
Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

УТВЕРЖДАЮ

Проректор по учеству качеству образования.

проректор

«29» мая 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.16.01 Математический анализ

Направление подготовки: 12.03.04 Биотехнические системы и технологии

Направленность: Инженерное дело в медико-биологической практике

Форма обучения: очная

Квалификация: бакалавр

Краснодар 2020

Рабочая программа дисциплины Б1.О.16.01 МАТЕМАТИЧЕСКИЙ АНАЛИЗ разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 12.03.04 Биотехнические системы и технологии

Программу составил:
Подберезкина А.И., ст. преподаватель
Рабочая программа дисциплины Б1.О.16.01 МАТЕМАТИЧЕСКИЙ АНАЛИЗ утверждена на заседании кафедры теории функций протокол № 8 «17» марта 2020 г.
Заведующий кафедрой (разработчика) Голуб М.В.
Рабочая программа обсуждена на заседании кафедры физики и информационных систем протокол № 13 «20» апреля 2020 г.
Заведующий кафедрой (выпускающей) Богатов Н.М.
Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 2 «30» апреля 2020 г.
Председатель УМК факультета Шмалько С.П.
Рецензенты:
Гусаков Валерий Александрович, канд. физ. – мат. наук, директор ООО «Просвещение – Юг»

Засядко Ольга Владимировна, доцент кафедры информационных образовательных технологий, канд. физ. - мат. наук, доцент

1 Цели и задачи изучения дисциплины

Математический анализ является базовой учебной дисциплиной, целями и задачами которой является теоретическое и практическое освоение студентами математических методов, необходимых при изучении общих и специальных учебных дисциплин различного содержания.

В природе и технике всюду встречаются движения, процессы, которые описываются функциями. Законы явлений природы также обычно описываются функциями. Отсюда объективная важность математического анализа как средства изучения функций.

Математический анализ- это часть математики, в которой методами пределов изучаются функции. Основу математического анализа составляет теория действительного числа, теория пределов, теория рядов, дифференциальное и интегральное исчисление для вещественных функций одной вещественной переменной и их непосредственные приложения.

В результате дальнейшего развития дифференциального и интегрального исчисления функции одной переменной и обобщения встречающихся в нем понятий появились такие разделы математического анализа как дифференциальное и интегральное исчисление функций нескольких переменных. В дисциплине изучаются также непосредственные приложения дифференциального и интегрального исчисления, такие как теория экстремумов, теория неявных функций, ряды Фурье.

1.1 Цель дисциплины— изучение теоретических основ математического анализа, освоение методов исследования функций и формирование у студентов навыков корректного использования математических формул и методов вычисления, способности применять базовые знания для практического использования математических методов при анализе, решении и создании математических моделей типовых профессиональных задач.

1.2 Задачи дисциплины.

Важнейшей задачей подготовки бакалавра на ФТФ университета является формирование у студентов высоких профессиональных качеств. Значительная роль при этом отводится математическим дисциплинам.

Органически связать изучение математического анализа с прохождением физикотехнических дисциплин помогают межпредметныесвязи, которые в процессе обучениянеобходимо расширять и углублять.

Основными в курсе математического анализа являются понятия вещественного числа, множества, функции, предела, производной, интеграла. Без этих понятий были бы невозможны многие расчеты в современной физике, механике и т.п.Поэтому необходимо знать физическую сущность фундаментальных понятий, теоретические основы этих понятий, законы и методы математического анализа и способы их применения в физических дисциплинах и других областях знаний.

Поэтому должное внимание следует уделять овладению студентами методами исследования и решения прикладных задач, предполагающих предварительную математизацию ситуации. Такая работа побуждает студентов к анализу знаний курса математического анализа, физики, аналитической геометрии и др., к поиску соответствующих гипотез, позволяющих объединять эти знания, учит умению переводить условие физической задачи на математический язык и полученные результаты интерпретировать на языке исходной задачи.

Общими задачами дисциплины являются обучение студентов основным математическим методам, необходимым для моделирования реальных процессов и явлений. Формирование у студентов способности применять полученные знания к построению и анализу математических моделей различных процессов при поиске оптимальных решений и выборе наилучших способов реализации этих решений.

• формирование знаний о действительных числах и операциях с действительными числами;

- формирование знаний о свойствах пределов последовательностей и пределов функций одной и многих переменных. Овладение методами вычисления пределов;
- формирование знаний о локальных и глобальных свойствах непрерывных функций одной и многих переменных;
- формирование знаний о производных, их геометрическом и физическом смысле, дифференцируемых функциях одной и нескольких переменных, а также навыков их применения к исследованию свойств функций и отысканию их приближенных значений;
- формирование знаний об интегрировании функций одной и многих переменных, включая определенные, криволинейные, кратные и поверхностные интегралы; овладения навыками их вычисления и применения;
- формирование представлений об основных элементах теории поля, овладение навыками применения формулы Грина, Стокса и Остроградского-Гаусса;
- формирование знаний о числовых, функциональных и степенных рядах, умений и навыков использования представления функций в виде ряда Тейлора;
- формирование знаний о рядах Фурье, навыков разложения функций в ряды Фурье.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Математический анализ» относится к базовой части Блока 1 для направления **03.03.02 Физика**, являющегося структурным элементом ООП ВО. Дисциплина читается в первом и втором семестрах.

Для изучения дисциплины «Математический анализ» требуются знания из курса математики средней школы в объеме, включающем алгебру, начала анализа, тригонометрию, планиметрию и стереометрию.

Знания, полученные в этом курсе, используются в функциональном анализе, дифференциальной геометрии и топологии, дифференциальных уравнениях, уравнениях математической физики, теории чисел, методах оптимизации, в физических дисциплинах, таких как оптика, теоретическая механика др.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций ОПК-2

No	Индекс	Содержание	В результате изучен	ия учебной дисциплины обу	учающиеся			
п.п	компе-	компетенции		должны				
	тенции	(или её части)	знать	уметь	владеть			
1.	ОПК-2	способность	*фундаментальные	• выявлять математи-	*навыками			
		использовать	понятия, основные по-	ческую сущность про-	корректного			
		в профессио-	ложения и принципы	блем, возникающих в	использова-			
		нальной дея-	математического ана-	ходе профессиональной	ния методов			
		тельности ба-	лиза, прикладные ас-	деятельности, и кор-	математиче-			
		зовые знания	пекты дисциплины;	ректно использовать	ского анали-			
		фундамен-	*понятие действитель-	для их решения соответ-	за к постро-			
		тальных раз-	ного числа, свойства	ствующий физико-	ению и ана-			
		делов мате-	операций над действи-	математический аппа-	лизу мате-			
		матики, со-	тельными числами;	рат;	матических			
		здавать мате-	• основные понятия	• производить арифме-	моделей фи-			
		матические	топологии действи-	тические действия над	зических			
		модели типо-	Terrarion inpinion, it	действительными чис-	процессов и			
		вых профес-	мерного евклидова	лами;	применять			
		сиональных	пространства,	• производить опера-	их в профес-			
		задач и ин-	• понятие функции,	ции над функциями,	сиональной			

№		Содержание	В результате изучен	ия учебной дисциплины об	учающиеся
п.п		компетенции (или её части)	OTTOTT	ДОЛЖНЫ	рпалаті
•	тенции	терпретиро-	знать	уметь находить область опре-	владеть
		вать полу-	1	*	деятельно- сти
		ченные ре-		значений, устанавливать	СТИ
		зультаты с		четность и нечетность,	
			•	периодичность, строить	
		учетом гра- ниц приме-	• •		
		нищ приме-	± ± ′	• находить пределы	
			• определение предела	числовых последова-	
		делен	последовательности и	тельностей и функций;	
			функции, их свойства;	• исследовать непре-	
			методы нахождения	рывность функций в	
			пределов функции	точке и на множестве;	
			одной и многих пере-	•	
			менных;	 находить производ- ные и дифференциалы 	
			•понятие непрерывно-	функций, используя	
			сти функции в точке и	производные основных	
			на множестве, свой-	элементарных функций	
			ства непрерывных	и правила дифференци-	
			функций одной и	рования;	
			многих переменных;	• использовать геомет-	
			• понятия дифференци-	рический и механиче-	
			руемости функции,	ский смысл фундамен-	
			дифференциала, пра-	тальных понятий произ-	
			вила дифференциро-	водной, дифференциала,	
			вания,	в решении профессио-	
			• геометрический и	нальных задач; исполь-	
			механический смысл	зовать дифференциал	
			производной и диф-	для приближённых вы-	
			ференциала функции	числений значений	
			одной и многих пере-	функций;	
			менных;	• проводить исследо-	
			• формулу Тейлора;	вание поведения функ-	
			разложения основных	ций с помощью произ-	
			элементарных функ-	водных, выполнять по-	
			ций по формуле Тей-	строение графиков	
			лора;	функций, находить	
			• понятие экстремума	наибольшее и наимень-	
			функции одной и	шее значения функций	
			многих переменных;	на отрезке;	
			теоремы об исследо-	• оценивать с помо-	
			вании функции на	щью формулы Тейлора	
			экстремум;	погрешность при замене	
			• понятие первообраз-	функции многочленом;	
			ной и неопределённо-	• находить первооб-	
i			го интеграла, их	разную функции и не-	
			свойства; основные	определённый интеграл,	
i			методы интегрирова-	используя основные ме-	
			ния;	тоды интегрирования;	
			•определение и свой-	• вычислять опреде-	

