# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий



## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.14 «КОНСТРУИРОВАНИЕ АЛГОРИТМОВ И СТРУКТУР ДАННЫХ»

Направление подготовки **02.03.02** «**Фундаментальная информатика и информационные технологии**»

Направленность (профиль) «Математическое и программное обеспечение компьютерных технологий»

Программа подготовки: академический бакалавриат

Форма обучения: очная

Квалификация выпускника: бакалавр

Рабочая программа дисциплины «Конструирование алгоритмов и структур данных» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 «Фундаментальная информатика и информационные технологии»

Программу составил(и):

Пашенцева В.В. – старший преподаватель кафедры вычислительных технологий

My

Рабочая программа дисциплины «Конструирование алгоритмов и структур данных» утверждена на заседании кафедры вычислительных технологий, «26» апреля 2019 г., протокол №7

Заведующий кафедрой (разработчика) д.т.н., профессор Вишняков Ю.М.



Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 1 от «15» мая  $2019 \, \Gamma$ .

Председатель УМК факультета Коваленко А.В.

Коваленко А.В.

#### Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук.

Схаляхо Ч.А., доцент КВВУ им.С.М. Штеменко, кандидат физико-математических наук, доцент

#### 1 Цели и задачи изучения дисциплины

#### 1.1 Цель освоения дисциплины

Целью освоения дисциплины является изучение методов построения и исследования алгоритмов решения различных задач, являющихся объектами фундаментальной информатики и информационных технологий, а также методов разработки сложных структур данных, используемых для представления этих объектов в памяти электронно - вычислительных машин, систем и сетей.

#### 1.2 Задачи дисциплины

Изучение алгоритмических стратегий. Изучение методов анализа временной и емкостной сложности алгоритмов и данных. Овладение языком программирования С++.

#### 1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Конструирование алгоритмов и структур данных» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана. Она опирается на знание дисциплин «Дискретная математика», «Основы программирования», «Организация вычислительных систем». Знания, полученные при изучении дисциплины «Конструирование алгоритмов и структур данных», необходимы для успешного освоения дисциплины «Теория алгоритмов и вычислительных процессов», используются в «Парадигмы программирования», «Введение в теорию параллельных алгоритмов».

# 1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся

следующими общекультурными компетенциями:

| No   | Индекс      | Содержание                  | В результате       | изучения учебно | й дисциплины    |  |
|------|-------------|-----------------------------|--------------------|-----------------|-----------------|--|
|      | компетенции | компетенции (или еè         | обучающиеся должны |                 |                 |  |
| п.п. |             | части)                      | знать              | уметь           | владеть         |  |
| 1.   | ОПК-2       | Способен применять          | методы             | разрабатывать   | методами        |  |
|      |             | компьютерные/суперкомпь     | разработки         | алгоритмы и     | командной       |  |
|      |             | ютерные методы,             | алгоритмичес       | программные     | работы по       |  |
|      |             | современное программное     | ких и              | комплексы в     | созданию        |  |
|      |             | обеспечение, в том числе    | программных        | составе         | алгоритмов      |  |
|      |             | отечественного              | решений            | коллектива      |                 |  |
|      |             | происхождения, для          |                    | разработчиков   |                 |  |
|      |             | решения задач               |                    |                 |                 |  |
|      |             | профессиональной            |                    |                 |                 |  |
|      |             | деятельности                |                    |                 |                 |  |
| 2.   | ПК-1        | Способен понимать и         | основные           | использовать    | Фундаментальны  |  |
|      |             | применять в научно-         | математическ       | методы и        | ми концепциями  |  |
|      |             | исследовательской и         | ие                 | механизмы       | и системными    |  |
|      |             | прикладной деятельности     | результаты,        | оценки и        | методологиям    |  |
|      |             | современный                 | относящиеся        | анализа         | и,международны  |  |
|      |             | математический аппарат,     | к оценке           | функциониров    | ми и            |  |
|      |             | основные законы             | сложности          | ания средств и  | профессиональн  |  |
|      |             | естествознания, современные | алгоритмов         | систем          | ыми стандартами |  |
|      |             | языки программирования и    |                    | информацион     | В               |  |
|      |             | программное обеспечение;    |                    | ных             | области         |  |
|      |             | операционные системы и      |                    | технологий      | информационных  |  |
|      |             | сетевые технологии          |                    |                 | технологий      |  |
| I    |             |                             |                    |                 |                 |  |

