Аннотация

дисциплины Б1.В.ДВ.2.2 «КВАЗИКОНФОРМНЫЕ ОТОБРАЖЕНИЯ. СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ»

для направления подготовки 01.06.01 Математика и механика профиль подготовки: 01.01.01 Вещественный комплексный и функциональный анализ

Объем трудоемкости: 3 зач.ед. (108 ч., из них - 44 ч. аудиторной нагрузки: лекционных 8 ч., практических 18 ч., лабораторных 18 ч.; 64 ч. самостоятельной работы).

Цель освоения дисциплины: освоение геометрических и аналитических методов исследования плоских квазиконформных отображений.

Задачи дисциплины:

- формирование знания о характеристиках геометрической природы C^1 квазиконформных отображений, как естественного обобщения квазиконформных отображений; понимания природы 1-квазиконформных отображений;
- сформировать знания о пространстве функций с обобщенными производными, соболевских пространствах и теоремах вложения для них;
- сформировать знания о квазиконформных отображениях римановых поверхностей,
- сформировать знания о неоднолистных отображениях, осуществляемых решениями нелинейных систем.

Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Квазиконформные отображения. Современное состояние теории» относится к вариативной части Блока 1 «Дисциплины (модули)» учебного плана.

Программа рассчитана на аспирантов, прослушавших курс «приложения теории римановых поверхностей и нелинейных уравнений математической физики», а также математического анализа, включающий дифференциальное и интегральное исчисление, и курсы линейной алгебры.

Знания, полученные в этом курсе, необходимы для проведения научно-исследовательской работы и успешной сдачи государственной итоговой аттестации.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций (ПК):

	Индекс	Содержание	ние В результате изучения учебной дисциплины обучающиеся должны					
No	компет	компетенци						
П.П.	енции	и (или её знать		уметь	владеть			
		части)						
1.	ПК-2	Готовность	- характеристики	- вычислять различные геометрические	- навы-			
		к пос-	с- геометрической характеристики С1 -отображений w,		ками			
		тановке	природы С1 –	природы C1 – определяемые их частными				
		профес-	квазиконформных	производными w_z ;	зования			
		сиональных	отображений, как	- оценивать их значения, устанавливать	теории			
		задач в	естественного	свойство k- квазиконформности (и его от-	экстре-			
		области	обобщения квази-	сутствие; находить характеристики обра-	маль-			
		научно-	конформных	тных отображений);	ных			
		исследова-	отображений;	- формулировать общую задачу Гретша,	длин и			
		тельской и	понимания	сводить ее к задаче Гретша для прямоу-	модулей			
		практи-	природы 1-квази-	гольников, находить ее решение как в	ce-			
		ческой	конформных	классе С1 – отображений, так и отобра-	мейств			

	Индекс	Содержание					
№ п.п.	компет	компетенци и (или её	знать	уметь	владеть		
		части) деятель-	отображений;	жений с обобщенными производными.	кривых		
		ности,	-	- использовать теорию экстремальных	к ис-		
		подбору,	квазиконформные	длин и модулей для исследования k- ква-	следо-		
		развитию и	отображения, как	зиконформных отображений, уметь вы-	ванию		
		совер-	об отображениях, наименее	числять искажение модулей, устанавли- вать связи между локальными и глобаль-	k- ква- зикон-		
		вованию	уклоняющихся от	ными свойствами k- квазиконформности,	форм-		
		методов их	конформных	уметь находить экстремальные отображе-	форм НЫХ		
		решения на	отображений при	ния в классе k- квазиконформных отобра-	отобра-		
		базе сов-	отображениях	жений;	жений.		
		ременных	четы-	- уметь вычислять обобщенные произ-			
		достижений в области	рехсторонников;	водные функций;			
		в ооласти веществен-	- знания о пространстве	- устанавливать связь между наличием об- общенной производной и абсолютной			
		ного, комп-	функций с	непрерывностью функции на линиях;			
		лексного и	обобщенными	- устанавливать с помощью теорем вло-			
		функцио-	производными,	жения свойства функций, обладающих			
		нального	соболевских	обобщенными производными;			
		анализа	пространствах и	- уметь устанавливать связь между			
			теоремах	аналитическими и геометрическими свойствами k – квазиконформных отобра-			
			вложения для них; - об	жений; между различными определе-			
			эквивалентности	ниями k – квазиконформности;			
			аналитического и	- использовать различные формы фор-			
			геометрического	мулы Грина для получения интегральных			
			подходов при	представлений функций, обладающих			
			исследовании к-	обобщенными производными и ис- следовать получающиеся при этом по-			
			квазиконформных отображений;	тенциальные операторы для исследова-			
			- о потенциальных	ния их свойств в зависимости от свойств			
			операторах И. Н.	обобщенных производных;			
			Векуа и об их	- редуцировать задачу об оценивании син-			
			связи с общими	гулярного интеграла к несобственному			
			потенциальными операторами, их	интегралу и стандартному сингулярному; - используя свойства оператора П И.Н.			
			свойствах, как	Векуа, исследовать дифференциальные			
			операторов,	свойства функций представленных с			
			действующих в	помощью потенциального оператора Г			
			пространствах	И.Н. Векуа;			
			интегрируемых	- редуцировать задачу о построении			
			функций; - свойства	отображения с заданной характеристикой к отысканию диффеоморфизма,			
			интегрируемого	являющегося решением уравнения			
			оператора	Бельтрами;			
			Гильберта и	- редуцировать задачу отыскания решения			
			общую теорию	уравнения Бельтрами к линейному урав-			
			Кальдерока- Зигмунда об	нению для сингулярного интегрального оператора (его решения); уметь			
			операторах,	применять принципы неподвижных точек			
			действующих в	к исследованию таких интегральных			
			пространствах	уравнений, их разрешимости;			
			интегрируемых	- используя свойства оператора П, дока-			
			функций, о	зывать единственность нормированных			
			свойствах оператора	решений уравнения Бельтрами; - строить для простых случаев римановы			
			П И. Н. Векуа	поверхности гиперболического типа по			
			потенциального	фуксовой группам, вычислять их род,			
			типа;	исследовать характер покрытия сферы			
			- 0	гипергеометрическими кривыми;			

