МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет химии и высоких технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.В.ДВ.03.01 ЭЛЕКТРОХИМИЧЕСКАЯ ЭНЕРГЕТИКА

Направление подготовки	04.03.01 Химия
Направленность (профиль)	физическая химия
Форма обучения	очная
Квалификация выпускника	бакалавр

Рабочая программа дисциплины «Электрохимическая энергетика» разработана в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 Химия (уровень бакалавриата).

Рабочую программу составили:

С.А. Шкирская, доцент кафедры физической химии, д-р хим. наук

Allmer

Рабочая программа дисциплины утверждена на заседании кафедры физической химии протокол № 11 от «20» мая 2021 г. Заведующий кафедрой физической химии д -р хим. наук, профессор Заболоцкий В.И.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 7 от «24» мая 2021 г. Председатель УМК факультета Беспалов А.В.

- -

Эксперты:

Петров Н.Н., канд. хим. наук, генеральный директор ООО "Интеллектуальные композиционные решения"

Цюпко Т.Г. д-р хим. наук, проф., профессор кафедры аналитической химии ФГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения лисциплины

Цель освоения дисциплины «Электрохимическая энергетика» состоит в формировании у студентов знаний об основных видах электрохимических источников тока и процессах, протекающих в электрохимических накопителях энергии, включая топливные элементы

1.2 Задачи дисциплины

В задачи учебной дисциплины «Электрохимическая энергетика» входит:

- ознакомить с основными видами электрохимических источников тока и с основными конструкционными частями ячейки топливного элемента;
- овладеть знанием процессов, протекающих при работе топливных элементов, электрохимических генераторов;
- научить проведению электрохимических измерений в электрохимических источниках тока с использованием современных технических средств.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Электрохимическая энергетика» относится к части, формируемой участниками образовательных отношений Блока 1 "Дисциплины (модули)" рабочего учебного плана программы бакалавриата профиль «Физическая химия» по направлению подготовки 04.03.01 Химия. В рамках данной дисциплины у студентов формируют знания, умения и навыки, которые будут закреплены в ходе прохождения производственной практики, что обеспечит формирование компетенций, необходимых для успешной научно-исследовательской деятельности выпускников. В соответствии с рабочим учебным планом дисциплина изучается на 4 курсе. Вид промежуточной аттестации: зачет.

1.4 Требования к результатам освоения содержания дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора*	Результаты обучения по дисциплине
ПК-5 способен осуществлять поиск и первичну по предложенной теме	обработку научной и научно-технической информации
ИПК-5.1. Осуществляет поиск научной и научно-технической информации по предложенной теме ИПК-5.2. Осуществляет выбор и обра-	Знает электронные ресурсы и базы данных научной информации Умеет осуществлять поиск и первичную обработку научной и научно-технической информации в области электрохимической энергетики
ботку научной и научно-технической информации по предложенной теме	Владеет навыками поиска научной и научно-техниче- ской информации в области электрохимической энерге- тики, включая международные базы данных

Результаты обучения дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108 часов), их распределение по видам работ представлено в таблице.

Вид учебн	ной работы	Всего часов	Семестры (часы)
			3
Контактная работа, в том	числе:		
Аудиторные занятия (всего	0):	60	60
занятия лекционного типа		20	20
лабораторные занятия		40	40
практические занятия		-	-
семинарские занятия			
Иная контактная работа:			
Контроль самостоятельной работы (КСР)		4	4
Промежуточная аттестация (ИКР)		0,2	0,2
Самостоятельная работа, в	в том числе:	43,8	43,8
Оформление лабораторных работ		23,8	23,8
Самостоятельное изучение теоретического материала		20	20
Подготовка к текущему контро	лю		
Контроль:		-	-
Подготовка к экзамену		-	-
Общая трудоемкость	час.	108	108
	в том числе контактная работа	64,2	64,2
	зач. ед	3	3

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 8 семестре 4 курса (очная форма обучения)

