МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А

29 мая 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.02.01 ВВЕДЕНИЕ В ТЕОРИЮ АППРОКСИМАЦИИ И ГАРМОНИЧЕСКИЙ АНАЛИЗ

Направление подготовки

02.03.01 Математика и компьютерные науки

Направленность (профиль)

«Математическое и компьютерное моделирование»

Форма обучения очная

Квалификация бакалавр

Рабочая программа дисциплины «Введение в теорию аппроксимации и гармонический анализ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 Математика и компьютерные науки (уровень высшего образования: бакалавриат)

Программу составил: доцент, канд. физмат. наук,
Марковский A. H
Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов, протокол № 11 от 21.04.2020.
Заведующего кафедрой математических и компьютерных методов
Лежнев А. В
Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук, протокол № 2 от $30.04.2020$
Председатель УМК факультета математики и компьютерных наук
Шмалько С. П.
Рецензенты:
Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю. Г., доцент кафедры теоретической физики и компьютерных технологий

ФГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целями освоения дисциплины «Введение в теорию аппроксимации и гармонический анализ» являются: формирование углубленных знаний по теории аппроксимации и гармоническому анализу; знакомство с задачами теории аппроксимации и методами их решения; приложение методов теории аппроксимации к решению практических прикладных задач.

1.2 Задачи дисциплины

Получение базовых теоретических сведений о банаховых и гильбертовых пространствах применительно к теории аппроксимации и гармоническому анализу; решение задач аппроксимации связанных с сжатием цифровых изображений, обработкой аналоговых сигналов и численным методом решения краевых задач; построение алгоритмов решения задач аппроксимации и их реализация в системе компьютерной алгебры (MathCAD), визуализация полученных результатов, проведение численных экспериментов.

При освоении дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, применять полученные знания и навыки для решения конкретных прикладных задач, строить алгоритмы решения и проводить численные расчеты, в частности, понимать принципы JPEG технологии сжатия цифровых изображений, понимать идею метода базисных потенциалов широко применяемого для решения краевых задач уравнений математической физики и гидродинамики.

Получаемые знания лежат в основе математического образования и служат развитию навыков математического и компьютерного моделирования, вычислительного эксперимента, применения численных методов и программных комплексов.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Введение в теорию аппроксимации и гармонический анализ» относится к части, формируемой участниками образовательных отношений, блока Б.1 «Дисциплины (модули)» и является дисциплиной для изучения по выбору.

Знания и умения, приобретенные студентами в результате изучения дисциплины, будут использоваться при изучении общих и специальных курсов, при выполнении курсовых и выпускных квалификационных работ, связанных с применением компьютерных технологий.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций.

No	Индекс	Содержание	В результате	изучения учебной	й дисциплины
	компе-	компетенции	06	учающиеся долж	НЫ
п.п.	тенции	(или её части)	знать	уметь	владеть
1.	ПК-1	способен демон-	информаци-	использовать	навыками мате-
		стрировать базовые	онно-коммуни-	методы матема-	матического и
		знания математиче-	кационные тех-	тического и ал-	алгоритмиче-
		ских и естествен-	нологии и ос-	горитмического	ского моделиро-
		ных наук, основ	новные требова-	моделирования	вания при реше-
		программирования	ния информаци-	при решении	нии теоретиче-
		и информационных	онной безопас-	теоретических и	ских и приклад-
		* *	ности	прикладных за-	ных задач
		технологий		дач	

No	Индекс	Содержание	В результате	изучения учебной	й дисциплины
	компе-	компетенции	06	бучающиеся долж	НЫ
п.п.	тенции	(или её части)	знать	уметь	владеть
2	ПК-4	способен преподавать математику и информатику в средней школе, специальных учебных заведениях на основе полученного фундаментального образования и научного ми-	методы математического и алгоритмического моделирования	решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры	навыками ре- шать стандарт- ные задачи про- фессиональной деятельности
		ровоззрения			

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часа, из них – 68 часа аудиторной нагрузки: лекционных 34 часов, лабораторных 34 часа; 35,8 часов самостоятельной работы; 4 часов КСР), их распределение по видам работ представлено в таблице

Вид уче	ебной работы	Всего	Семестры
		часов	(часы)
			5-й
Контактная работа, в т	том числе:	72,2	72,2
Аудиторные занятия (н	всего)	68	68
Занятия лекционного ти	па	34	34
Занятия семинарского та	ипа (семинары, практические	_	_
занятия)			
Лабораторные занятия		34	34
Иная контактная рабо	га:		
Контроль самостоятельн	4	4	
Промежуточная аттестан	ция (ИКР)	0,2	0,2
Самостоятельная рабо	та, в том числе:	35,8	35,8
Проработка учебного (те	еоретического) материала	30	30
Подготовка к текущему	контролю	5,8	5,8
Общая трудоемкость час.		108	108
	в том числе контактная работа	72,2	72,2
	зач. ед	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 5 семестре.

