Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

A DOMECT

may

2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.Б.02 СПЕЦИАЛЬНЫЙ ФИЗИЧЕСКИЙ ПРАКТИКУМ

Направление подготовки 03.04.02 Физика

Направленность Информационные процессы и системы

Программа подготовки академическая

Форма обучения очная

Квалификация выпускника магистр

Рабочая программа дисциплины «Специальный физический практикум» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 03.04.02 Физика (профиль) "Информационные процессы и системы"

Программу составил: М.С. Коваленко, доцент

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем протокол № 20 «21» мая 2019 г. Заведующий кафедрой (разработчика)

Богатов Н.М. фамилия, инициалы подпись

Утверждена на заседании учебно-методической комиссии факультета Физико-технический факультет

протокол № 11 «21» мая 2019 г. Председатель УМК факультета

Богатов Н.М. фамилия, инициалы

подпись

Рецензенты:

Шапошникова Т.Л., зав. кафедрой физики ФГБОУ ВО КубГТУ

Половодов Ю.А., Генеральный директор ООО «КПК»

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Учебная дисциплина «Специальный физический практикум» ставит своей целью формирование и выработку у студентов компетенций, включающих знания, умения и навыки, связанные с использованием и применением дискретных и имитационных моделей для описания физических процессов и систем.

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- изучить принципы построения дискретных моделей;
- изучить особенности и области применения клеточных автоматов;
- выработать навыки построения моделей физических процессов на основе клеточных автоматов.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Специальный физический практикум» относится к вариативной части Блока 1 «Дисциплины» учебного плана.

Дисциплина логически и содержательно-методически связана с дисциплинами «Информатика», «Компьютерные методы моделирования физических явлений», «Численные методы в физике». Для освоения данной дисциплины необходимо знать основные физические законы, основы высшей математики, численных методов, принципы проведения численных расчётов на ЭВМ.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

No	Индекс	Содержание	В результа	те изучения учебн	ой дисциплины
	компет	компетенции (или	обучающиеся должны		
п.п.	енции	её части)	знать	уметь	владеть
1	ОПК-3	способностью к	методы	организовывать	навыками
		активной	организации	исследования в	участия в
		социальной	И	рамках	научно-
		мобильности,	проведения	инновационны	исследовательск
		организации	научно-	х работ	их и
		научно-	исследовате		инновационных
		исследовательских	льских работ		работах
		и инновационных			
		работ			
2	ОПК-6	способностью	методы	использовать	навыками поиска
		использовать	поиска	современные	и анализа
		знания	информации	методы и	информации о
		современных	об	подходы в	предмете
		проблем и	актуальных	научно-	исследования с
		новейших	исследовани	исследовательс	использованием
		достижений физики	ях в	кой работе	актуальных
		в научно-	определенно		научных
		исследовательской	й области		источников
		работе	научных		
			интересов		

No॒	Индекс	Содержание	В результате изучения учебной дисциплины			
	компет	компетенции (или		обучающиеся должны		
п.п.	енции	её части)	знать	уметь	владеть	
3	ПК-1	способностью	методы и	формулировать	навыками	
		самостоятельно	информацио	цели и ставить	применения	
		ставить конкретные	нные	задачи научных	научно-	
		задачи научных	технологии,	исследований	технических	
		исследований в	применяемы		информационны	
		области физики и	е при		х систем для	
		решать их с	построении		решения задач	
		помощью	моделей		научных	
		современной	физических		исследований	
		аппаратуры и	процессов			
		информационных				
		технологий с				
		использованием				
		новейшего				
		российского и				
		зарубежного опыта				
4	ПК-7	способностью	понятия	строить модели	навыками	
		руководить научно-	математичес	при решении	формулирования	
		исследовательской	кого	практических	и постановки	
		деятельностью в	моделирован	задач и	задач	
		области физики	ия и модели,	применять		
		обучающихся по	применяемы	математически		
		программам	е при	й аппарат, для		
		бакалавриата	моделирован	решения задач		
			ии задач в	физики		
			физике			

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ. Общая трудоёмкость дисциплины составляет <u>3</u> зач. ед. (<u>108</u> часов), их

распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы	Всего	Семестры	
	часов	(ч	асы)
		В	
Контактная работа, в том числе:	32,2	32,2	
Аудиторные занятия (всего):	32	32	
Занятия лекционного типа	-	-	
Лабораторные занятия	32	32	
Занятия семинарского типа (семинары,			
практические занятия)	-	-	
	-	-	
Иная контактная работа:	0,2	0,2	
Контроль самостоятельной работы (КСР)	-	-	
Промежуточная аттестация (ИКР)	0,2	0,2	
Самостоятельная работа, в том числе:	75,8	75,8	
Курсовая работа	-	-	
Проработка учебного (теоретического) материала	20	20	
Выполнение индивидуальных заданий (подготовка	40	40	

сообщений, презентаций)				
Реферат			-	
Подготовка к текущему контролю			15,8	
Контроль:			-	
Подготовка к экзамену	-	-		
Общая трудоемкость	час.	108	108	
	в том числе контактная работа	32,2	32,2	
	зач. ед	3	3	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 3 семестре (для магистров $O\Phi O$)

	Наименование разделов		Количество часов				
№			Аудиторная работа			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1	2		4	5	6	7	
1.	Общие вопросы теории клеточных автоматов		0	0	9	11	
2.	Простейшие клеточные автоматы		0	0	5	16	
3.	Моделирование замкнутых систем		0	0	7	15	
4.	Моделирование явлений переноса		0	0	5	18	
5.	Модели взаимодействия элементарных частиц		0	0	6,2	15,8	
	Итого по дисциплине:	108	0	0	32	75,8	

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

Согласно учебному плану занятия лекционного типа по данной дисциплине не предусмотрены.

2.3.2 Занятия семинарского типа.

Согласно учебному плану занятия семинарского типа по данной дисциплине не предусмотрены.

2.3.3 Лабораторные занятия.

No	Наименование лабораторных работ	Форма текущего
712	паименование лаоораторных раоот	контроля
1	2	3
1	Приёмы программирования для построения клеточных	Защита лабораторной
1	автоматов	работы
2	Построение простейших клеточных автоматов	Защита лабораторной
2	построение простеиших клеточных автоматов	работы
2	Использование клеточных автоматов для моделирования	Защита лабораторной
3	замкнутых систем	работы
4	Построение моделей явлений переноса на основе клеточных	Защита лабораторной
4	автоматов	работы
5	Модели взаимодействия элементарных частиц на основе Защита лаборато	

клеточных автоматов раб	работы
-------------------------	--------

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы по данной дисциплине не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Общие вопросы теории клеточных автоматов	Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 872 с. — Режим доступа: https://e.lanbook.com/book/71999. — Загл. с экрана.
		Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.ІІ [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 772 с. — Режим доступа: https://e.lanbook.com/book/72000. — Загл. с экрана.
2	Простейшие клеточные автоматы	Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 872 с. — Режим доступа: https://e.lanbook.com/book/71999. — Загл. с экрана. Горюнов, А.Ф. Методы математической физики в примерах
		и задачах. В 2 т. Т.II [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 772 с. — Режим доступа: https://e.lanbook.com/book/72000. — Загл. с экрана.
3	Моделирование замкнутых систем	Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 872 с. — Режим доступа: https://e.lanbook.com/book/71999. — Загл. с экрана.
		Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.II [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 772 с. — Режим доступа: https://e.lanbook.com/book/72000. — Загл. с экрана.
4	Моделирование явлений переноса	Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 872 с. — Режим доступа: https://e.lanbook.com/book/71999. — Загл. с экрана. Горюнов, А.Ф. Методы математической физики в примерах

		и задачах. В 2 т. Т.II [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Физматлит, 2015. — 772 с. — Режим доступа: https://e.lanbook.com/book/72000. — Загл. с
		экрана.
5	Модели	Горюнов, А.Ф. Методы математической физики в примерах
	взаимодействия	и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие —
	элементарных частиц	Электрон. дан. — Москва : Физматлит, 2015. — 872 с. —
		Режим доступа: https://e.lanbook.com/book/71999. — Загл. с
		экрана.
		Горюнов, А.Ф. Методы математической физики в примерах
		и задачах. В 2 т. Т.II [Электронный ресурс] : учеб. пособие
		— Электрон. дан. — Москва : Физматлит, 2015. — 772 c. —
		Режим доступа: https://e.lanbook.com/book/72000. — Загл. с
		экрана.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

В соответствии с требованиями ФГОС ВПО по направлению подготовки используются, при освоении дисциплины в учебном процессе активные и интерактивные (взаимодействующие) формы проведения занятий, а именно:

- дискуссии;
- разбор конкретных ситуаций;
- интерактивное мультимедийное сопровождение.

