (КоА) и его функции.
- 9. Напишите уравнение химической реакции Троммера с глюкозой, с мальтозой. Дает ли эту реакцию сахароза?
- 10. В каких пищевых продуктах содержатся углеводы?
- 11. Приведите примеры восстанавливающих и невосстанавливающих дисахаридов. Объясните различия в свойствах.
- 12. Изобразите схему превращений различных форм маннозы в водном растворе.
- 13. Что такое гликаны? Приведите примеры гетерогликанов.
- 14. Какие превращения претерпевают углеводы в процессе дыхания?
- 15. Что такое цикл Кребса трикарбоновых кислот?
- 16. На чем основана классификация липидов? Приведите общую формулу жира. Какие константы используются для определения свойств жира?
- 17. Приведите общую формулу фосфолипидов и гликолипидов. Какие свойства этих соединений определяют их роль в построении биологических мембран?
- 18. Приведите формулы насыщенных и ненасыщенных жирных кислот, входящих в состав природных жиров.
- 19. Приведите примеры терпенов и стероидов и охарактеризуйте их биологические функции.
- 20. Какова химическая природа гормонов и их роль в обмене веществ?
- 21. Приведите классификацию гормонов и назовите представителей каждой группы.
- 22. Напишите формулы адреналина и норадреналина и укажите их роль в обмене веществ.
- 23. Приведите биологические функции холестерина.
- 24. Какие вещества называются витаминами? В чем состоит роль витаминов и минеральных элементов в регуляции метаболизма?
- 25. Охарактеризуйте строение и биологические функции нуклеиновых кислот. Приведите строение молекулы ДНК. Сформулируйте правило Чаргаффа. Какова вторичная структура молекул РНК?

Пример экзаменационного билета

ФГБОУ ВО «Кубанский государственный университет» Кафедра органической химии и технологий Направление подготовки 12.03.04 — Биотехнические системы и технологии 20__-20__ уч. год Дисциплина «Биохимия»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1.

- 1. Ферменты (энзимы). Функции, строение, классификация. Кофермент НАД+. Кинетика ферментативных реакций.
- 2. Общая характеристика и биологическая роль витаминов. Отдельные представители. Понятие и примеры антивитаминов.
- 3. Рассчитайте значения изоэлектрических точек аспарагиновой кислоты и лизина, если значения pK1, pK2 и pK3 равны 1,9; 3,7; 9,6 и 2,2; 8,9 и 10,5 соответственно.

Критерии оценивания результатов обучения

Критерии оценивания результатов обучения			
Оценка	Критерии оценивания по экзамену		
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы. Студент свободно владеет теоретическим материалом (знает как основные, так и специфические синтетические методы, а также механизмы основных реакций) и способен самостоятельно решить экзаменационную задачу.		
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки. Студент хорошо владеет теоретическим материалом, знает базовые синтетические методы и имеет представление о механизмах основных синтетически важных реакций, способен справиться с экзаменационной задачей при незначительной помощи со стороны преподавателя.		
Пороговый уровень «3» (удовлетворите льно)	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы. Студент знает базовые синтетические методы, однако плохо разбирается в специфических методах и механизмах основных реакций, с трудом справляется с экзаменационной задачей при существенной помощи со стороны преподавателя.		
Минимальный уровень «2» (неудовлетвори тельно)	оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы. Студент не способен решить экзаменационную задачу даже с помощью преподавателя и плохо владеет теоретическим материалом (наблюдаются существенные ошибки при обсуждении базовых синтетических методов).		

Оценивание тестирования

Организация тестирования: студентам группы предлагаются одинаковые задания, относящиеся к различным объектам. Каждому варианту соответствует свой ответ в виде числа, формулы или кратких терминов. Ответ возникает в результате определенной

мыслительной операции, анализа имеющейся информации, выполнения несложных расчетов. Ответы являются конструируемыми. По результатам проверки рассчитывается коэффициент успешности как отношение числа правильных ответов к общему числу ответов (выражается в процентах).

Шкала перевода значений коэффициента успешности в традиционную оценку:

```
91 – 100 % - «отлично»
```

74 – 90 % - «хорошо»

61 - 73 % - «удовлетворительно»

0 - 60 % - «неудовлетворительно»

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1 Учебная литература:

- 1. Рыжкова Н.А., Биологическая химия. Лабораторный практикум / Н.А. Рыжкова// Краснодар: Изд-во КубГУ 2014. 57 с.
- 2. Нельсон Д. Основы биохимии Ленинджера/ Д. Нельсон, М. Кокс// М.: Лаборатория знаний. 2017. 694 с.
- 3. Куратова А.К. Введение в химию природных соединений аминокислоты, углеводы, нуклеиновые кислоты [Электронный ресурс]/А.К. Куратова, Г.П. Сагитулина//Омск: изд-во Омский госуниверситет 2017. 80 с. Режим доступа: https://e.lanbook.com/book/101818/ Загл. с экрана.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Нельсон Д. Основы биохимии Ленинджера/ Д. Нельсон, М. Кокс// М.: БИНОМ. Лаборатория знаний. 2015.-448 с.
- 2. Гидранович В.И. Биохимия Учебное пособие/ В.И. Гидранович// Минск: ТетраСистем. 2012. 528 с.
- 3. Акбашева О.Е. Биологическая химия [Электронный ресурс]/ О.Е. Акбашева, И.А. Позднякова// Изд-во Сибирского ГМУ. 2016. 220 с. Режим доступа: https://e.lanbook.com/book/105843/ Загл. с экрана.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 9EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 9. Springer Journals https://link.springer.com/
 - 10. Nature Journals https://www.nature.com/siteindex/index.html
 - 11. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
 - 12. Springer Materials http://materials.springer.com/
 - 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;

5. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение дисциплины «Тонкий органический синтез» требует от студентов регулярного посещения лекций, а также активной работы на практических занятиях, выполнения тестовых проверочных работ, выполнения и защиты лабораторных работ, ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал слово в слово.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

При подготовке к практическому занятию рекомендуется:

- 1) ознакомиться с темой и планом занятия, чтобы выяснить круг вопросов, которые будут обсуждаться на занятии;
- 2) поработать с конспектом лекции по теме занятия, а также ознакомиться с рекомендуемой литературой и (при необходимости) дополнительными источниками информации в виде периодических изданий и Интернет-ресурсов.

При выполнении практической работы студентам необходимо отмечать те вопросы и разделы, которые вызывают у них затруднения. с целью последующей консультации у преподавателя. Каждый студент должен стремиться активно работать на практических занятиях и успешно выполнять тестовые проверочные работы.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов,

выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса. По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал и лабораторных работ. Важнейшим этапом курса является самостоятельная работа студента.

Работа с конспектом лекций

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

На занятии получите у преподавателя график выполнения лабораторных работ. Обзаведитесь всем необходимым методическим обеспечением.

Перед посещением лаборатории изучите теорию вопроса, предполагаемого к исследованию, ознакомьтесь с руководством по соответствующей работе и подготовьте протокол проведения работы, в который занесите:

- название работы;
- заготовки таблиц для заполнения экспериментальными данными наблюдений;
- уравнения химических реакций превращений, которые будут осуществлены при выполнении эксперимента;
- расчетные формулы.

Оформление отчетов должно проводиться после окончания работы в лаборатории.

Для подготовки к защите отчета следует проанализировать экспериментальные результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы, приводимые в методических указаниях к выполнению лабораторных работ.

При подготовке к практическому занятию рекомендуется:

- 1) ознакомиться с темой и планом занятия, чтобы выяснить круг вопросов, которые будут обсуждаться на занятии;
- 2) поработать с конспектом лекции по теме занятия, а также ознакомиться с рекомендуемой литературой и (при необходимости) дополнительными источниками информации в виде периодических изданий и Интернет-ресурсов.

При выполнении практической работы студентам необходимо отмечать те вопросы и разделы, которые вызывают у них затруднения. с целью последующей консультации у преподавателя. Каждый студент должен стремиться активно работать на практических занятиях и успешно выполнять тестовые проверочные работы.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа - это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных помещений	Оснащенность специальных помещений	Перечень лицензионного программного обеспечения
Учебные аудитории для проведения занятий лекционного типа	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows; Microsoft Office
Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер	Microsoft Windows; Microsoft Office
Учебные аудитории для проведения лабораторных работ. Лаборатория органической химии (ауд. 423C)	Мебель: учебная мебель Технические средства обучения: переносное мультимедийное оборудование (ноутбук, проектор) Оборудование: специализированная лабораторная мебель (столы, стулья, шкафы для реактивов и оборудования, вытяжные шкафы), средства пожарной безопасности и оказания первой медицинской помощи, химическая посуда и оборудование, весы лабораторные электронные А&D EK-410i, электроплитки	Microsoft Windows; Microsoft Office

	 10 шт., сушильный шкаф, мешалки механические – 8 шт., мешалки магнитные IKA HS 7 – 8 шт., рефрактометр ИРФ-454 Б2М, приборы для определения температуры плавления ПТП – 8 шт., химические реактивы.
Учебные аудитории для курсового проектирования (выполнения курсовых работ)	Курсовая работа не предусмотрена учебным планом.

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучающихся	Оснащенность помещений для самостоятельной работы обучающихся	Перечень лицензионного программного обеспечения
Помещение для самостоятельной работы обучающихся (читальный зал Научной библиотеки)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно- коммуникационной сети «Интернет» и доступом в электронную информационно- образовательной организации, веб-камеры, коммуникационное оборудование, обеспечивающее доступ к сети интернет (проводное соединение и беспроводное соединение по технологии Wi-Fi)	Microsoft Windows; Microsoft Office
Помещение для самостоятельной работы обучающихся (ауд. 423C)	Мебель: учебная мебель Комплект специализированной мебели: компьютерные столы Оборудование: компьютерная техника с подключением к информационно- коммуникационной сети «Интернет» и доступом в электронную информационно-	Microsoft Windows; Microsoft Office

образовательную среду	
образовательной организации,	
веб-камеры,	
коммуникационное	
оборудование,	
обеспечивающее доступ к	
сети интернет (проводное	
соединение и беспроводное	
соединение по технологии	
Wi-Fi)	