	Наименование разделов (тем)		Количество часов			
№		Всего	Аудиторная работа		Внеауди- торная работа	
			Л	П3	ЛР	CPC
1.	От Вольтова столба к топливным элементам. Основные виды химических источников тока. Общие понятия об электрохимических генераторах, их классификация	34	8	-	16	10
2.	Ионные проводники и их электрохимические характеристики	22	4	-	8	10
3.	Термодинамика и кинетика электрохимических процессов в электрохимических генераторах	22	4	-	8	10
4.	Требования, предъявляемые к основным конструкционным частям ячейки топливного элемента	22	4	-	8	10
	ИТОГО по разделам дисциплины	100	20	-	40	40
	Контроль самостоятельной работы (КСР)	4				
	Промежуточная аттестация (ИКР)	0,2	-			
	Подготовка к текущему контролю	3,8				3,8
	Общая трудоемкость по дисциплине	108	20	-	40	43,8

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела (темы)	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Введение. От Вольтова столба к топливным элементам. Общие понятия об электрохимических генераторах, их классификация	Введение. История открытия и развития науки об электричестве. Общие понятия об электрохимических генераторах, их классификация	Устный опрос, ЛР1
2.	Ионные проводники и их электрохимические характеристики	Ионные проводники и их электрохимические характеристики	Самостоятельная работа, ЛР2
3.	Термодинамика и кинетика электрохимических процессов в электрохимических генераторах	Термодинамика и кинетика электрохимических процессов в электрохимических генераторах	Самостоятельная работа, ЛР3
4.	Требования, предъявляемые к основным конструкционным частям ячейки топливного элемента	Требования, предъявляемые к основным конструкционным частям ячейки топливного элемента	Устный опрос, ЛР4, ЛР5

2.3.2 Занятия семинарского типа (практические / семинарские занятия/ лабо-

раторные работы)

No	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
	Введение. От Вольтова столба к топливным элементам. Общие понятия об электрохимических генераторах, их классификация	Химические источники тока. Измерение электродных потенциалов гальванических элементов	ЛР1
2.	Ионные проводники и их электрохимические характеристики	Определение протонной проводимости ионообменной мембраны на основании измерения сопротивления мембранно-электродного блока	ЛР2
3.	Термодинамика и кинетика электрохимических процессов в электрохимических генераторах	Определение изменений термодинамических параметров гальванического элемента	ЛР3
4.	Требования, предъявляемые к основным конструкционным частям ячейки	Измерение электрохимических характери-	ЛР4

	топливного элемента	стик мембранно-электродного блока топливного элемента с протонпроводящей	
		мембраной	
5.	Требования, предъявляемые к основным конструкционным частям ячейки топливного элемента	Изучение основных конструкционных частей ячейки топливного элемента и процессов, протекающих в ТЭ	ЛР5

Защита лабораторной работы (ЛР), контрольная работа (КР).

2.3.3 Примерная тематика курсовых работ

Курсовая работа не предусмотрена учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Оформление лабораторных работ	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
2.	Подготовка к устному опросу	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с. 2. Мембранная электрохимия / Н. А. Кононенко, О. А. Демина, Н. В. Лоза, И.В. Фалина, С.А. Шкирская. Краснодар: Кубанский гос. ун-т, 2017 290 с.
		3. Современные химические источники тока [Электронный ресурс]: учеб. пособие / О. А. Козадеров, А. В. Введенский 2-е изд., стер Санкт-Петербург: Лань, 2017 132 с https://e.lanbook.com/book/90858.
3.	Подготовка к самостоя- тельной работе	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с. 2. Мембранная электрохимия / Н. А. Кононенко, О. А. Демина, Н. В. Лоза, И.В. Фалина, С.А. Шкирская. Краснодар: Кубанский гос. ун-т, 2017 290 с. 3. Современные химические источники тока [Электронный ресурс]:
		учеб. пособие / О. А. Козадеров, А. В. Введенский 2-е изд., стер Санкт- Петербург: Лань, 2017 132 с https://e.lanbook.com/book/90858.
4.	Подготовка к зачету	1. Методические рекомендации к организации аудиторной и внеаудиторной (самостоятельной) работы студентов: методические указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с. 2. Мембранная электрохимия / Н. А. Кононенко, О. А. Демина, Н. В. Лоза, И.В. Фалина, С.А. Шкирская. Краснодар: Кубанский гос. ун-т, 2017 290 с. 3. Современные химические источники тока [Электронный ресурс]: учеб. пособие / О. А. Козадеров, А. В. Введенский 2-е изд., стер Санкт-Петербург: Лань, 2017 132 с https://e.lanbook.com/book/90858.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе изучения дисциплины предусмотрено использование технологий проблемного обучения, выполнение студентами лабораторных работ в малых группах, самостоятельная работа студентов.