№		Содержание	В результате изучения учебной дисциплины обучающиеся должны			
п.п		компетенции (или её части)	знать		владеть	
•	ТСПЦИИ	(или се части)	ства интеграла Рима-	уметь лённый интеграл, ис-	ыладеть	
			на; приложения опре-	пользуя формулы Нью-		
			деленного интеграла	тона-Лейбница, методы		
			к геометрическим и	замены переменной и		
			физическим задачам;	интегрирование по ча-		
			• понятие несобствен-	стям; находить несоб-		
			ного интеграла перво-	ственные интегралы и		
			го и второго рода, их	исследовать их сходи-		
			свойства, вычисление	мость;		
			и признаки сходимо-	• находить частные		
			сти;	производные и диффе-		
			• понятие двойного,	ренциалы функции мно-		
			тройного интеграла;	гих переменных;		
			их свойства и прило-	• находить локальный		
			жения к геометриче-	и условный экстремумы		
			ским и физическим	функций многих пере-		
			задачам;	менных; наибольшее и		
			• понятие криволиней-	наименьшее значения		
			ного и поверхностно-	функций на компакте;		
			го интегралов первого	• вычислять двойные и		
			и второго рода, их	тройные интегралы, ис-		
			свойства и примене-	пользуя замену пере-		
			ния;	менных: полярные, ци-		
			• основные понятия	линдрические и сфери-		
			теории поля, вектор-	ческие координаты;		
			ные интерпретации	• применять интегралы		
			формул Остроград-	функций одной и многих		
			ского и Стокса и их	переменных в геометри-		
			приложения;	ческих и физических за-		
			• определение числово-	дачах;		
			го ряда, суммы ряда,	• вычислять криволи-		
			свойства и признаки	нейные и поверхностные		
			сходимости рядов;	интегралы и применять		
			понятие абсолютной	их в геометрических и		
			и условной сходимо-	физических задачах;		
			сти ряда;	• сводя их к опреде-		
			• понятие функцио-	ленным интегралам;		
			нального ряда, суммы	• использовать в ре-		
			ряда, равномерной	шении задач условия не-		
			сходимости, свойства	зависимости криволи-		
			и признаки сходимо-	нейного интеграла вто-		
			сти;	рого рода от пути инте-		
			• определение степен-	грирования; находить		
			ного ряда, ряда Тей-	работу силового поля;		
			лора, основные раз-	• использовать основ-		
			ложения элементар-	ные понятия теории по-		
			ных функций в сте-	ля и применять формулы		
İ			пенные ряды;	Грина, Остроградского и		
			• понятие тригономет-	Стокса в геометрических		

<u>No</u>	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся				
п.п	компе-	компетенции	должны				
	тенции	(или её части)	знать уметь		владеть		
			рического ряда Фурье	и физических задачах;			
			и условия его сходи-	• находить суммы чис-			
			мости.	ловых рядов и исследо-			
			вать ряды на сходи-				
			мость;				
				• находить радиус и			
				область сходимости сте-			
				пенного ряда, разлагать			
				элементарные функции в			
				степенные ряды;			
				• применять ряды в			
			приближённых вычис-				
			лениях; представлять				
				функции тригонометри-			
				ческим рядом Фурье			

2 Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 13 зач. ед. (468 часов), их распреде-

ление по видам работ представлено в таблице

Вид учебной работы		Всего		местры
		часов	(ча	сы)
			1-й	2-й
			семестр	семестр
Контактная работа	, в том числе:			
Аудиторные заняти	я (всего):	272	144	128
Занятия лекционного	типа	136	72	64
Занятия семинарског	то типа (семинары, прак-			
тические занятия, практик	умы, лабораторные рабо-	136	72	64
ты, коллоквиумы и иные а	налогичные занятия)			
Иная контактная ра	абота:			
Контроль самостояте	ельной работы (КСР)	12	10	2
Промежуточная атте	стация (ИКР)	0,6	0,3	0,3
Самостоятельная р	абота, в том числе:			
CPC		90	77	13
Подготовка к текуще	му контролю	40	30	10
Контроль:				
Подготовка к экзаме	Подготовка к экзамену			26,7
Общая трудоем-	час.	468	288	180
кость	в том числе кон- тактная работа	284,6	154,3	130,3
	зач. ед	13	8	5

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

2.2.1 Разделы дисциплины, изучаемые в первом семестре

		Кол	ичест	во часов		
$\mathcal{N}_{\underline{0}}$	Наименование разделов			Аудитор	Самостоятельная	
раздела	Паименование разделов	Всего		работа		работа
			Л	П3	ЛР	CPC
1.	2	3	4	5	6	7
1	Введение в анализ	20	6	6		8
2.	Предел последователь-	26	8	8		10
۷.	ности	20	O	0		10
3.	Предел и непрерывность	56	18	18		20
<i>J</i> .	функции	30	10	10		20
4.	Дифференцирование					
т.	функций одной перемен-	42	10	12		20
	ной					
5.	Неопределённый инте-	40	10	10		20
<i>J</i> .	грал	40	10	10		20
6.	Определённый интеграл	67	20	18		29
0.	и его приложения.	07	20	10		2)
	Итого:		72	72		107

2.2.2 Разделы дисциплины, изучаемые во втором семестре

	2.2 газделы дисциплины, из	<i></i>	личеств		СТРС	
№ раз-	Наименование разделов	Всего	Аудито		Я	Самостоятель- ная работа
дела	A	Beero	Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
7	Функции многих пере- менных	18	8	8		2
8	Дифференцирование функций многих переменных	22	10	10		2
9	Кратные интегралы и их приложения.	30	12	12		6
10	Криволинейные интегралы.	14	6	6		3
11	Поверхностные интегралы.Элементы теории поля	24	10	10		4
12	Ряды	43	18	18		6
	Итого:		64	64		23
П	Всего по дисциплине:		136	136		130

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

раздела	Наименование раздела	Содержание раздела	Форма те- кущего кон- троля
	Введение в	Предмет математического анализа. Поня-	P

1	OTTO TAKE	TVO 147404700TDO 0-07-07-07-07-07-07-07-07-07-07-07-07-07	
1	анализ	тие множества. Операции над множества-	
		ми. Логическая символика.	
		Мощность множества. Счетность рацио-	
		нальных чисел. Несчетность действительных чисел.	
		Множество действительных чисел. Свой-	
		ства действительных чисел. Абсолютная	
		величина числа. Множества на прямой,	
		окрестности.	
		Верхняя и нижняя грани числовых мно-	
		жеств. Теорема существования верхней	
		(нижней) грани числового множества.	
		Принцип Архимеда. Принцип вложенных	
		отрезков.	
		Представление действительных чисел де-	
		сятичными дробями.	
		Общее понятие функции (отображения).	
		Композиция функций. Обратная функция.	
		Числовые функции. Основные элементар-	
		ные функции, их свойства и графики. Функции, заданные неявно, параметриче-	
		скими уравнениями и уравнениями в по-	
		лярных координатах.	
		Гиперболические функции, их свойства и	
		графики	
	Предел после-	Определение предела последовательности.	Устный
2	довательности.	Свойства сходящейся последовательности:	опрос
2	довательности.	единственность предела, ограниченность	onpoc
		сходящейся последовательности.	
		Бесконечно малые и бесконечно большие	
		последовательности.	
		Арифметические операции над сходящи-	
		мися последовательностями. Свойства	
		сходящейся последовательности, связан-	
		ные с неравенствами	
		Предел монотонной последовательности.	
		Число «е». Принцип стягивающихся от-	
		резков. Примеры вычисления пределов	
		последовательностей с помощью принци-	
		па сходимости монотонной последова-	
		тельности	
		Подпоследовательности и частичные пре-	
		делы числовой последовательности. Лем-	
		ма Больцано-Вейерштрасса.	
		Фундаментальные последовательности.	
		Критерий Коши сходимости числовой по-	
		следовательности.	
	Предел и непре-	Понятие предела функции. Определение	Доказатель-
3	рывность функ-	предела функции по Коши и по Гейне. Эк-	ство теорем
	ции	вивалентность определений. Определение	по аналогии
		предела функции на языке окрестностей.	(по усмотре-
		Бесконечно малые и бесконечно большие	нию лектора)