No		Количество часов					
раз-	Наименование разделов	Всего	A	удиторн работа	ая	КСР	Самостоя- тельная
дела			Л	П3	ЛР		работа
1.	Линейные и нормированные пространства	16,8	4	_	4	_	8,8
2.	Аппроксимация в банаховых пространствах	29	10	_	10	_	9

No		Количество часов					
раз-	Наименование разделов	Всего	A	удиторн работа	ая	КСР	Самостоя-
дела			Л	ПЗ	ЛР		работа
3.	Аппроксимация в гильбертовых пространствах и Фурье анализ	29	10	-	10	_	9
4.	Метод базисных потенциалов	33	10	_	10	4	9
	Итого по дисциплине:	108	34	_	34	4	35,8

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раз- дела	Содержание раздела	Форма теку- щего кон-
1		3	троля
1	2	4	
	<u> </u>	5-й семестр	
		Определение линейного пространства. Линейная зависимость и линейная независи-	
		мость элементов. Линейные многообразия. Примеры. Выпуклые множества в линейных	
1	Линейные и нормированные простран-	пространствах. Определение нормированного	
1	ства	пространства. Предел последовательности.	
		Примеры нормированных пространств. Экви-	
		валентность норм в конечномерных про-	
		странствах. Изоморфизм, изометрия и вложе-	
		ние нормированных пространств	
		Фундаментальные последовательности.	
		Определение банахового пространства. При-	
		меры банаховых пространств. Подпростран-	
		ства нормированного пространства. Расстоя-	
	Аппроксимация в	ние от точки до подпространства. Приближе-	
2	банаховых про-	ние элементами подпространства. Линейные	
	странствах	многообразия плотные в нормированном	
		пространстве. Ряды в нормированных и бана-	
		ховых пространствах. Банаховы простран-	
		ства со счетным базисом. Сепарабельные	
		пространства	
		Евклидовы и унитарные пространства. Опре-	
		деление гильбертова пространства. Ортого-	
		нальные и ортонормированные системы.	
	Аппроксимация в	Процесс ортогонализации Шмидта. Опреде-	
3	гильбертовых про-	литель Грама и его свойства. Расстояние от	
3	странствах и Фурье	точки до подпространства. Ортогональные дополнения. Ряды Фурье в гильбертовом	
	анализ	пространстве. Неравенство Бесселя. Полные	
		ортогональные системы. Ряды Фурье в осна-	
		щенном банаховом пространстве. Ортого-	
		нальные разложения	
<u> </u>		пальные разложения	

		Полные системы потенциалов на отрезке.	
		Проблема выбора базисных точек. Полные	
		системы на границе области. Задача Робена и	
	Метод базисных по-	алгоритм решения. Внутренняя задача Дири-	
4	тенциалов	хле для уравнения Лапласа и алгоритм реше-	
	тенциалов	ния. Другие полные системы потенциалов и	
		их применение в задачах математической фи-	
		зики и задачах сжатия цифровых изображе-	
		ний.	

2.3.2 Занятия семинарского типа Занятия семинарского типа не предусмотрены

2.3.3 Лабораторные занятия

№	Наименование лабораторных работ	Форма теку- щего кон-
	• • •	троля
1	2	3
	5-й семестр	
1	Линейная зависимость и линейная независимость элементов линейного пространства	ЛР
2	Базис в линейном пространстве и разложение по базису	ЛР
3	Задача наилучшей аппроксимации для конечномерного простран-	ЛР
4	ства Задача наилучшей аппроксимации бесконечно дифференцируемой функции многочленом фиксированной степени	ЛР
5	Разложение в ряд Тейлора	ЛР
6	Локальная аппроксимация бесконечно дифференцируемой функции	ЛР
7	Задача Чебышева. Многочлены Чебышева	ЛР
8	Пространство непрерывных функций	ЛР
9	Теорема Вейерштрасса о плотности многочленов в пространстве	ЛР
10	непрерывных функций Решение задачи наилучшей аппроксимации в евклидовом про- странстве	ЛР
11	Ортогонализация Шмидта канонической системы многочленов	ЛР
12	Неустойчивость процесса ортогонализации Шмидта	ЛР
13	Многочлены Лежандра и их свойства	ЛР
14	Аппроксимация непрерывной функции многочленами Лежандра	ЛР
15	Коэффициенты элемента аппроксимации	ЛР
16	Скорость аппроксимации	ЛР
17	Тригонометрическая система	ЛР
18	Разложение непрерывной функции по тригонометрической системе	ЛР
19	Сравнение аппроксимативных свойств различных систем	ЛР
20	Разложение по неортогональным системам	ЛР
21	Определитель Грама и его свойства	ЛР
22	Полные системы потенциалов на отрезке	ЛР
23	Проблема выбора базисных точек	ЛР
24	Полные системы на границе области	ЛР