Компетентностный подход в рамках преподавания дисциплины реализуется в использовании интерактивных технологий и активных методов (проблемная лекция, работа в малых группах) в сочетании с внеаудиторной работой.

Информационные технологии, применяемые при изучении дисциплины: использование информационных ресурсов, доступных в информационно-телекоммуникационной сети Интернет.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Электрохимическая энергетика».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме вопросов для устного опроса, тестовых работ, контрольных работ, контрольных вопросов к лабораторным работам, и **промежуточной аттестации** в форме вопросов к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

№	Код и наименование ин-	Decree many a ferrouse	Наименование оценочн	ого средства
п/п	дикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
	ИПК-5.1. Осуществ-	Знает электронные ре-	Лабораторная работа	Вопросы для
	ляет поиск научной	сурсы и базы данных	Устный опрос	подготовки к
	и научно-техниче-	научной информации		зачету № 1-4,
1	ской информации по			9-13, 14
	предложенной теме	Умеет осуществлять по-	Лабораторная работа	Вопросы для
	1 * ' '	иск и первичную обра-	Самостоятельная работа	подготовки к
	ИПК-5.2. Осуществ-	ботку научной и научно-		зачету № 7, 8
		технической информа-		

ляет выбор и обработку научной и	ции в области электрохимической энергетики		
научно-технической информации по предложенной теме	Владеет навыками по- иска научной и научно- технической информа- ции в области электрохи- мической энергетики, включая международные базы данных	Лабораторная работа Самостоятельная работа Устный опрос	Вопросы для подготовки к зачету № 3, 5, 6, 15

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Вопросы к устному опросу по теме 1 «От Вольтова столба к топливным элементам. Общие понятия об электрохимических генераторах, их классификация»

- 1. Классификация химических источников тока по принципу работы.
- 2. Примеры электрохимических систем и токообразующие процессы каждой группы химических источников тока.
- 3. Классификация XИТ по активному веществу отрицательного (положительного) электрода. Примеры электрохимических систем и токообразующие процессы каждой группы XИТ.
- 4. Отличаются ли разрядные реакции на отрицательных (положительных) электродах в каждой группе источников тока?
- 5. Классификация электрохимических источников тока по типу используемого электролита. Примеры электрохимических систем и токообразующие процессы каждой группы источников тока.
- 6. Электроды химических источников тока. Назначение добавок, вводимых в электрод.
- 7. Характеристика окислителей и восстановителей, используемых в источниках тока, их основные показатели.
- 8. Требования, предъявляемые к электролитам, используемых в источниках тока. Виды электролитов.

Вопросы к устному опросу по теме 4 «Требования, предъявляемые к основным конструкционным частям ячейки топливного элемента»

- 1. Требования, предъявляемые к электролиту в твёрдополимерном кислородно-водородном топливном элементе.
- 2. Требования, предъявляемые к биполярным пластинам в твёрдополимерном кислородно-водородном топливном элементе.
- 3. Требования, предъявляемые к электродам в твёрдополимерном кислородно-водородном топливном элементе.
- 4. Требования, предъявляемые к мембране в твёрдополимерном кислородно-водородном топливном элементе.
- 5. Типы газовых каналов на биполярных пластинах
- 6. Требования, предъявляемые к каталитическому слою в твёрдополимерном кислородно-водородном топливном элементе.
- 7. Для чего используют мембраны, модифицированные наночастицами платины в низкотемпературном твёрдополимерном топливном элементе?