	1		T
		функции. Общее определение предела	
		функции на языке окрестностей.	
		Свойства пределов функций. Арифметиче-	
		ские операции над функциями, имеющими	
		пределы. Свойства предела функции, свя-	
		занные с неравенствами. Предел компози-	
		ции функций. Пределы монотонных	
		функций. Критерий Коши существования	
		предела функции. Первый замечательный	
		предел: $\lim_{x \to 0} \frac{\sin x}{x} = 1$ и его следствия.	
		Второй замечательный предел:	
		$\lim_{n \in \Gamma} \frac{\mathbb{X}}{\mathbb{X}} + \frac{1}{n} = e$. Следствия второго заме-	
		чательного предела.	
		Понятие непрерывности функции в точке.	
		Локальные свойства непрерывных функ-	
		ций, непрерывных в точке. Точки разрыва	
		функции. Непрерывность основных эле-	
		ментарных функций.	
		Свойства функций, непрерывных на отрез-	
		ке. Теорема Больцано-Коши (о промежу-	
		точном значении функции). Следствие	
		теоремы. Первая теорема Вейерштрасса	
		(об ограниченности функции). Вторая тео-	
		рема Вейерштрасса (о достижении функ-	
		цией экстремальных значений).	
		Сравнение функций. О – символика. Тео-	
		ремы об эквивалентных функциях. Сравнение бесконечно малых функций	
	Дифференциро-	Определение производной, ее геометриче-	Проверка суще-
4	вание функций	ский и механический смысл. Односторон-	ственности
	одной перемен-	ние и бесконечные производные. Таблица	условий теорем
	ной	производных основных элементарных	(по усмотрению
		функций.	лектора)
		Дифференциал функции. Геометрический	K
		и физический смысл дифференциала	
		Правила дифференцирования суммы, раз-	
		ности, произведения и частного функций.	
		Производная обратной функции, функции,	
		заданной неясно и параметрически. Таб-	
		лица производных основных элементар-	
		ных функций.	
		Производная композиции функций. Инва-	
		риантность формы первого дифференциа- ла.	
		ла. Производные и дифференциалы высших	
		порядков. Дифференциалы высших по-	
		рядков от сложных функций.	
		Теоремы Ферма, Ролля, Лагранжа, Коши.	
		Правило Лопиталя раскрытия неопреде-	
I	1	r r r r r r r r r r r r r r r r r r r	1

	1		T
		ленностей. Многочлен Тейлора и формула Тейлора дифференцируемой функции, различные формы записи остаточного члена. Применения формулы Тейлора к нахождению пределов и значений функций. Исследование функций: условия постоянства и монотонности; экстремумы, направление выпуклости графика функции, точки перегиба, асимптоты. Экстремальные значения функции на от-	
		резке.	
5	Неопределён- ный интеграл	Первообразная функции и неопределенный интеграл, свойства. Таблица неопределенных интегралов основных элементарных функций. Основные методы интегрирования: замена переменного, интегрирование по частям. Простые дроби и их интегрирование. Разложение рациональной функции на простые дроби. Интегрирование рациональных функций. Интегрирование иррациональных функций. Интегрирование тригонометрических и гиперболических функций. Подстановки Чебышева.	Ат
	Определённый	Задачи, приводящие к понятию опреде-	Устный
6	интеграл и его приложения	ленного интеграла. Понятие определенного интеграла. Необходимое условие интегрируемости. Суммы Дарбу и их свойства. Критерий интегрируемости по Риману. Классы интегрируемых функций. Интеграл с переменным верхним пределом. Формула Ньютона — Лейбница. Понятие длины кривой. Дифференциал дуги гладкой кривой. Вычисление длины дуги с помощью определенного интеграла. Понятие площади плоской фигуры. Выражение площади интегралом. Понятие объема пространственной области. Вычисление объема тела с помощью поперечных сечений. Объем тела вращения. Вычисление площадей поверхностей вращения. Приложение определенного интеграла к задачам физики. Несобственные интегралы. Интегралы с бесконечными пределами. Интегралы от неограниченных функций. Признаки сравнения и некоторые условия их сходимости.	опрос
_	Функции мно-	Линейное пространство R^m . Норма, схо-	Устный
7	гих переменных	димость последовательности точек. От-	опрос

		VARY VEV VO VV 001 VAVV	
		крытые и замкнутые множества, их свой-	
		ства, окрестности.	
		Вещественная функция двух переменных	
		и ее график, линии уровня. Двойные и по-	
		вторные пределы. Предел функции многих	
		переменных, непрерывность.	
		Локальные свойства непрерывных функ-	
		ций.	
		Свойства функций, непрерывных на ком-	
	П1.1	пакте.	П
0	Дифференци-	Частные производные и частные диффе-	Письменный
8	рование функ-	ренциалы функции многих переменных.	опрос
	ций многих пе-	Дифференцируемость функции многих	
	ременных	переменных. Полный дифференциал.	
		Геометрический смысл частной произ-	
		водной и полного дифференциала. Каса-	
		тельная плоскость и нормаль к поверхно-	
		сти.	
		Необходимое и достаточное условие	
		дифференцируемости. Достаточное усло-	
		вие дифференцируемости.	
		Производная сложной функции. Инвари-	
		антность формы первого дифференциала.	
		Производная по направлению. Градиент.	
		Производные и дифференциалы высших	
		порядков. Условия равенства вторых	
		производных. Формула Тейлора функции	
		многих переменных.	
		Локальный экстремум функции многих	
		переменных. Необходимое условие экс-	
		тремума. Критерий Сильвестра знако-	
		определенности квадратичной формы.	
		Достаточные условия локального экстре-	
		Myma.	
		Локальный экстремум функции двух пе-	
		ременных. Необходимое и достаточное	
		условия экстремума.	
		Вычисление производных функций, за-	
		данных неявно.	
		Понятие об условном экстремуме. Метод неопределенных множителей Лагранжа.	
		<u> </u>	
		Нахождение наибольшего и наименьше-	
	Vnomilia vivos	го значения функций на компакте.	P
9	Кратные инте-	Задачи, приводящие к понятию двойного	r
9	гралы и их при-	интеграла. Определение двойного инте-	
	ложения.	грала.	
		Мера Жордана. Измеримые множества на	
		Плоскости.	
		Суммы Дарбу. Условия существования	
		двойного интеграла. Свойства двойных	
		интегралов. Сведение двойного интегра-	
		ла к повторному в случае прямоугольной	

	1		<u> </u>
		и криволинейной областей.	
		Элемент площади в криволинейных ко-	
		ординатах. Замена переменных в двой-	
		ном интеграле. Полярные координаты.	
		Тройные интегралы и их вычисление. За-	
		мена переменных в тройном интеграле.	
		Цилиндрические и сферические коорди-	
		наты.	
		Применение кратных интегралов к реше-	
	10	нию геометрических и физических задач.	D. W.
10	Криволиней-	Криволинейные интегралы І-го и 2-го ро-	Р, Устный
10	ные интегралы.	да, их свойства. Геометрический смысл	опрос
		криволинейного интеграла I-го рода.	
		Связь между криволинейными интегра-	
		лами 1-го и 2-го рода. Способы сведения	
		криволинейных интегралов к определен-	
		ным интегралам.	
		Формула Грина. Условия независимости	
		криволинейного интеграла 2-го рода от пути интегрирования. Случай полного	
		дифференциала. Первообразная для	
		подынтегрального выражения	
		P(x, y)dx + Q(x, y)dy Работа силового по-	
		ля. Вычисление площади с помощью	
	Попомууча оттууча	криволинейных интегралов.	П-г-аг з газэээг э
11	Поверхностные	Понятие гладкой поверхности. Векторно-	Письменный
11	интегралы. Элементы тео-	параметрическая форма задания поверхности. Касательная плоскость и нормаль	опрос
	рии поля	к поверхности. Площадь поверхности.	
	рии поля	Поверхности. Площадь поверхности. Поверхностные интегралы І-го рода и их	
		свойства.	
		Двусторонние поверхности. Ориентация	
		поверхности и выбор стороны. Направ-	
		ляющие косинусы нормали. Поверхност-	
		ные интегралы 2-го рода и их свойства.	
		Способы сведения поверхностных инте-	
		гралов к двойным интегралам.	
		Ротор, дивергенция, циркуляция. Форму-	
		лы Стокса и Остроградского-Гаусса в	
		векторной форме.	
		Поток вектора через поверхность. Усло-	
		вия потенциальности векторного поля в	
		пространстве.	
	Ряды	Числовой ряд. Определение суммы ряда.	Доказатель-
12		Необходимое условие сходимости ряда.	ство теорем
		Ряд геометрической прогрессии.	по аналогии
		Свойства сходящихся рядов. Критерий	(по указанию
		сходимости ряда с неотрицательными	лектора)
		членами. Признаки сходимости рядов:	
		сравнения, Даламбера и Коши, инте-	
		гральный признак сходимости. Обоб-	
		щенный гармонический ряд и его сходи-	

ļ — — — — — — — — — — — — — — — — — — —		
	мость.	
	Знакопеременные ряды. Понятие абсо-	
	лютной и условной сходимости. Признак	
	Лейбница.	
	Понятие функционального ряда, его сум-	
	мы. Равномерная сходимость. Признак	
	Вейерштрасса равномерной сходимости.	
	Свойства равномерно сходящихся функ-	
	циональных рядов.	
	Степенные ряды. Радиус и интервал схо-	
	димости степенного ряда. Дифференци-	
	рование и интегрирование степенных ря-	
	дов.	
	Ряды Тейлора и Маклорена. Степенные	
	ряды основных элементарных функций:	
	e^{x} , $\sin x$, $\cos x$, $(1+x)^{r}$, $\ln(1+x)$.	
	Использование разложения функции в	
	ряд Тейлора в приближённых вычисле-	
	ниях и при вычислении пределов функ-	
	ниях и при вычислении пределов функ-	
	Ряды Фурье. Условия представимости	
	функции рядом Фурье. Разложение в ряд	
	Фурье непериодической функции, задан-	
	ной в произвольном промежутке. Разло-	
	жение в ряд Фурье только по косинусам	
	или только по синусам.	