#### 2. Структура и содержание дисциплины

#### 2.1 Распределение трудоемкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 11 зач. ед. (396 часов),

их распределение по видам работ представлено в таблице.

| Вид учебной работы                                                    | Всего часов | Семестры<br>(часы) |       | [ |
|-----------------------------------------------------------------------|-------------|--------------------|-------|---|
|                                                                       |             | 3                  | 4     |   |
| Контактная работа, в том числе                                        |             |                    |       |   |
| Аудиторные занятия (всего)                                            | 245         | 139                | 107   |   |
| Занятия лекционного типа                                              | 102         | 68                 | 34    |   |
| Занятия семинарского типа (семинары, практические занятия)            | -           | -                  | -     |   |
| Лабораторные занятия                                                  | 136         | 68                 | 68    |   |
| Иная контактная работа                                                |             |                    |       |   |
| Контроль самостоятельной работы (КСР)                                 | 6           | 2                  | 4     |   |
| Промежуточная аттестация (ИКР)                                        | 1,0         | 0,5                | 0,5   |   |
| Самостоятельная работа, в том числе                                   |             |                    |       |   |
| Курсовая работа                                                       | -           | -                  | -     |   |
| Проработка учебного (теоретического) материала                        | 37          | 22                 | 15    |   |
| Выполнение индивидуальных заданий (подготовка сообщений, презентаций) | 20          | 10                 | 5     |   |
| Реферат                                                               | -           | -                  | -     |   |
| Подготовка к текущему контролю                                        | 18          | 9,5                | 8,5   |   |
| Контроль:                                                             |             |                    |       |   |
| Подготовка к экзамену                                                 | 80,4        | 36                 | 45    |   |
| Промежуточная аттестации                                              |             | экз,               | экз,  |   |
|                                                                       |             | зач                | зач   |   |
| Общая трудоемкость час                                                | 396         | 216                | 180   |   |
| В т.ч. контактная работа                                              | 246         | 138,5              | 106,5 |   |
| зач. ед.                                                              | 11          | 6                  | 5     |   |

#### 2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 3 семестре:

Разделы дисциплины, изучаемые в 3 семестре

|    | т азделы дисциплины, изучаемые в 5 семестре | Количество часов |                      |     |    |                       |
|----|---------------------------------------------|------------------|----------------------|-----|----|-----------------------|
| №  | Наименование разделов                       |                  | Аудиторная<br>работа |     |    | Внеаудит орная работа |
|    |                                             |                  | Л                    | КСР | ЛР | CPC                   |
| 1  | 2                                           | 3                | 4                    | 5   | 6  | 7                     |
| 1. | Основные алгоритмические стратегии          | 20               | 8                    |     | 8  | 4                     |
| 2. | Динамические структуры данных               | 24               | 10                   |     | 10 | 4                     |
| 3. | Конструирование структур данных             | 34               | 12                   | 2   | 12 | 8                     |
| 4. | Списковые структуры                         | 28               | 12                   |     | 12 | 4                     |
| 5. | Понятие сортировки. Методы сортировки       | 33,8             | 14                   |     | 14 | 5,8                   |
| 6. | Типы данных нелинейной структуры.           | 32               | 12                   |     | 12 | 8                     |
|    | Итого по разделам дисциплины                | 179,8            | 68                   | 2   | 68 | 42                    |
|    | Подготовка к экзамену                       | 35,5             |                      |     |    |                       |
|    | ИКР                                         | 0,5              |                      |     |    |                       |
|    | Итого по дисциплине:                        | 216              |                      |     |    |                       |