- 8. Требования, предъявляемые к топливу в твёрдополимерном кислородно-водородном топливном элементе.
- 9. Что означают проблемы "водного менеджмента" в твёрдополимерном кислородноводородном топливном элементе?

Самостоятельная работа по теме 2 «Ионные проводники и их электрохимические характеристики»

Вариант 1

- 1. Требования, предъявляемые к электролиту в твёрдополимерном кислородно-водородном топливном элементе.
- 2. Записать схему концентрационного гальванического элемента (металл цинк), записать уравнения катодного и анодного процессов, рассчитать ЭДС при концентрациях катионов цинка 0,1 моль/л и 0,2 моль/л соответственно.

Самостоятельная работа по теме 3 «Термодинамика электрохимических процессов в электрохимических генераторах»

Вариант 1

1. Составьте схему гальванического элемента из магния и свинца, погруженных в растворы их солей с концентрацией ионов:

 $[Mg^{2+}] = 0,001$ моль/л, $[Pb^{2+}] = 1$ моль/л. Напишите уравнения реакций, протекающих на катоде и аноде. Рассчитайте стандартную ЭДС этого элемента.

- 2. На основании стандартных электродных потенциалов определите, какой из следующих гальванических элементов имеет наибольшую ЭДС:
- a) $Zn|Zn^{2+}||Ni^{2+}|Ni;$
- б) Cd|Cd²⁺|| Ni²⁺|Ni
- 3. Вычислите значение э.д.с. гальванического элемента:
- (-) Mg / MgSO₄ // CuSO₄ / Cu (+)

Напишите процессы на аноде и катоде, реакцию, генерирующую ток, и определите в кДж энергию химической реакции, превращающуюся в электрическую.

Контрольные вопросы к лабораторным работам

Лабораторная работа №1

- 1. Что такое химические источники тока?
- 2. Назовите виды химических источников тока.
- 3. Что такое аккумуляторы?
- 4. Назовите разновидности аккумуляторов
- 5. Опишите методикау измерения электродных потенциалов гальванических элементов

Лабораторная работа №2

- 1. Каковы основные составляющие мембранно-электродного блока?
- 2. Какие мембраны используют в топливных элементах?
- 3. Требования, предъявляемые к электролиту в твёрдополимерном кислородно-водородном топливном элементе.
- 4. Требования, предъявляемые к мембране в твёрдополимерном кислородно-водородном топливном элементе.
- 5. Для чего используют мембраны, модифицированные наночастицами платины в низкотемпературном твёрдополимерном топливном элементе?

Лабораторная работа №3

- 1. Примеры электрохимических систем и токообразующие процессы каждой группы химических источников тока.
- 2. Классификация XИТ по активному веществу отрицательного (положительного) электрода. Примеры электрохимических систем и токообразующие процессы каждой группы XИТ.
- 3. Отличаются ли разрядные реакции на отрицательных (положительных) электродах в каждой группе источников тока?

Лабораторная работа №4-5

- 1. Требования, предъявляемые к биполярным пластинам в твёрдополимерном кислородноводородном топливном элементе.
- 2. Требования, предъявляемые к электродам в твёрдополимерном кислородно-водородном топливном элементе.
- 3. Требования, предъявляемые к мембране в твёрдополимерном кислородно-водородном топливном элементе.
- 4. Типы газовых каналов на биполярных пластинах
- 5. Требования, предъявляемые к каталитическому слою в твёрдополимерном кислородноводородном топливном элементе.
- 6. Для чего используют мембраны, модифицированные наночастицами платины в низкотемпературном твёрдополимерном топливном элементе?
- 7. Требования, предъявляемые к топливу в твёрдополимерном кислородно-водородном топливном элементе.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет) Список вопросов для подготовки к зачету