2.3.2 Занятия семинарского типа

No	Наименование	Тематика практических занятий	Форма теку-
раздела	раздела	(семинаров)	щего контроля
Введение в ана-		Операции над множествами. Логическая сим-	P
1	лиз	волика. Метод математической индукции.	Решение за-
		Бином Ньютона.	дач
		Абсолютная величина числа. Решение число-	
		вых неравенств уравнений, содержащих мо-	
		дуль.	
		Множества на прямой, окрестности. Верхняя	
		и нижняя грани числовых множеств.	
		Композиция функций. Обратная функция.	
		Основные элементарные функции, их свой-	
		ства и графики. Композиция функций, обрат-	
		ная функция, функции, заданные неявно, па-	
		раметрическими уравнениями и уравнениями	
		в полярных координатах, гиперболические	
		функции, их свойства построение графиков.	
		Верхняя и нижняя грани функции.	
	Предел последо-	Вычисление предела последовательностей.	Решение за-
2	вательности.	Арифметические операции над сходящимися	дач
		последовательностями. Свойства сходящейся	
		последовательности, связанные с неравен-	
		ствами	

		n v	
		Вычисление пределов последовательностей с	
		помощью принципа сходимости монотонной	
		последовательности. Частичные пределы чис-	
		ловой последовательности. Верхний и нижний	
		пределы.	
		Критерий Коши сходимости числовой после-	
		довательности.	** 4 ** 4
	1,2	«Построение эскизов графиков функций, пре-	Из-1, Кр-1
		дел последовательности».	
	Предел и непре-	Техника вычисления пределов функций (рас-	Дз,
3	рывность функ-	крытие неопределённостей, замена перемен-	Решение за-
	ции	ного при вычислении предела).	дач
		Использование замечательных пределов при	
		вычислении пределов.	
		Вычисления пределов функций с помощью	
		асимптотических формул и теорем об эквива-	
		лентных функциях.	
		Пределы монотонных функций. Первый заме-	
		чательный предел и и его следствия. Второй	
		замечательные предел Следствия второго за-	
		мечательного предела. Сравнение функций. О	
		– символика. Сравнение бесконечно малых	
		функций.	
		Исследование функции на непрерывность.	
		Точки разрыва функции, их классификация.	
		Непрерывность элементарных функций.	
		Исследование функции на непрерывность.	
		Классификация точек разрыва. Локальные	
		свойства непрерывных функций. Непрерыв-	
		ность основных элементарных функций.	
		Свойства функций, непрерывных на отрезке.	
	3	«Предел и непрерывность функции»	Из-2, Кр-2
	Дифференциро-	Нахождение производной функции, заданной	Решение за-
4	вание функций	явно, используя правила дифференцирования	дач
	одной перемен-	суммы, разности, произведения и частного	Ат
	ной	функций, композиции функций.	
		Нахождение производной обратной функции,	
		функции, заданной параметрически и неявно,	
		дифференциала функции.	
		Решение задач прикладного характера, ис-	
		пользуя геометрический и физический смысл	
		производной и дифференциала.	
		Нахождение производных и дифференциалов	
		высших порядков.	
		Правило Лопиталя раскрытия неопределенно-	
		стей. Применения формулы Тейлора к нахож-	
		дению пределов и значений функций.	
		Исследование функций: условия постоянства	
		и монотонности; экстремумы, направление	
		выпуклости графика функции, точки переги-	
		ба, асимптоты.	
		Нахождение экстремальных значений функ-	

	<u> </u>		1
		ции на отрезке. Общая схема исследования	
		функции и построения графика.	** 0 ** 0
	4	«Дифференцирование функции одной пере- менной»	Из-3, Кр-3
	Неопределённый	Вычисление интегралов, « близких» к таблич-	P
5	интеграл	ным, используя основные методы интегриро-	
		вания (замена переменного, интегрирование	
		по частям).Интегрирование рациональных,	
		иррациональных, тригонометрических и ги-	
		перболических функций. Подстановки Чебы-	
		шева. Вычисление интегралов с помощью	
		степенных рядов.	
_	Определённый	Вычисление определенного интеграла по	Вычисление
6	интеграл и его	формуле Ньютона-Лейбница.	интегралов
	приложения.	Метод замены переменной и интегрирования	различными
		по частям в определённом интеграле. Вычис-	методами
		ление длины кривой, площади плоской фигу-	
		ры, объема тела с помощью поперечных сече-	
		ний, объема тела вращения, площадей по- верхностей вращения.	
		Применение определенного интеграла к физи-	
		ческим задачам.	
		Вычисление несобственных интегралов.	
		Интегралы с бесконечными пределами. Инте-	
		гралы от неограниченных функций. Признаки	
		сравнения и некоторые условия сходимости	
		несобственных интегралов.	
	5,6	«Интегрирование функций одной перемен-	Из-4, Кр-4
		ной»	
	Функции многих	Вещественная функция двух переменных и ее	Дз
7	переменных	график, линии уровня. Вычисление двойных и	Решение за-
		повторных пределов. Нахождение областей	дач
		определения функций многих переменных,	
		линий и поверхностей уровня, предела, иссле-	
		довать на непрерывность функции многих	
	Пт. А.А. а. а	переменных.	Dayway
8	Дифференциро-	Различные способы нахождение частных	Решение за-
8	вание функций	производных и дифференциалов функции	дач
	многих перемен-	многих переменных. Производная сложной функции. Инвариантность формы первого	
	ных	дифференциала. Вычисление производных	
		функций, заданных неявно. Нахождение про-	
		изводной по направлению, градиента функ-	
		ции.	
		Геометрический смысл полного дифференци-	
		ала. Касательная плоскость и нормаль к по-	
		верхности.	
		Вычисление производных и дифференциалов	
		высших порядков. Формула Тейлора.	
		Экстремум функции двух переменных.	
		Критерий Сильвестра знакоопределенности	
		квадратичной формы. Экстремум функции	

		многих переменных.	
		Нахождение условного экстремума методом	
		неопределенных множителей Лагранжа.	
		Нахождение наибольшего и наименьшего	
		значения функций на компакте.	
	7,8	«Дифференцирование функций многих пере-	Из-5, Кр-5
		менных»	
	Кратные интегра-	Вычисление двойных интегралов. Сведение	P
9	лы и их прило-	двойного интеграла к повторному в случае	Решение за-
	жения.	прямоугольной и криволинейной областей.	дач
		Замена переменных в двойном интеграле.	
		Полярные координаты.	
		Тройные интегралы и их вычисление. Замена	
		переменных в тройном интеграле. Цилиндри-	
		ческие и сферические координаты.	
		Применение кратных интегралов к решению	
		геометрических и физических задач.	
	9	«Кратные интегралы и их приложения»	Из-6, Кр-6
	Криволинейные	Вычисление криволинейных интегралов пер-	P
10	интегралы.	вого и второго рода. Геометрический смысл	Решение за-
	T	криволинейного интеграла І-го рода.	дач
		Вычисление криволинейных интегралов вто-	74.1
		рого рода с помощью формулы Грина. Усло-	
		вия независимости криволинейного интеграла	
		второго рода от пути интегрирования. Случай	
		полного дифференциала.	
		Нахождение первообразной для подынте-	
		грального выражения $P(x, y)dx + Q(x, y)dy$	
		Вычисление работы силового поля. Вычисле-	
		ние площади с помощью криволинейных ин-	
		тегралов.	
	Поверхностные	Вычисление площадь поверхности. Поверх-	Дз, Решение
11	интегралы.	ностные интегралы І-го рода и их свойства.	задач
	Элементы теории	Поверхностные интегралы 2-го рода и их	Ат
	поля	свойства. Способы сведения поверхностных	
		интегралов к двойным интегралам.	
		Ротор, дивергенция, циркуляция. Формулы	
		Стокса и Остроградского-Гаусса в векторной	
		форме.	
		Поток вектора через поверхность. Условия	
		потенциальности векторного поля в простран-	
		стве.	
	10,11	«Криволинейные и поверхностные интегра-	Из-7, Кр-7
	10,11	мкриволиненные и поверхностные интегра- лы»	115 /, Kp-/
	Ряды	Нахождение суммы ряда. Ряд геометрической	Опрос.
12	1 лды	прогрессии. Исследование сходимости рядов с	Решение
12		прогрессии. Исследование сходимости рядов с положительными членами. Обобщенный гар-	задач
		монический ряд и его сходимость.	задач
		=	
		Знакопеременные ряды. Понятие абсолютной	
		и условной сходимости. Признак Лейбница.	
		Исследование сходимости функционального	
		ряда. Признак Вейерштрасса равномерной	

	сходимости функционального ряда. Нахождение радиуса и интервала сходимости	
	степенного ряда, области сходимости. Диффе-	
	ренцирование и интегрирование степенных	
	рядов.	
	Ряды Тейлора и Маклорена. Разложение	
	функций в степенные ряды. Использование	
	разложения функции в ряд Тейлора в прибли-	
	жённых вычислениях и при вычислении пре-	
	делов функции.	
	Разложение в ряд Фурье периодической	
	функции. Разложение в ряд Фурье непериоди-	
	ческой функции, функции, заданной в произ-	
	вольном промежутке. Разложение в ряд Фурье	
	только по косинусам или только по синусам.	
12	«Ряды»	Из-8, Кр-8

Примечание: Дз – проверка домашнего задания; Кр – контрольная работа; Из – индивидуальное типовое задание, написание реферата – Р, К – коллоквиум, Ат – аттестация.