Разделы дисциплины, изучаемые 4 семестре

|   | Наименование разделов                  |       | Количество часов     |     |     |                             |  |
|---|----------------------------------------|-------|----------------------|-----|-----|-----------------------------|--|
| № |                                        |       | Аудиторная<br>работа |     |     | Внеаудит<br>орная<br>работа |  |
|   |                                        |       | Л                    | КСР | ЛР  | CPC                         |  |
| 1 | 2                                      | 3     | 4                    | 5   | 6   | 7                           |  |
| 1 | Алгоритмы на графах                    | 65    | 20                   |     | 34  | 11                          |  |
| 2 | Доказательство правильности алгоритмов | 69,8  | 14                   | 4   | 34  | 17,8                        |  |
|   | Итого по разделам дисциплины           | 134,8 | 34                   | 4   | 68  | 29                          |  |
|   | Подготовка к экзамену                  |       |                      |     |     |                             |  |
|   | ИКР                                    | 0,5   |                      |     |     |                             |  |
|   | Итого:                                 |       | 34                   | 4   | 68  | 28,9                        |  |
|   | Итого по дисциплине:                   | 396   | 102                  | 6   | 136 | 71                          |  |

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

### 2.3 Содержание разделов дисциплины:

# 2.3.1 Занятия лекционного типа.

| No | Наименование<br>раздела                     | Содержание раздела                                                                                                                                                                                                                                                                             | текущего | Разрабо тано с участие м предста вителей работод ателей |
|----|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------|
| 1  | 2                                           | 3                                                                                                                                                                                                                                                                                              | 4        |                                                         |
| 1. | Основные алгоритмические стратегии          | Что такое решение задачи? Понятие абстракции, абстрактного типа данных (АТД). Массив как АТД. Спецификация АТД. Типы данных, структуры данных и алгоритмы. Реализация АТД. Указатели. Объектно-ориентированное программирование и С++. Шаблоны, классы.                                        | ЛР       |                                                         |
| 2. | Динамические<br>структуры данных            | Понятие о динамической структуре данных, примеры алгоритмов                                                                                                                                                                                                                                    | ЛР       |                                                         |
| 3. | Конструирование структур данных             | Характеристики различных структур данных, методы их создания и представления в памяти                                                                                                                                                                                                          | ЛР       |                                                         |
| 4. | Списковые<br>структуры                      | Типы данных линейной структуры с прямым доступом к данным. Типы данных линейной структуры с последовательным доступом к данным: Стеки, Очереди, Очереди приоритетов, Дек, Связанные линейные списки, Односвязный линейный список, Циклические списки, Двусвязный линейный список. Мультисписки | ЛР       |                                                         |
| 5. | Понятие<br>сортировки.<br>Методы сортировки | Сортировка. Алгоритмы сортировка массивов:<br>Сортировка посредством выбора, Сортировка обменом                                                                                                                                                                                                |          |                                                         |

|    |                                        | Поиск: Последовательный поиск, Бинарный поиск.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
|----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 6. | Типы данных нелинейной структуры.      | Деревья. Терминология деревьев. Способы отображения деревьев. Двоичные (бинарные) деревья. Структура бинарного дерева. Идеально сбалансированные деревья. Двоичные деревья выражений. Деревья двоичного поиска. Операции с двоичными деревьями: поиск по дереву, алгоритмы обхода дерева, копирование и удаление деревьев, удаление из дерева. Бинарные деревья, представляемые массивами. Оптимальные деревья поиска. Сбалансированные деревья. Основные определения. Узлы AVL-дерева. Включение в сбалансированное дерево. Повороты. Удаление из сбалансированного дерева. |    |  |
| 7. | .Алгоритмы на<br>графах                | Основные понятия и определения. Способы задания графов. Алгоритмы на графах. Поиск в глубину. Поиск в ширину. Оптимизационные алгоритмы. Кратчайшие пути. Достижимость и алгоритм Уоршолла. Кратчайшие пути между всеми парами вершин. Нахождение центра ориентированного графа.                                                                                                                                                                                                                                                                                             |    |  |
| 8. | Доказательство правильности алгоритмов | Методы доказательства правильности программ.<br>Сложность алгоритмов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ЛР |  |

#### 2.3.2 Занятия семинарского типа

Учебным планом не предусмотрены.