- 1. Классификация электрохимических генераторов
- 2. Основные электрохимические процессы в топливных элементах.
- 3. Термодинамика электрохимических генераторов. Равновесные процессы, расчет ЭДС и энтропии.
- 4. Электрические характеристики электрохимических генераторов.
- 5. Электрохимическая кинетика и электрокатализ.
- 6. Макрокинетика в пористых электродах. Диффузионная поляризация.
- 7. Топливные элементы с ион-полимерными мембранами. Электрическая проводимость и диффузионная проницаемость ион-полимерных и гибридных мембран.
- 8. Вольтамперные характеристики и числа переноса ионных проводников. Особенности переноса ионов и воды в электрохимических генераторах с твердым электролитом.
- 9. Тепловые процессы в электрохимических генераторах тока.
- 10. Кислородно-водородные топливные элементы.
- 11. Топливные элементы с основным и кислотным электролитом.
- 12. Металлоксидные электрохимические генераторы.
- 13. Биохимические топливные элементы и другие альтернативные электрохимические генераторы
- 14. Системы питания реагентами и удаление воды в электрохимических генераторах.
- 15. Электролиз воды и электрохимическая конверсия топлива.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

- оценка «зачтено»: студент владеет теоретическими знаниями по данному разделу,

знает классификацию химических источников тока по различным признакам, методы исследования разрядных кривых топливных элементов, физико-химические особенности мембран для ТЭ, знает требования, предъявляемые к основным конструкционным частям ячейки топливного элемента. Студент допускает незначительные ошибки; студент умеет правильно объяснять экспериментальные данные с применением теоретических представлений.

- оценка «не зачтено»: материал не усвоен или усвоен частично, студент не знает способы получения и области применения ионполимеров, затрудняется в описании их физико-химических свойств, затрудняется перечислить методы исследования структуры ионполимеров.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Учебная литература:

- 1. Мембранная электрохимия / Н. А. Кононенко, О. А. Демина, Н. В. Лоза, И.В. Фалина, С.А. Шкирская. Краснодар: Кубанский гос. ун-т, 2017. 290 с.
- 2. Современные химические источники тока [Электронный ресурс] : учеб. пособие / О. А. Козадеров, А. В. Введенский. 2-е изд., стер. Санкт-Петербург : Лань, 2017. 132 с. https://e.lanbook.com/book/90858.
- 3. Современные электрохимические источники тока / Е. А. Нижниковский. Москва : Радиотехника, 2015. 294 с.

5.2. Периодическая литература

1. Успехи химии - российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.

- 2. Мембраны и мембранные технологии российский научный журнал, публикующий статьи по основным проблемам получения и исследования мембран и развития важнейших направлений мембранных технологий, в том числе и водоподготовки.
- 3. Журнал физической химии один из крупнейших российских научных журналов, отражающих основные направления развития химии, публикующий работы, посвящённые актуальным общим вопросам химии и проблемам, возникающим на стыке различных разделов химии.

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 9. Springer Journals https://link.springer.com/
 - 10. Nature Journals https://www.nature.com/siteindex/index.html
 - 11. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
 - 12. Springer Materials http://materials.springer.com/
 - 13. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля) Успешное освоение дисциплины «Электрохимическая энергетика» предполагает

активное, творческое участие студента путем планомерной, повседневной работы.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал дословно.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

Выполнение лабораторных работ

Лабораторные работы выполняются обучающимися в малых группах (обычно 2-3 человека). В начале курса проводится инструктаж по технике безопасности работы в химической лаборатории и составляется график выполнения лабораторных работ. Выполнение лабораторной работы включает в себя следующие этапы:

- 1) подготовительный этап (самостоятельная работа студентов);
- 2) получение допуска к выполнению экспериментальной части лабораторной работы (контактная работа с преподавателем каждой малой группы);
- 3) выполнение экспериментальной части лабораторной работы под контролем преподавателя;
- 4) анализ полученных результатов, формулировка вывода и подготовка к защите лабораторной работы (может выполняться как самостоятельная работа студента дома, или под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем);
 - 5) защита лабораторной работы (контактная работа с преподавателем).