2.3.3 Лабораторные занятия – не предусмотрены.

2.3.4 Курсовые работы (проекты) – не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1		
	Реферат на тему: «Гиперболи-	Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И.,
1	ческие функции, их свойства и	Шабунин М.И. Сборник задач по математи-
	графики. Доказательство неко-	ческому анализу. Том 1. Предел. Непрерыв-
	торых тождеств».	ность. Дифференцируемость. М.: Физматлит,
		2010. – 496 c.
	Реферат на тему «О некоторых	Берман Г.Н.Сборник задач по курсу матема-
2	подходах к интегрированию	тического анализа: задачник — Москва:
	функций».	Эколит, 2015. — 432 с
	Реферат на тему: «Несоб-	Кратные интегралы: Практикум. Яременко
3	ственные кратные интегралы.	Л.А. Краснодар: Кубанский гос. ун-т., 2006
	Интеграл Пуассона».	80 c.
	Реферат на тему: «Независи-	Криволинейные и поверхностные интегралы.
4	мость криволинейного инте-	Яременко Л.А., Подберезкина А.И. Учебное
	грала 2-го рода от пути инте-	пособие. Краснодар: Кубанский гос. ун-т.,
	грирования в пространстве»	2012109 c.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Преподавание дисциплины включает следующие формы работы:

- лекции;
- практические занятия;
- контрольные работы;
- коллоквиумы;
- консультации преподавателей;
- экзамен;
- самостоятельная работа студентов:

(изучение теоретического материала; выполнение домашних заданий, выполнение индивидуальных типовых заданий; подготовка к опросу; написание рефератов, подготовка и выступление с докладом; подготовка к экзамену).

Глубокому усвоению учебного материала дисциплины содействуют коллективные формы интеллектуальной деятельности, а также методы работы, способствующие саморазвитию и самообразованию студента.

Образовательные технологии, используемые в учебном процессе:

- лекции с проблемным изложением;
- дискуссии по сложным вопросам;
- подготовка реферата;
- технология развития критического мышления;
- работа, направленная на усвоение знаний и способов действий по самоконтролю;
- консультации преподавателей.

Примерные вопросы, вынесенные на дискуссию

- 1. Индукция и аналогия в математике. Доказательство математических утверждений по аналогии (по усмотрению лектора).
 - 2. Проверка существенности условий теорем (по усмотрению лектора).
- 3. Доказательство теорем с данной формулировкой и планом доказательства (по усмотрению лектора).
 - 4. Решение задач различными способами.
 - 5. Совместный поиск решения задачи.
 - 6. Составление плана решения задачи.
 - 7. Взаимная и самопроверка знаний и обсуждение полученных результатов.

Примерные темы рефератов

- 1. Гиперболические функции, их свойства и графики. Доказательство некоторых тождеств.
 - 2. О некоторых подходах к интегрированию функций.
 - 3. Несобственные кратные интегралы. Интеграл Пуассона.
- 4. Независимость криволинейного интеграла 2-го рода от пути интегрирования в пространстве

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль осуществляется преподавателем, ведущим практические занятия на основе выполнения студентами домашних заданий и решения задач на аудиторных занятиях. В течение каждого семестра проводятся контрольные работы, предполагается выполнение типовых индивидуальных заданий для самостоятельной работы. Решение задач без помощи преподавателя способствует активизации самостоятельной деятельности студента, формированию умений и навыков в решении задач по соответствующему разделу математического анализа, позволяет глубже освоить теоретический материал, способствует приобретению и развитию навыков самоконтроля.

На практических занятиях контроль осуществляется при ответе у доски, при проверке домашних и индивидуальных заданий. В первом семестре планируется проведения коллоквиума.

Итоговый контроль осуществляется в виде экзамена.

Контрольные, коллоквиумы, индивидуальные задания оцениваются по пятибалльной системе. Экзамены оцениваются по системе: неудовлетворительно, удовлетворительно, хорошо, отлично.

4.1 Фонд оценочных средств для проведения текущего контроля

4.1.1 Типовые задачи для самостоятельной работы (ОПК-2)

I семестр

1. Построить графики функций:

a)
$$y = \left|\cos(x - \frac{\pi}{6})\right|$$
; 6) $y = |x - 2| + |3x|$; B) $y = 3^{\sin x}$.

2. Найти пределы последовательностей:

a)
$$\lim_{n \to +\infty} (\sqrt{n^2 + 5n} - \sqrt{n^2 + 2})$$
; 6) $\lim_{n \to \infty} \frac{1 + 2 + 3 + ... + n}{n^2 + 5n}$; B) $\lim_{n \to \infty} \left(\frac{2n + 3}{2n - 1}\right)^{n - 3}$.

3. Найти пределы функций:

a)
$$\lim_{x\to 0} \frac{\cos x - \cos^5 x}{x^2}$$
; 6) $\lim_{x\to 0} (2 - \cos x)^{\frac{1}{\sin^2 x}}$ B) $\lim_{x\to \infty} \left(\frac{1+x}{2+x}\right)^{x^2}$.

4. Вычислить производные функций:

a)
$$f(x) = (\cos x)^{\sin x}$$
; δ) $f(x) = (\ln x - 2)\sqrt{1 + \ln x}$; B) $f(x) = \frac{\arccos \ln \sqrt{2x + 1}}{x^3 - 1}$.

5. Найти производные $y_x^{'}, y_{x^2}^{"}$ функции, заданной параметрически:

$$\begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases}.$$

- 6. Найти производную $y_x^{'}$ функции y = y(x), заданной неявно: $e^y + y = \ln x + x$.
- 7. Найти дифференциал функции $f(x, y) = \ln(x + \sqrt{x^2 + y^2})$.
- 8. Найти df и d^2f для функции f, если $f(x) = (x+1) \cdot e^x$.
- 9. Найти дифференциал первого и второго порядка для функции $y = e^{3tg \cdot 4x}$.

- 10. Найти y'', если $y = \frac{1}{6} (e^{3x} + e^{-3x});$
- 11. Найти производную порядка n для функции $y = (x^2 + 1)e^{3x}$.
- 12. Вычислить приближенно $\sqrt[3]{125,5}$
- 13. Написать формулу Лагранжа для функции $y = \arcsin 2x$ на отрезке $[x_0, x_0 + \Delta x]$.
- 14. Показать, что график функции $y = \ln(x^2 1)$ везде выпуклый.
- 15. Построить график функции $y = 3x^3 + 4x^2 + 1$.
- 16. Вычислить неопределенные интегралы:

a)
$$\int \frac{1}{x^2} \cos \frac{1}{x} dx$$
; 6) $\int \frac{\sin x dx}{\sqrt{1 + 2\cos x}}$; B) $\int \frac{\arccos^2 2x}{\sqrt{1 - 4x^2}} dx$

17. Вычислить определенные интегралы

a)
$$\int_{1}^{e} \frac{\ln^{2} x}{x} dx$$
; δ) $\int_{-2}^{1} \frac{(2x+4)dx}{x^{2}+4x+13}$; ϵ) $\int_{-2}^{1} \frac{(x+5)dx}{x^{2}+2x+10}$;

18. Вычислить несобственные интегралы

$$a)\int_{0}^{\infty} \frac{dx}{x^2 + 4x + 13};$$
 $\delta)\int_{0}^{2} \frac{xdx}{\sqrt{(4 - x^2)^3}};$

- 19. Найти площадь фигуры, ограниченной кривыми: $x = \cos t$, $y = 2\sin t$.
- 20. Найти объем тела, образованного при вращении вокруг оси Ох фигуры, ограниченной данными кривыми: xy = 1, y = 0, x = 1, x = 2.