25	Задача Робена и алгоритм решения	ЛР
26	Внутренняя задача Дирихле для уравнения Лапласа и алгоритм ре-	ЛР
	шения	
27	Сравнение аппроксимативных свойств различных систем	ЛР

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоретического) материала	Литература из основного и дополнительного списков
2	Подготовка к теку- щему контролю	Образцы программ по темам лабораторных занятий в электронном виде

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа,

Для лиц с нарушениями слуха:

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Лекции, лабораторные занятия, контрольные работы, зачет.

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля

Примерный перечень вопросов для подготовки к зачету:

- 1) Линейная зависимость и линейная независимость элементов;
- 2) Линейные многообразия. Примеры;
- 3) Выпуклые множества в линейных пространствах;

- 4) Эквивалентность норм в конечномерных пространствах;
- 5) Изоморфизм, изометрия и вложение нормированных пространств;
- 6) Определение банахового пространства. Примеры банаховых пространств;
- 7) Подпространства нормированного пространства. Расстояние от точки до подпространства;
- 8) Приближение элементами подпространства;
- 9) Линейные многообразия плотные в нормированном пространстве;
- 10) Ряды в нормированных и банаховых пространствах;
- 11) Банаховы пространства со счетным базисом. Сепарабельные пространства;
- 12) Евклидовы и унитарные пространства. Определение гильбертова пространства;
- 13) Процесс ортогонализации Шмидта. Определитель Грама и его свойства;
- 14) Расстояние от точки до подпространства;
- 15) Ортогональные дополнения;
- 16) Ряды Фурье в гильбертовом пространстве;
- 17) Неравенство Бесселя. Полные ортогональные системы;
- 18) Ряды Фурье в оснащенном банаховом пространстве;
- 19) Ортогональные разложения;
- 20) Полные системы потенциалов на отрезке;
- 21) Полные системы на границе области;
- 22) Задача Робена и алгоритм решения;
- 23) Внутренняя задача Дирихле для уравнения Лапласа и алгоритм решения. Полный набор всех вариантов оценочных средств для текущего контроля успеваемости и промежуточной аттестации и вопросов к зачету приводится в ФОС (Фонде оценочных средств), который оформлен как отдельное приложение к рабочей программе.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

По функциям u(x) = x, $v(x) = \sqrt{1 - x^2}$ определить следующие функции:

$$f_1(x) = \begin{cases} u(x), a \le x \le x_0, \\ v(x), x_0 \le x \le b. \end{cases}$$
 хон точка пересечения графиков $u(x)$ и $v(x)$.

$$f_2(x) = f_1(x)\operatorname{sgn}(x - x_0),$$

 $f_3(x)$ — ломанная с K звеньями находящаяся в ε -полосе функции $f_1(x)$; координаты звеньев задаются случайным образом.

 $f_4(x)$ — кусочно-постоянная функция построенная по $f_1(x)$, абсциссы кусков определяются равномерным разбиением отрезка [a,b] на H частей.

$$K = 100, \varepsilon = 0.2, a = 0, b = 1, H = 20.$$

Задание № 1. Для функций: f_1 , f_2 , f_3 , f_4 построить в MathCAD аппроксимации и вычислить величину уклонения при различных N (= 1,2,3,5,10,20), построить графики скорости аппроксимации:

- а) полиномами Лежандра;
- b) полиномами Чебышева;
- с) тригонометрической системой;
- d) системами потенциалов α_m^+ .

Результаты свести в таблицу и указать для какой функции какая система является наиболее предпочтительней.

Задание № 2. Средствами MathCAD решить задачу Робена для области Q с границей $S = \bigcup_{k=1}^3 S_k$, где $S_1 = [a,b]$, S_2 — дуга графика v(x) при $x \in [x_0,b]$ и S_3 — дуга графика u(x) при $x \in [a,x_0]$. Вычислить константу Робена и построить линии уровня полученного потенциала Робена.