После выполнения всех этих этапов лабораторная работа считается выполненной.

Подготовительный этап

Перед занятием обучающимся необходимо подготовится к выполнению лабораторной работы. Теоретическая подготовка необходима для проведения эксперимента и должна проводиться обучающимися в порядке самостоятельной работы. Ее следует начинать внимательным разбором руководства к лабораторной работе. Теоретическая подготовка завершается предварительным составлением отчета в лабораторном журнале со следующим порядком записей:

Название работы.

Цель работы.

Оборудование.

Ход работы, который в том числе включает рисунки, схемы, таблицы, основные формулы для определения величин, а также расчетные формулы для определения погрешностей измеряемых величин.

Получение допуска к выполнению экспериментальной части лабораторной работы

Приступая к лабораторным работам, необходимо получить у лаборанта приборы, требуемые для выполнения работы. Разобраться в назначении материалов, химической посуды, приборов и принадлежностей в соответствии с их техническими данными. Получить допуск к выполнению лабораторной работы у преподавателя. Допуск студенты получают в результате устного опроса преподавателем о порядке выполнения эксперимента, предусмотренного данной лабораторной работой.

Выполнение экспериментальной части лабораторной работы под контролем преподавателя

Затем обучающиеся выполняют экспериментальный этап лабораторной работы, в ходе которого записываются все измеренные величины с обязательным указанием их размерности в лабораторный журнал. Не допускается использование черновиков для записи экспериментальных данных, запись карандашом и иные способы, дающие возможность корректировки полученных результатов. В случае, если в методических указаниях к лабораторной работе предложены таблицы или шаблон для записи экспериментальных данных, то заполняются эти таблицы или шаблон. В ином случае запись экспериментальных данных делается студентом в произвольной форме.

По окончании выполнения эксперимента студенты должны привести свое рабочее место в порядок и вымыть используемую химическую посуду. После этого рабочее место сдается преподавателю или лаборанту и в лабораторный журнал студента ставится отметка о выполнении экспериментальной части лабораторной работы с обязательным указанием даты ее выполнения.

Анализ полученных результатов и формулировка выводов

Может выполняться как самостоятельная работа студента дома, или под контролем преподавателя в течение времени, выделенного на лабораторные работы или в ходе иной контактной работы с преподавателем. Студенты должны выполнить все необходимые расчеты согласно методическим указаниям к выполнению лабораторных работ. В лабораторном журнале приводятся все необходимые расчеты с указанием размерностей полученных величин, а также все графики и рисунки в соответствии с требования лабораторного практикума.

В случае, если в ходе лабораторной работы имеет место протекание химических реакций, все они должны быть записаны в лабораторном журнале в молекулярном, полном ионном и сокращенном ионном виде.

Далее на основании полученных результатов студенты должны сформулировать и записать вывод, который должен быть согласован с заявленными целями и/или задачами лабораторной работы. Вывод должен содержать необходимую количественную информацию

При подготовке к защите лабораторной работы необходимо ответить на предложенные контрольные вопросы, которые имеются после каждой лабораторной работы. Особое внимание в ходе теоретической подготовки должно быть обращено на понимание физической сущности процесса(ов) излучающихся в ходе работы. Для самоконтроля в каждой работе приведены контрольные вопросы, на которые обучающийся обязан дать четкие, правильные ответы.