П семестр

- 21. Найти частные производные второго порядка функции f(x, y) = arctg(x/y).
- 22. Исследовать функцию на экстремум:

a)
$$f(x,y) = 4x^2 - 4xy + y^2 + 4x - 2y - 7$$
; ;6) $u = \frac{x^3}{3} + 2y^2 - z^2x + z$

- 23. Найти наибольший объем, который может иметь прямоугольный параллелепипед, если сумма длин ребер его равна а.
- 24. Найти производные и полные дифференциалы первого порядка и второго порядка функции $z = x^2 \ln y$, где $x = \frac{u}{v}$; y = 3u 2v;
- 25. Дана функция $x\cos y + y\cos z + z\cos x = 1$, заданная неявно. Найти частные производные и дифференциалы первого и второго порядков.
- 26. Найти экстремум функции $z = \frac{1}{x} + \frac{1}{y}$ при условии 2x + y = 4.
- 27. Найти наибольшее и наименьшее значение функции в области

$$z = x^2 - y^2$$
, $D: x^2 + y^2 \le 4$;

28. Вычислить интегралы:

a)
$$\int_{0}^{1} dx \int_{-1}^{2} (x+2|y|) dy$$
; 6) $\int_{0}^{\pi} x dx \int_{0}^{\frac{\pi}{2}} \cos(x-y) dy$;

29. Вычислить объем тела, ограниченного поверхностями:

$$z + x^2 + y^2 = 1$$
, $x + y + z = 1$;

30. Вычислить площадь фигуры, ограниченной кривыми.

$$x^2 + 3y^2 = 4$$
, $y \le x$, $y \ge 0$.

- 31. Определить координаты центра тяжести однородного шарового слоя, заключенного между сферой $x^2 + y^2 + z^2 = 8$ и плоскостями x = -1 и x = 2.
- 32. В двойном интеграле $\iint\limits_{\Omega} f(x,y) dx dy$ расставить пределы интегрирования в том и

другом порядке, если Ω – треугольник с вершинами O(0;0), A(1,0), B(1,1);

33. В двойном интеграле $\iint_{\Omega} f(x,y) dx dy$ перейти к полярным координатам г и φ и

расставить пределы интегрирования, если: $\Omega = \{x^2 + y^2 \le ax\}, (a > 0).$

34. Вычислить площадь фигуры, ограниченной кривыми.

$$r = 1 + \cos \varphi$$
, $r = \sqrt{3} \sin \varphi$.

- 35. Найти массу пластинки, ограниченной кривыми: x = 1, $y = x^2$, $y = -\sqrt[3]{x}$ где $\rho(x,y) = 5x^2 + 4xy^2$ поверхностная плотность.
- 36. Вычислить тройной интеграл

$$\iiint_T (x+y+z) dx dy dz, гдеТ: z = x^2 + y^2, z = 1;$$

- 37. Вычислить $\int_{L} (x^2 + y^2) dS$, где L окружность $x^2 + y^2 = 4x$.
- 38. Показать, что интеграл

$$J = \int_{(0;1)}^{(2;4)} (x+2y)dx + (y+2x)dy$$

не зависит от пути интегрирования и вычислить его.

39. Вычислить поверхностный интеграл:

$$\iint_T x ds$$
, где T – полусфера $z = \sqrt{1 - x^2 - y^2}$.

40. Исследовать на сходимость указанные ряды с положительными членами:

$$\sum_{n=1}^{\infty} \frac{n+2}{n\sqrt[3]{n}}.$$

41. Исследовать на сходимость и абсолютную сходимость знакочередующийся ряд:

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{5n(n+1)}$$

42. Найти область сходимости степенного ряда

$$\sum_{n=0}^{\infty} \frac{n^2}{7^n (n+3)} (x+2)^n.$$

43. Разложить в ряд Фурье по косинусам функцию y = 1 - 3x в интервале $(0; \pi)$.

4.1.2 Вопросы для подготовки к коллоквиуму Определение и формулировки теорем (ОПК-2)

1. Понятие множества. Операции над множествами. Логическая символика.

- 2. Расширенная числовая прямая. Абсолютная величина числа. Множества на прямой, окрестности.
- 3. Метод математической индукции. Бином Ньютона.
- 4. Ограниченные и неограниченные числовые множества. Грани числовых множеств. Теорема существования верхней (нижней) грани числового множества.
- 5. Принцип Архимеда. Принцип вложенных отрезков.
- 6. Общее понятие функции (отображения). Композиция функций. Обратная функция. Числовые функции. Основные элементарные функции, их свойства и графики.
- 7. Способы задания функций. Неявный способ задания функции. Функции, заданные параметрическими уравнениями и уравнениями в полярных координатах.
- 8. Определение последовательности и её предела. Единственность предела, ограниченность сходящейся последовательности.
- 9. Арифметические операции над сходящимися последовательностями.
- 10. Свойства сходящейся последовательности, связанные с неравенствами.
- 11. Бесконечно малые и бесконечно большие последовательности, их свойства.
- 12. Принцип сходимости монотонной последовательности.
- 13. Принцип стягивающихся отрезков. Число е.
- 14. Подпоследовательности и частичные пределы числовой последовательности. Лемма Больцано-Вейерштрасса.
- 15. Фундаментальная последовательность. Критерий Коши сходимости последовательности.
- 16. Определение предела функции в точке. Определение предела по Коши и по Гейне, эквивалентность определений. Предел функции на бесконечности.
- 17. Бесконечно малые функции, их свойства. Бесконечно большие функции. Общее определение предела функции.
- 18. Общие свойства предела функции: единственность, локальная ограниченность.
- 19. Свойства предела функции, связанные с арифметическими операциями.
- 20. Свойства предела функции, связанные с неравенствами.
- 21. Предел композиции функций.
- 22. Односторонние пределы. Предел монотонной функции.
- 23. Сравнение функций, эквивалентные функции. Критерий эквивалентности функций.
- 24. Определение непрерывности функции в точке. Точки разрыва функции. Классификация точек разрыва.
- 25. Свойства функций, непрерывных в точке (локальная ограниченность, устойчивость знака, непрерывность суммы, произведения и частного функций). Непрерывность основных элементарных функций.
- 26. Непрерывность сложной функции. Непрерывность функции $x^{\alpha}, x > 0$
- 27. Теорема Больцано-Коши (о промежуточном значении непрерывной на сегменте функции). Следствие теоремы.
- 28. Первая теорема Вейерштрасса (об ограниченности непрерывной на сегменте функции).
- 29. Вторая теорема Вейерштрасса (о достижении непрерывной на сегменте функции экстремальных значений).
- 30. Первый замечательный предел и его следствия.
- 31. Второй замечательный предел. Следствия второго замечательного предела
- 32. Теорема существования и непрерывности обратной функции. Понятие равномерной непрерывности функции. Теорема Кантора. Критерий Коши существования конечного предела функции.
- 33. Условие дифференцируемости функции. Связь между непрерывностью и дифференцируемостью функции.
- 34. Производная функции. Односторонние и бесконечные производные.

- 35. Связь между существованием производной и дифференцируемостью функции.
- 36. Правила дифференцирования суммы, разности, произведения и частного функций.
- 37. Таблица производных основных элементарных функций (вывод формул).
- 38. Уравнения касательной и нормали к кривой. Скорость прямолинейного движения.
- 39. Понятие дифференциала. Его геометрический и физический смысл.
- 40. Производная обратной функции, функции, заданной неявно и параметрически.
- 41. Производная сложной функции. Инвариантность формы І дифференциала.
- 42. Производные и дифференциалы высших порядков; *n*-ые производные функций:
- x^n , a^x , $\sin x$, $\cos x$, $y = l \log_a x$, $(1+x)^{\alpha}$.
- 43. Дифференциалы высших порядков от сложных функций. «Нарушение» инвариантной формы дифференциалов высших порядков при нелинейной замене переменной
- 44. Теорема Ферма, её геометрический смысл.
- 45. Теорема Лагранжа, Ролля, их геометрический смысл.
- 46. Теорема Коши. Правило Лопиталя раскрытия неопределенностей вида 0/0 и ∞/∞ .
- 47. Раскрытие неопределенностей видов ∞ - ∞ , $0 \times \infty$, 1^{∞} , ∞^0 , 0^0 .
- 48. Формула Тейлора функции с остаточным членом в форме Пеано и в форме Лагранжа.
- 49. Разложение по формуле Маклорена функций a^x , $\sin x$, $\cos x$, $y = l \log_a x$, $(1+x)^{\alpha}$.
- 50. Условия постоянства и монотонности функции.
- 51. Локальный экстремум функции. Необходимое и достаточные условия экстремума.
- 52. Направление выпуклости графика функции. Достаточное условие выпуклости графика функции.
- 53. Точки перегиба графика функции. Необходимое и достаточное условия точек перегиба.
- 54. Экстремальные значения функции на отрезке. Асимптоты графика.

Доказательства утверждений (ОПК-2)

Введение в анализ

- 1. Теорема существования верхней (нижней) грани числового множества.
- 2. Принцип Архимеда.

Предел последовательности

- 3. Теорема об ограниченности сходящейся последовательности.
- 4. Теоремы о бесконечно малых последовательностях.
- 5. Теоремы о пределах последовательностях, связанные с арифметическими операциями.
- 6. Теоремы о пределах последовательностях, связанные с неравенствами.
- 7. Принцип сходимости монотонной последовательности.
- 8. Число «е».