Задание № 3. Средствами MathCAD решить внутреннюю задачу Дирихле для уравнения Лапласа:

$$\Delta w(x)|_{Q} = 0, w(x)|_{S} = f(x),$$

Для получения зачёта студент должен выполнить и сдать преподавателю полученные практические семестровые задания.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

– в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Кузовлев, В.П. Курс геометрии: элементы топологии, дифференциальная геометрия, основания геометрии [Электронный ресурс] : учебник / В.П. Кузовлев, Н.Г. Подаева. Электрон. дан. Москва : Физматлит, 2012. 208 с. Режим доступа: https://e.lanbook.com/book/59618
- 2. Треногин, В.А. Обыкновенные дифференциальные уравнения [Электронный ресурс] : учебник / В.А. Треногин. Электрон. дан. Москва : Физматлит, 2009. 312 с. Режим доступа: https://e.lanbook.com/book/2341
- 3. Кудряшов, С.Н. Основные методы решения практических задач в курсе «Уравнения математической физики»: учебное пособие / С.Н. Кудряшов, Т.Н. Радченко; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет", Факультет математики, механики и компьютерных наук. Ростов: Издательство Южного федерального университета, 2011. 308 с. ISBN 978-5-9275-

0879-2 ; To же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=241103

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах.

5.2 Дополнительная литература:

- 1. Нартя, В.И. Блочно-матричный метод математического моделирования поверхностей / В.И. Нартя. Москва ; Вологда : Инфра-Инженерия, 2016. 236 с. : ил., табл., схем. Библиогр. в кн. ISBN 978-5-9729-0119-7 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=444171
- 2. Афанасьев, К.Е. Основы высокопроизводительных вычислений: учебное пособие / К.Е. Афанасьев, И.В. Григорьева, Т.С. Рейн. Кемерово: Кемеровский государственный университет, 2012. Т. 3. Параллельные вычислительные алгоритмы. 185 с. ISBN 978-5-8353-1546-8; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=232205
- 3. Поздеев, А.Г. Гидростатика. Гидродинамика: сборник задач / А.Г. Поздеев, Ю.А. Кузнецова; Поволжский государственный технологический университет. Йошкар-Ола: ПГТУ, 2018. 64 с.: ил. Библиогр.: с. 61. ISBN 978-5-8158-1980-1; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=494184

5.3. Периодические издания:

- 1) Вычислительные методы и программирование. Электронный научный журнал НИВЦ МГУ (Научно-исследовательский вычислительный центр Московского государственного университета им. М.В. Ломоносова) http://num-meth.srcc.msu.ru.
- 2) Сибирские электронные математические известия, электронный научный журнал института математики им. Соболева Сибирского отделения Российской академии наук, http://semr.math.nsc.ru/indexru.html.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Электронно-библиотечная система Издательства «Лань» http://e.lanbook.com.
- 2. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp

7. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, рассматриваются основные приёмы решения задач и решаются примеры практических задач.

На лабораторных занятиях студенты, решая семестровые задания, приобретают практические навыки применения компьютерных пакетов, написания и отладки программ, программной реализации алгоритмов теории аппроксимации.

Важнейшим этапом курса является самостоятельная работа по дисциплине «Введение в теорию аппроксимации и гармонический анализ», во время которой студенты осуществляют проработку необходимого материала, используя литературу из основного и дополнительного списков, готовятся к текущему контролю, изучая примеры задач,

рассмотренных на лекциях и на практических занятиях, и образцы программ по темам лабораторных занятий (выдаются студентам в электронном виде).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

8.1 Перечень информационных технологий

Освоение курса «Введение в теорию аппроксимации и гармонический анализ» предполагает теоретическое изучение компьютерных технологий и проведение практических занятий с использованием компьютера.

8.2 Перечень необходимого программного обеспечения

Пакет компьютерной (символьной) алгебры MATHCAD 14.

8.3 Перечень информационных справочных систем

- 1. Очков В.Ф. MathCAD 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2007. 369 с.
- 2. Мурашкин В. Г. Инженерные и научные расчеты в программном комплексе MathCAD: учебное пособие. Самара: СГАСУ, 2011. 84 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.
- 3. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad book.asp.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория
2.	Лабораторные заня-	Лаборатория, укомплектованная компьютерами для ра-
	ТИЯ	боты студентов и компьютером для преподавателя, под-
		ключенным к интерактивной доске.
3.	Текущий контроль,	Лаборатория, укомплектованная компьютерами для ра-
	промежуточная атте-	боты студентов и компьютером для преподавателя, под-
	стация	ключенным к интерактивной доске.
4.	Самостоятельная ра-	Лаборатория, укомплектованная компьютерами для ра-
	бота	боты студентов