Защита лабораторной работы

Защита лабораторных работ происходит в виде собеседования с преподавателем по лабораторной работе с обязательной проверкой преподавателем лабораторного журнала студента. Для успешной защиты лабораторной работы студент должен предоставить лабораторный журнал, оформленный в соответствии с установленными требованиями, включая наличие отметки о выполнении экспериментальной части работы. В ходе устной беседы с преподавателем студент должен продемонстрировать знание целей и задач выполненной

работы, законов, которые лежат в основе наблюдаемых в ходе работы явлений, продемонстрировать умение анализировать полученную информацию и делать на ее основе выводы. В этом случае в лабораторном журнале на соответствующей работе ставится пометка «зачтено», роспись преподавателя, принявшего работу, и дата защиты работы. После этого лабораторная работа считается выполненной. Допускается защита лабораторных работ индивидуально или в составе малых групп обучающихся, совместно выполнявших данную работу.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа — это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала. Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Для проведения лекционных занятий используется мультимедийный проектор и ноутбук. Лабораторные занятия проводятся в химической лаборатории, снабженной как общелабораторным (химическая посуда, реактивы), так и специализированным оборудованием, необходимым для проведения отдельной лабораторной работы.

Наименование специальных по-	Оснащенность специальных по-	Перечень лицензионного про-
мещений	мещений	граммного обеспечения
Учебные аудитории для проведе-	Мебель: учебная мебель	Microsoft Windows;
ния занятий лекционного типа	Технические средства обучения:	Microsoft Office
	экран, проектор, компьютер	
Учебные аудитории для проведе-	Мебель: учебная мебель	Microsoft Windows;
ния групповых и индивидуальных	Технические средства обучения:	Microsoft Office
консультаций, текущего контроля	экран, проектор, компьютер	
и промежуточной аттестации		
Учебные аудитории для проведе-	Мебель: учебная мебель	Microsoft Windows;
ния лабораторных работ (ауд.	Технические средства обучения:	Microsoft Office
345С и 139С)	переносное мультимедийное обо-	
	рудование (ноутбук, проектор)	
	Оборудование: специализирован-	
	ная лабораторная мебель (столы,	
	стулья, шкафы для реактивов и	
	оборудования, вытяжные	
	шкафы), средства пожарной без-	
	опасности и оказания первой ме-	
	дицинской помощи, химическая	
	посуда и оборудование, сушиль-	
	ный шкаф, потенциостат	
	AUTOLAB PGSTAT302 – 1 шт,	
	генератор водорода лаборатор-	
	ный – 1 шт, ванна ультразвуковая	
	лабораторная– 1 шт, ячейка для	

испытания мембранно-электродных блоков – 1 шт, весы лабораторные – 1 шт, весы аналитиче-	
ские – 2 шт, термостат воздушный – 1 шт, ПК-3 шт., химические реактивы.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для	Оснащенность помещений для	Перечень лицензионного про-
самостоятельной работы обучаю-	самостоятельной работы обучаю-	граммного обеспечения
щихся	щихся	_
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows;
работы обучающихся (читальный	Комплект специализированной	Microsoft Office
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к инфор-	
	мационно-коммуникационной	
	сети «Интернет» и доступом в	
	электронную информационно-об-	
	разовательную среду образова-	
	тельной организации, веб-ка-	
	меры, коммуникационное обору-	
	дование, обеспечивающее доступ	
	к сети интернет (проводное со-	
	единение и беспроводное соеди-	
П	нение по технологии Wi-Fi)	M' C XX' 1
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows;
работы обучающихся (400с,	Комплект специализированной	Microsoft Office
401c, 431c, 329c)	мебели: компьютерные столы Оборудование: компьютерная	
	Оборудование: компьютерная техника с подключением к инфор-	
	мационно-коммуникационной	
	сети «Интернет» и доступом в	
	электронную информационно-об-	
	разовательную среду образова-	
	тельной организации, веб-ка-	
	меры, коммуникационное обору-	
	дование, обеспечивающее доступ	
	к сети интернет (проводное со-	
	единение и беспроводное соеди-	
	нение по технологии Wi-Fi)	