Предел функции

- 9. Теорема о единственности предела функции.
- 10. Теорема о локальной ограниченности функции, имеющей конечный предел.
- 11. Теорема о пределе композиции функций.
- 12. Теоремы о пределах функции, связанные с арифметическими операциями.
- 13. Теоремы о пределах функции, связанные с неравенствами.
- 14. Первый замечательный предел и его следствия.
- 15. Второй замечательный предел и его следствия.
- 16. Теоремы об эквивалентных функциях.

Непрерывность функции

- 17. Теорема о непрерывности композиции функций.
- 18. Теорема о пределе монотонной функции.

Теорема Больцано-Коши (о промежуточном значении непрерывной на сегменте функции).

- 19. Первая теорема Вейерштрасса (об ограниченности непрерывной на сегменте функции).
- 20. Вторая теорема Вейерштрасса (о достижении непрерывной на сегменте функции экстремальных значений).

Дифференцирование функций одной переменной

- 21. Теорема о связи между существованием производной и дифференцируемостью функции.
- 22. Теоремы о дифференцировании суммы, произведения и частного функций.
- 23. Теоремы о дифференцировании обратной функции, функции, заданной параметрическими уравнениями.
- 24. Теорема о дифференцировании композиции функций. Инвариантность формы I дифференциала.
- 25. Теорема Ферма, её геометрический смысл.
- 26. Теоремы Лагранжа, Ролля, их геометрический смысл.
- 27. Правило Лопиталя раскрытия неопределенностей вида 0/0 и ∞/∞ .

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Вопросы для подготовки к экзамену I семестр (ОПК-2)

- 1. Понятие множества. Операции над множествами. Логическая символика.
- 2. Множество действительных чисел. Свойства действительных чисел. Представление действительных чисел десятичными дробями.
- 3. Мощность множества. Счетность рациональных чисел. Несчетность действительных чисел.
- 4. Расширенная числовая прямая. Абсолютная величина числа. Множества на прямой, окрестности.
- 5. Метод математической индукции. Бином Ньютона.
- 6. Ограниченные и неограниченные числовые множества. Грани числовых множеств. Теорема существования верхней (нижней) грани числового множества.
- 7. Принцип Архимеда. Принцип вложенных отрезков.
- 8. Общее понятие функции (отображения). Композиция функций. Обратная функция. Числовые функции. Основные элементарные функции, их свойства и графики.
- 9. Способы задания функций. Неявный способ задания функции. Функции, заданные параметрическими уравнениями и уравнениями в полярных координатах.
- 10. Определение последовательности и её предела. Единственность предела, ограниченность сходящейся последовательности.
- 11. Арифметические операции над сходящимися последовательностями.
- 12. Свойства сходящейся последовательности, связанные с неравенствами.
- 13. Бесконечно малые и бесконечно большие последовательности, их свойства.
- 14. Принцип сходимости монотонной последовательности.
- 15. Принцип стягивающихся отрезков. Число е.
- 16. Подпоследовательности и частичные пределы числовой последовательности. Лемма Больцано-Вейерштрасса.
- 17. Фундаментальная последовательность. Критерий Коши сходимости последовательности.
- 18. Определение предела функции в точке. Определение предела по Коши и по Гейне, эквивалентность определений. Предел функции на бесконечности.
- 19. Бесконечно малые функции, их свойства.

- 20. Бесконечно большие функции. Общее определение предела функции.
- 21. Общие свойства предела функции: единственность, локальная ограниченность.
- 22. Свойства предела функции, связанные с арифметическими операциями.
- 23. Свойства предела функции, связанные с неравенствами.
- 24. Предел композиции функций.
- 25. Односторонние пределы. Предел монотонной функции.
- 26. Сравнение функций, эквивалентные функции. Критерий эквивалентности функций.
- 27. Определение непрерывности функции в точке. Точки разрыва функции. Классификация точек разрыва.
- 28. Свойства функций, непрерывных в точке (локальная ограниченность, устойчивость знака, непрерывность суммы, произведения и частного функций). Непрерывность основных элементарных функций.
- 29. Непрерывность сложной функции. Непрерывность функции $x^{\alpha}, x > 0$
- 30. Теорема Больцано-Коши (о промежуточном значении непрерывной на сегменте функции). Следствие теоремы.
- 31. Первая теорема Вейерштрасса (об ограниченности непрерывной на сегменте функции).
- 32. Вторая теорема Вейерштрасса (о достижении непрерывной на сегменте функции экстремальных значений).
- 33. Первый замечательный предел и его следствия.
- 34. Второй замечательный предел. Следствия второго замечательного предела
- 35. Теорема существования и непрерывности обратной функции. Понятие равномерной непрерывности функции. Теорема Кантора. Критерий Коши существования конечного предела функции.
- 36. Условие дифференцируемости функции. Связь между непрерывностью и дифференцируемостью функции.
- 37. Производная функции. Односторонние и бесконечные производные.
- 38. Связь между существованием производной и дифференцируемостью функции.
- 39. Правила дифференцирования суммы, разности, произведения и частного функций.
- 40. Таблица производных основных элементарных функций (вывод формул).
- 41. Уравнения касательной и нормали к кривой. Скорость прямолинейного движения.
- 42. Понятие дифференциала. Его геометрический и физический смысл.
- 43. Производная обратной функции, функции, заданной неявно и параметрически.
- 44. Производная сложной функции. Инвариантность формы І дифференциала.
- 45. Производные и дифференциалы высших порядков; *n*-ые производные функций:
- x^n , a^x , $\sin x$, $\cos x$, $y = l \log_a x$, $(1+x)^{\alpha}$.
- 46. Дифференциалы высших порядков от сложных функций. «Нарушение» инвариантной формы дифференциалов высших порядков при нелинейной замене переменной
- 47. Теорема Ферма, её геометрический смысл.
- 48. Теорема Лагранжа, Ролля, их геометрический смысл.
- 49. Теорема Коши. Правило Лопиталя раскрытия неопределенностей вида 0/0 и ∞/∞.
- 50. Раскрытия неопределенностей видов ∞ - ∞ , $0 \times \infty$, 1^{∞} , ∞^0 , 0^0 .
- 51. Формула Тейлора функции с остаточным членом в форме Пеано и в форме Лагранжа.
- 52. Разложение по формуле Маклорена функций
 - a^{x} , $\sin x$, $\cos x$, $y = \ln(1+x)$, $(1+x)^{\alpha}$,
- 53. Условия постоянства и монотонности функции.

- 54. Локальный экстремум функции. Необходимое и достаточные условия экстремума.
- 55. Направление выпуклости графика функции. Достаточное условие выпуклости графика функции.
- 56. Точки перегиба графика функции. Необходимое и достаточное условия точек перегиба.
- 57. Экстремальные значения функции на отрезке. Асимптоты графика. Полная схема исследования функции и построение ее графика.
- 58. Понятие первообразной, ее свойства.
- 59. Определение неопределенного интеграла, основные свойства.
- 60. Таблица неопределенных интегралов основных элементарных функций.
- 61. Метод замены переменной и интегрирования по частям в неопределенном интеграле.
- 62. Простые дроби и их интегрирование. Разложение рациональной функции на простые дроби. Интегрирование рациональных функций.
- 63. Интегрирование иррациональных функций.
- 64. Интегрирование выражений, содержащих тригонометрические функции.
- 65. Задачи, приводящие к понятию определенного интеграла. Площадь криволинейной трапеции.
- 66. Определение интеграла Римана. Необходимое условие интегрируемости. Геометрический смысл определенного интеграла.
- 67. Мера Жордана. Измеримые множества. Суммы Дарбу и их свойства.
- 68. Критерий интегрируемости по Риману. Классы интегрируемых функций.
- 69. Свойства определённого интеграла, выраженные равенствами.
- 70. Свойства определённого интеграла, выраженные неравенствами. Теорема о среднем значении.
- 71. Приближенное вычисление определенных интегралов.
- 72. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 73. Метод замены переменной и интегрирования по частям в определенном интеграле.
- 74. Понятие длины дуги кривой. Выражение длины дуги интегралом.
- 75. Понятие площади плоской фигуры. Выражение площади интегралом.
- 76. Понятие объема пространственной области. Вычисление объема тела с помощью поперечных сечений. Объем тела вращения. Вычисление площадей поверхностей врашения.
- 77. Приложение определенного интеграла к задачам физики.
- 78. Несобственные интегралы с бесконечными пределами от неограниченных функций. Свойства и вычисление.
- 79. Признаки сходимости несобственных интегралов.

2 семестр (ОПК-2)

- 1. Понятие n-мерного евклидова пространства R^n . Примеры множеств R^n .
- 2. Последовательность в R^n и ее предел.
- 3. Вещественная функции двух переменных и ее график, линии уровня.
- 4. Двойные пределы. Повторные пределы, условия их равенства.
- 5. Предел функции многих переменных.
- 6. Непрерывность функции многих переменных, свойства.
- 7. Частные производные и частные дифференциалы функции многих переменных.
- 8. Дифференцируемость функции многих переменных. Полный дифференциал.

Геометрический смысл частной производной и полного дифференциала.

- 9. Необходимое и достаточное условия дифференцируемости.
- 10. Производная сложной функции, инвариантность формы первого дифференциала.