Вышеозначенные образовательные технологии дают эффективные результаты освоения дисциплины с позиций актуализации содержания темы занятия, выработки продуктивного мышления, терминологической грамотности и компетентности обучаемого в аспекте социально-направленной позиции будущего магистра, и мотивации к инициативному и творческому освоению учебного материала.

В соответствии с требованиями ФГОС ВПО реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерные симуляции, разбор конкретных ситуаций и т.д.) В сочетании с внеаудиторной работой они создают дополнительные условия формирования и развития требуемых компетенций обучающихся, поскольку позволяют обеспечить активное взаимодействие всех участвующих в процессе обучения, включая преподавателя. Эти методы в наибольшей степени способствуют личностноориентированному подходу (обучение в сотрудничестве). При этом преподаватель выступает скорее в роли организатора процесса обучения, лидера группы, создателя условий для проявления инициативы обучающихся.

Проведение всех занятий лабораторного практикума предусмотрено в классе снабженном всем необходимым оборудованием и компьютерами для эффективного выполнения соответствующих лабораторных работ

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения промежуточной аттестации.

4.1.1 Вопросы, выносимые на зачёт по дисциплине «Специальный физический практикум» для направления подготовки: 03.04.02 Физика

- 1. Задача дискретного моделирования.
- 2. Применение дискретного моделирования для описания физических процессов.
- 3. Классический автомат фон Неймана.
- 4. Имитационный подход в дискретном моделировании.
- 5. Сведения о клеточных автоматах, история метода, виды окрестностей.
- 6. Асинхронный режим функционирования.
- 7. Синхронный режим функционирования.
- 8. Размерности решётки и состояний клеточного автомата.
- 9. Алгоритм параллельных подстановок.
- 10. Описание простейших автоматов с помощью кода Вольфрама. Примеры использования.
- 11. Метод клеточных автоматов в дискретном математическом моделировании процессов.
 - 12. Правила клеточного автомата для моделирования различных процессов.
 - 13. Реализация подхода клеточных автоматов.
 - 14. Метод клеточных автоматов в моделировании процессов диффузии.
- 15. Принципы построения клеточных автоматов при моделировании замкнутых систем.
 - 16. Игра "Жизнь".
 - 17. Метод клеточных автоматов в моделировании процессов диффузии.
- 18. Вычислительный эксперимент по описанию диффузии в двухкомпонентной среде.
 - 19. Решёточные газы. НРР-газ
 - 20. Решёточные газы. ТИР-газ.
- 21. Метод клеточных автоматов в моделировании процессов взаимодействия элементарных частиц.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачёте;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление

информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

5.1 Основная литература:

- 1. Сизиков, В.С. Прямые и обратные задачи восстановления изображений, спектроскопии и томографии с MatLab: Учебное пособие + CD [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2018. 412 с. Режим доступа: https://e.lanbook.com/book/99358
- 2. Благовещенский, В.В. Компьютерные лабораторные работы по физике, химии, биологии: Учебное пособие [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2017. 100 с. Режим доступа: https://e.lanbook.com/book/95834
- 3. Благовещенский, В.В. Компьютерные лабораторные работы по физике в пакете MathCad + CD [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2013. 96 с. Режим доступа: https://e.lanbook.com/book/42975
- 4. Волков, А.В. Методы компьютерной оптики [Электронный ресурс] / А.В. Волков, Д.Л. Головашкин. Электрон. дан. Москва : Физматлит, 2003. 688 с. Режим доступа: https://e.lanbook.com/book/2326

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах

5.2 Дополнительная литература:

- 1. Горлач, Б.А. Математическое моделирование. Построение моделей и численная реализация [Электронный ресурс] : учеб. пособие / Б.А. Горлач, В.Г. Шахов. Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/74673. Загл. с экрана.
- 2. Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.І [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2015. 872 с. Режим доступа: https://e.lanbook.com/book/71999. Загл. с экрана.
- 3. Горюнов, А.Ф. Методы математической физики в примерах и задачах. В 2 т. Т.ІІ [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2015. 772 с. Режим доступа: https://e.lanbook.com/book/72000. Загл. с экрана.
- 4. Компьютерное моделирование физических систем / Л. А. Булавин, Н. В. Выгорницкий, Н. И. Лебовка. Долгопрудный : Интеллект, 2011 . 352 с. ISBN 978-5-91559-101-0.
- 5. Поршнев, С.В. Компьютерное моделирование физических процессов в пакете MATLAB. + CD [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-

Петербург : Лань, 2011. — 736 с. — Режим доступа: https://e.lanbook.com/book/650. — Загл. с экрана.

