АННОТАЦИЯ дисциплины «Б1.Б.17 Методы математической физики»

Курс 3, Семестр 6, Количество з.е. 5

Цель дисциплины

Учебная дисциплина «Методы математической физики» ставит своей целью изучение математических моделей различных физических явлений. Значительная часть моделей, изучаемых традиционном (классическом) математических В математической физики, сводится к краевым задачам для линейных дифференциальных уравнений в частных производных второго порядка, среди которых особо важны три: волновое уравнение, уравнение теплопроводности и уравнение Лапласа. Первостепенная роль этих (и некоторых других) уравнений, сформулированных еще в XIX веке, объясняется их исключительной универсальностью - трудно найти раздел точного естествознания (теория колебаний, гидродинамика, теория упругости, электродинамика, физические акустика и оптика и др.), в котором бы они не применялись. Поэтому краевые задачи для этих уравнений относят к базовым задачам математической физики.

Сложные физические процессы описываются математическими моделями, являющимися, как правило, объединением нескольких базовых задач. Уравнения гиперболического, параболического и эллиптического типов, составляющие основу данного курса "Методов математической физики" являются как раз примерами базовых задач.

Задачи дисциплины — изучение (математическая постановка задачи, проблема существования и единственности решения, типичные аналитические методы исследования, отыскание общих и частных решений задач) и практическое освоение методов решения базовых задач математической физики на примере уравнений гиперболического, параболического и эллиптического типов.

Место дисциплины в структуре ООП ВО

Учебная дисциплина «**Методы математической физики**» входит в базовую часть цикла общепрофессиональных дисциплин базового учебного плана по направлению подготовки бакалавриата 03.03.03 Радиофизика.

Для успешного изучения дисциплины необходимо знание основ линейной алгебры, математического анализа, векторного и тензорного анализ, теории обыкновенных дифференциальных уравнений и теории функций комплексной переменной в объеме курсов университета.

Требования к уровню освоения дисциплины

№	Индекс	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны			
П.П.		(или её части)	знать	уметь	владеть	

1.	ОПК-1	способностью к овладению базовыми знаниями в области математики и естественных наук, их	классификацию уравнений в частных производных второго порядка, вид базовых уравнений всех типов и их	правильно поставить краевую задачу для уравнения данного типа и владеть основными методами	навыками исследования математических моделей физических явлений, являющихся краевыми	
№ п.п.	Индекс	Содержание компетенции (или её части)	В результате изучения учебной дисциплины обучающиеся должны знать уметь владет			
		использованию в профессиональн ой деятельности	аналитических решений, а так же физическую интерпретацию этих решений, физические законы, на которых базируется вывод конкретных уравнений	решения уравнений в частных производных	задачами для линейных дифференциальн ых уравнений в частных производных второго порядка	

Основные разделы дисциплины

		mbic pas	4001D1 A11			
NG		Количество часов				
№ раз- дела	Наименование разделов	Всего	удиторная работа			Внеаудиторная работа
			Л	ПЗ	ЛЗ	CPC
1	2	3	4	5	6	7
1	Предмет и задачи математической физики	20	4	6	-	10
2	Уравнения гиперболического типа	33	8	12	-	14
3	Уравнения параболического типа	28	8	10	-	10
4	Уравнения эллиптического типа	34	8	12	-	14
5	Нелинейные уравнения математической физики	22	4	8	-	10
	Итого по дисциплине:		32	48	-	58

Курсовые работы: не предусмотрены **Форма проведения аттестации по дисциплине:** экзамен

Основная литература:

- 1. Ильин А.М. Уравнения математической физики: учебное пособие / А.М. Ильин. Москва: Физматлит, 2009. 192 с. URL: http://biblioclub.ru/index.php?page=book&id=69318.
- 2. Сабитов К.Б. Уравнения математической физики: учебник / К.Б. Сабитов. Москва: Физматлит, 2013. 352 с. URL: http://biblioclub.ru/index.php?page=book&id=275562.
- 3. Сборник задач по уравнениям математической физики: учебное пособие / В.С. Владимиров, В.П. Михайлов, Т.В. Михайлова, М.И. Шабунин. 4-е изд., перераб. и доп. Москва: Физматлит, 2016. 518 с. URL: http://biblioclub.ru/index.php?page=book&id=485543

Автор РПД Мартынов А. А.