- 11. Производная по направлению. Градиент.
- 12. Производные и дифференциалы высших порядков. Условия равенства вторых производных.
- 13. Формула Тейлора функции многих переменных.
- 14. Локальный экстремум функции многих переменных. Необходимое условие экстремума.
- 15. Критерий Сильвестра знакоопределенности квадратичной формы. Достаточные условия локального экстремума.
- 16. Локальный экстремум функции двух переменных. Необходимое и достаточное условия экстремума.
- 17. Вычисление производных неявно заданных функций. Понятие об условном экстремуме. Метод Лагранжа нахождения условного экстремума.
- 18. Наибольшее и наименьшее значения функции на компакте.
- 19. Задачи, приводящие к понятию двойного интеграла.
- 20. Определение двойного интеграла. Условия существования двойного интеграла.
- 21. Свойства двойных интегралов.
- 22. Сведение двойного интеграла к повторному в случае прямоугольной области.
- 23. Сведение двойного интеграла к повторному в случае криволинейной области.
- 24. Элемент площади в криволинейных координатах. Замена переменных в двойном интеграле. Полярные координаты.
- 25. Тройные интегралы и их вычисление. Замена переменных в тройном интеграле.
- 26. Применение кратных интегралов к решению геометрических и физических задач.
- 27. Понятие гладкой кривой. Криволинейные интегралы 1- рода, их свойства, геометрический смысл.
- 28. Ориентированные кривые. Криволинейные интегралы 2- рода, их свойства. Работа силового поля.
- 29. Связь между криволинейными интегралами 1-го и 2-го рода. Способы сведения криволинейных интегралов к определенным интегралам.
- 30. Формула Грина. Вычисление площади с помощью криволинейных интегралов.
- 31. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Случай полного дифференциала. Первообразная для подынтегрального выражения P(x,y)dx + Q(x,y)dy.
- 32. Понятие гладкой поверхности. Векторно-параметрическая форма задания поверхности. Касательная плоскость и нормаль к поверхности. Площадь поверхности.
- 33. Поверхностные интегралы І-го рода и их свойства.
- 34. Двусторонние поверхности. Ориентация поверхности и выбор стороны. Направляющие косинусы нормали.
- 35. Поверхностные интегралы 2-го рода и их свойства.
- 36. Способы сведения поверхностных интегралов к двойным интегралам.
- 37. Ротор, дивергенция, циркуляция. Формулы Стокса и Остроградского-Гаусса, векторная запись. Условия потенциальности векторного поля в пространстве.
- 38. Определение числового ряда, суммы ряда. Необходимое условие сходимости ряда. Свойства сходящихся рядов.
- 39. Ряды с неотрицательными членами. Критерий сходимости. Признаки сходимости (сравнения, Даламбера, Коши).
- 40. Интегральный признак сходимости. Обобщенный гармонический ряд и его сходимость.
- 41. Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Признак Лейбница.
- 42. Понятие функционального ряда. Равномерная сходимость. Признак Вейерштрасса равномерной сходимости.

- 43. Степенные ряды. Теорема Абеля. Интервал и радиус сходимости степенного ряда.
- 44. Почленноеинтегрирование и дифференцирование степенных рядов.
- 45. Ряды Тейлора и Маклорена. Степенные ряды основных элементарных функций. Использование разложения функции в ряд Тейлорадля приближённых вычислений.
- 46. Ряды Фурье. Условия представимости функции рядом Фурье.
- 47. Разложение в ряд Фурье непериодической функции, заданной в произвольном промежутке.
- 48. Разложение функций в ряд Фурье по синусам или по косинусам.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

4.2.2 Примерные билеты к экзамену (ОПК-2)

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)
Билет № 1

(Математический анализ, 03.03.02, семестр 1, 2019 – 2020 уч. г.)

- 1. Простые дроби и их интегрирование. Разложение рациональной функции на простые дроби. Интегрирование рациональных функций.
- 2. Теорема Ферма, её геометрический смысл.
- 3.Задача. Найти дифференциал функции $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$.

Зав. кафедрой теории функций

В.А. Лазарев

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ») Билет № 2

(Математический анализ, 03.03.02, семестр 2, 2019 – 2020 уч. г.)

- 1. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования.
- 2. Понятие дифференциала функции многих переменных. Его геометрический смысл.
 - 3. Задача. Вычислить двойной интеграл $\iint_D (1+x+y^2) dx$, где область D ограниче-

на линиями $y = x^2$, x + y = 2.

Зав. кафедрой теории функций

В.А. Лазарев

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Кудрявцев Л. Д.Курс математического анализа: учебник для бакалавров: учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям Т. 3 /Л. Д. Кудрявцев; Моск. физико-техн. ин-т (Гос. ун-т) 6-е изд. Москва: Юрайт, 2012
- 2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: $2009.-558~\mathrm{c}$.
- 3. Берман Г.Н.Сборник задач по курсу математического анализа : задачник Москва : Эколит, 2015. 432 с
- 4. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 1. Предел. Непрерывность. Дифференцируемость. М.: Физматлит, 2010. 496 с.

(http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2226).

5. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 2. Интегралы. Ряды. М.: Физматлит, 2009. – 504 с. (http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2227).

5.2 Дополнительная литература:

- 6. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 3. Функции нескольких переменных. М.: Физматлит, 2003. 472 с. (http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=2220).
- 7. Ильин В.А., Позняк Э.Г. Основы математического анализа: учебник; в 2 ч. М., 2006. Ч. I. 464с., Ч. II. 646с.
- 8. Яременко Л.А. Кратные интегралы: Практикум. Краснодар: Кубанский гос. унт., 2006.- 80 с.
- 9. Яременко Л.А., Подберезкина А.И. Криволинейные и поверхностные интегралы. Учебное пособие. Краснодар: Кубанский гос. ун-т., 2012.-109 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.3 Периодические издания: не предусмотрены

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

http://www.alleng.ru/edu/math9.htm

- 1. http://www.matburo.ru/st_subject.php?p=ma
- 2. http://pdf-ka.ru/tags/matematicheskiy-analiz

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Для контроля освоения курса и подготовки к экзамену студентам предлагается выполнение 8-ми контрольных работ,график которых с указанием тем приводится в планах семинарских занятий по математическому анализу.

В первом семестре планируется проведение коллоквиума с целью адаптации студентов к уровню требований, предъявляемых к ним на экзамене, и к форме проведения экзамена

Предлагается также выполнение типовых индивидуальных заданий для самостоятельной работы по темам: «Построение эскизов графиков функций. Предел последовательности», «Предел и непрерывность функции», «Дифференцирование функции одной переменной».

Во втором семестре – по темам: «Дифференцирование функций многих переменных», «Кратные интегралы и их приложения », «Криволинейные и поверхностные интегралы», «Ряды». Индивидуальные задания выполняются в отдельной тетради и проверяются преподавателем с выборочной защитой (типовые индивидуальные задания даны приложении к РДП).

I семестр

Наименование тем	Сроки выполнения
Построение эскизов графиков функций. Предел последова-	3-я неделя
тельности.	
Предел и непрерывность функции.	7-я неделя
Дифференцирование функций одной переменной.	12-я неделя
Интегрирование функций одной переменной	17-я неделя

II семестр

Наименование тем	Сроки выполнения
Дифференцирование функций многих переменных.	4-я неделя
Кратные интегралы и их приложения	8-я неделя
Криволинейные и поверхностные интегралы	12-я неделя
Ряды.	17-я неделя

В освоении дисциплины инвалидами и лицами с ограниченными возможностямиздоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующими индивидуализации обучения и установлению воспитательного контакта междупреподавателем и обучающимся инвалидом или лицом с ограниченными возможностямиздоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)

не предусмотрены

8.1 Перечень необходимого программного обеспечения *не предусмотрены*

8.2 Перечень необходимых информационных справочных систем не предусмотрены

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система LIBRARY.RU (http://www.elibrary.ru)/

9. Материально-техническая база, необходимая для осуществления образовательногопроцесса по дисциплине

1001201	тельногопроцесса по дисциплине			
No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность		
1.	Лекционные занятия	Лекционная аудитория, для проведения лекционных		
		занятий, интерактивная доска		
2.	Семинарские занятия	Учебные аудитории для проведения и семинарских		
	_	занятий, интерактивная доска		
3.	Лабораторные заня-	Рабочим планом не предусмотрены.		
	тия			
4.	Курсовое проектиро-	Рабочим планом не предусмотрены.		
	вание			
5.	Групповые (индиви-	Учебная аудитория, оснащенная интерактивной дос-		
	дуальные) консульта-	кой		
	ции			
6.	Текущий контроль,	Учебная аудитория, оснащенная интерактивной дос-		
	промежуточная атте-	кой		
	стация			
7.	Самостоятельная ра-	Кабинет для самостоятельной работы, оснащенный		
	бота	компьютерной техникой с возможностью подключе-		
		ния к сети «Интернет», программой экранного увели-		
		чения и обеспеченный доступом в электронную ин-		
		формационно-образовательную среду университета.		