6. Математическое моделирование гидродинамики и теплообмена в движущихся жидкостях [Электронный ресурс] : учеб. пособие / И.В. Кудинов [и др.]. — Электрон. дан. — Санкт-Петербург : Лань, 2015. — 208 с. — Режим доступа: https://e.lanbook.com/book/56168. — Загл. с экрана.

5.3. Периодические издания:

1. Журнал "Математическая физика и компьютерное моделирование"

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. https://e.lanbook.com Электронная библиотечная система издательства "Лань"
- 2. http://www.biblio-online.ru/ Электронная библиотечная система "Юрайт"
- 3. http://www.elibrary.ru/ Научная электронная библиотека (НЭБ)
- 4. https://scholar.google.ru Академия Google
- 5. https://www.scopus.com База данных Scopus
- 6. https://www.webofknowledge.com База данных Web of Science

7. Методические указания для обучающихся по освоению дисциплины.

К специалистам различных областей знаний в настоящее время предъявляется широкий перечень требований. Одно из важнейших — это наличие умения и навыка самостоятельного поиска знаний в различных источниках, их систематизация и оценка в контексте решаемой задачи.

Структура учебного курса направлена на развитие у студента данной способности. Однако решающую роль в этом играет самостоятельная работа студента и осознанное участие в лекционных и практических занятиях.

Рекомендуется построить самостоятельную работу таким образом, чтобы она включала:

- изучение конспекта лекции в тот же день, после лекции;
- изучение конспекта лекции за день перед следующей лекцией;
- изучение теоретического материала по учебнику и конспекту;
- подготовку к практическому занятию.

Для понимания материала и качественного его усвоения рекомендуется такая последовательность действий:

- 1. После прослушивания лекции и окончания учебных занятий, при подготовке к занятиям следующего дня, нужно сначала просмотреть и обдумать текст прослушанной лекции.
- 2. При подготовке к новой лекции просмотреть текст предыдущей лекции, подумать о том, какая может быть тема следующей лекции.
- 3. В течение недели выбрать время для работы с литературой и интернет-источниками по теме.
- 4. При подготовке к практическим занятиям, необходимо сначала прочитать основные понятия и подходы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи.

Дополнительно к изучению конспектов лекции необходимо пользоваться учебником. Кроме «заучивания» материала, очень важно добиться состояния понимания изучаемых тем дисциплины. С этой целью рекомендуется после изучения очередного параграфа выполнить несколько упражнений на данную тему.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1 Перечень информационных технологий.

- 1. Проверка домашних заданий и консультирование посредством электронной почты.
 - 2. Использование электронных презентаций при проведении практических занятий.

8.2 Перечень необходимого программного обеспечения.

Программный продукт	Договор/лицензия
OC MS Windows 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Офисное приложение MS Office 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Kaspersky Endpoint Security для	Контракт №69-АЭФ/223-ФЗ от 11.09.2017
бизнеса – Стандартный Russian Edition	
Adobe Acrobat Reader DC	Не требуется
Версия 2019.008.20071	

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 2. Научная электронная библиотека «КиберЛенинка» (https://cyberleninka.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

№	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные занятия	Лекционная аудитория 207С, 208С, 212С, 213С, 224С.
2.	Семинарские занятия	Рабочим планом не предусмотрены.
3.	Лабораторные занятия	Аудитория 207С, 208С, 212С, 213С, 224С, оснащенная дисплейным классом.
4.	Курсовое проектирование	Рабочим планом не предусмотрено.
5.	Групповые (индивидуальные) консультации	Аудитория 207С, 208С, 212С, 213С, 224С, оснащенная дисплейным классом.
6.	Текущий контроль,	Аудитория 207С, 208С, 212С, 213С, 224С, оснащенная дисплейным

	промежуточная аттестация	классом.
7.	Самостоятельная работа	Кабинет для самостоятельной работы 207С, 208С, 212С, 213С, 224С, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.