3.4	Индекс	Содержание					
№ п.п.	компет	компетенци и (или её части)	знать	уметь	владеть		
			квазиконформных отображениях плоскости (полуплоскости, области) на себя, как о решениях уравнения Бельтрами с измеримыми коэффициентами, - об отображениях с неограниченными характеристиками и их свойствах; - о квазиконформных отображениях римановых поверхностей; - о неоднолистных отображениях, осуществляемых решениями нелинейных систем.	- устанавливать связь между непрерывными отображениями плоскости на себя, непрерывными отображениями римановых поверхностей, порожденных фуксовыми группами и гомоморфизмами фуксовых групп; - устанавливать связь между гомотопией непрерывных отображений римановых поверхностей и эквивалентностью гомоморфизмов фундаментальных групп; - устанавливать взаимно-однозначное соответствие между дифференциалами Бельтрами и квазиконформными гомеоморфизмами римановых поверхностей, - доказать теорему о решении уравнения Бельтрами, коэффициенты которого согласованы с фуксовой группой; - строить индуцированный квадратичный дифференциал по отображению Тейхмюллера, определяемого некоторым квадратичным дифференциалом; уметь доказать экстремальные свойства отображения Тейхмюллера и вычислять расстояние Тейхмюллера и вычислять расстояние Тейхмюллера; - строить отображения (N+1) - связных областей на (N+1-k) -листную риманову поверхность, накрывающую единичный круг, с k+1 граничными компонентами; - сводить вопрос о существовании топологического отображения, осуществляемого решением уравнения wz = F(z, w, wz) к нелинейному интегральному уравнению с сингулярным оператором; - уметь применять принципы неподвижных точек к исследованию вопроса о разрешимости нелинейного интегрального уравнения; - уметь конструировать неоднолистные решения нелинейных дифференциальных уравнений в многосвязных областях; - интерпретировать такие решения как гомеоморфизмы на п-мерные многосвязные римановы поверхности.			

Структура дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые на 3 курсе *(очная форма)*

№	Наименование разделов		Количество часов					
			Аудиторная работа			Внеаудит орная работа		
			Л	П3	ЛР	CPC		
1	2	3	4	5	6	7		
1.	Пространства С.Л. Соболева функций с обобщёнными производными.	18	2	2	2	6		

2.	Геометрическое и аналитическое определение квазиконформных отображений.				2	6
3.	Аналитические свойства квазиконформных отображений.	1.0				4
4.	Квазиизометрия и квазисимметрические отображения.	12	2	2	2	4
5.	Интегральные преобразования и разрешимость уравнения Бельтрами.	12		2		4
6.	Голоморфные движения и искажения площади.					4
7.	Пространство Тейхмюллера.	1.4	-	2	2	4
8.	Экстремальные квазиконформные отображения.	14	-	2	2	6
9.	Изоморфизмы пространств Тейхмюллера и их локальная жёсткость.	1.1	-			4
10.	Квазиконформные отображения с заданными граничными соответствиями.	14	-	2	2	6
11.	Квазиконформные отображения поверхностей.		-	2		4
12.	Оценка, интеграл Дирихле для (K,K') квазиконформных отображений.	14	-	2	2	4
13.	Обобщённая оценка Мори и непрерывность по Гёльдеру (K,K') квазиконформных отображений.	14	2	2		4
14.	График с квазиконформным гауссовым отображением.	14		2	2	4
	Итого по дисциплине:	108	8	18	18	64

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

Курсовые работы: не предусмотрены.

Форма проведения аттестации по дисциплине: зачет.

Учебная литература:

- 1. Милнор, Д. Теория Морса / Д. Милнор; пер. с англ. В. И. Арнольд. М.: б.и., 1963. 181 с. (Библиотека сборника "Математика").; то же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=454811.
- 2. Альфорс, Л. Пространства римановых поверхностей и квазиконформные отображения / Л. Альфорс, Л. Берс; пер. с англ. В. А. Зорич, А. А. Кириллов; под ред. Б.В. Шабат, Н.И. Плужниковой. М.: Издательство иностранной литературы, 1961. 175 с.: ил. (Библиотека сборника "Математика").; то же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=450358.