2.3.3 Лабораторные занятия

| Ziele viuoopuropiisie suimiim |            |                                                   |  |  |
|-------------------------------|------------|---------------------------------------------------|--|--|
| No                            | № раздела  | Наименование лабораторных работ                   |  |  |
| работы                        | дисциплины | Панменование засораторных расст                   |  |  |
| 1                             | 1          | Полустатические структуры данных                  |  |  |
| 2                             | 1          | Списковые структуры данных                        |  |  |
| 3                             | 1          | Бинарные деревья (создание и обход)               |  |  |
| 4                             | 2          | Исследование методов линейного и бинарного поиска |  |  |
| 5                             | 2          | Исследование методов оптимизации поиска           |  |  |
| 6                             | 2          | Поиск по дереву с включением и исключением        |  |  |
| 7                             | 2          | Сортировки методами прямого включения и выбора    |  |  |
| 8                             | 3          | Сортировки методами прямого включения и выбора    |  |  |
| 9                             | 3          | Улучшенные методы сортировки                      |  |  |
| 10                            | 3          | Алгоритмы на графах                               |  |  |
| 11                            | 3          | Определение сложности алгоритмов                  |  |  |

# **2.3.4** Примерная тематика курсовых работ (проектов) Курсовые работы не предусмотрены.

### 2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

| № | Вид СРС | Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы |
|---|---------|-------------------------------------------------------------------------------------------|
| 1 | 2       | 3                                                                                         |

| 1 | Выполнение     | Королев Л.Н., Миков А.И. Информатика. Введение в        |
|---|----------------|---------------------------------------------------------|
|   | индивидуальных | компьютерные науки: учебник для студентов вузов . – М.: |
|   | заданий        | Абрис, 2012                                             |

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

#### 3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

| Семестр | Вид занятия (Л, ПР, ЛР) | Используемые интерактивные образовательные технологии                           | Количество часов |
|---------|-------------------------|---------------------------------------------------------------------------------|------------------|
|         | Л                       | Компьютерные презентации и обсуждение                                           | 18               |
| A       |                         | Разбор конкретных ситуаций (задач),                                             | 10               |
|         | ЛР                      | тренинги по решению задач, компьютерные симуляции (программирование алгоритмов) | 18               |
| Итого:  | 36                      |                                                                                 |                  |

## 4.ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### 4.1 Фонд оценочных средств для проведения текущего контроля

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения заданий, лабораторных работ, средств для промежуточной и итоговой аттестации (экзамен в 6 семестре).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- оценки, выставляемой при сдаче индивидуальных расчетно-графических заданий;
- оценок коллоквиума;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

#### 4.2 Фонд оценочных средств для проведения промежуточной аттестации

#### Текущий контроль

Текущий контроль изучения дисциплины состоит из следующих видов:

• контроль за своевременным и правильным выполнением лабораторных работ контроль усвоения теоретического материала — проведение контрольных работ по темам раздела 1-8.

По результатам проведенных видов контроля формируется допуск студента к итоговому

#### Тематика заданий на контрольную работу

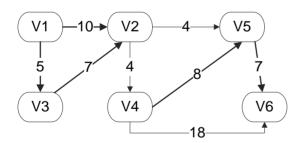
- 1. Дать определения следующим понятиям: алгоритм, структура данных
- 2. Классификация структур данных. Классификация сложных структур по организации взаимосвязей между элементами.
- 3. Вычислительная сложность алгоритма. Знать какая вычислительная сложность больше константная, квадратичная, логарифмическая, экспоненциальная, факториальная. Обозначение вычислительной сложности алгоритма. Что такое вычислительная сложность в лучшем и худшем случае. Чем объясняется различная алгоритмическая сложность алгоритмов.
- 4. .NetFramework Платформа. Каким образом достигается возможность разработки кроссплатформенных приложений. Код MSIL, native код, JIT ккомпилятор.
  - 5. Пространство имен. Смотреть примеры из лекции, задания будут подобные.
- 6. Понятие класса. Описание класса на языке с#. Методы и атрибуты класса. Задания на описание класса и заголовков=прототипов методов и атрибутов. Секции доступа Private, public, protected. Наследование, как описывается на С#. Конструктор класса.
- 7. Переменные ссылочного типа и обычные. В чем разница. Задания по участку кода определить, какие переменные указаны.
- 8. Сортировка массивов. Знать три вида простых сортировок и их алгоритмическую сложность. А также сортировка шелла и быстрая сортировка. Знать вычислительную сложность быстрой сортировки. Знать алгоритм быстрой сортировки. Т.е. не программный код, а как работает алгоритм.
- 9. Список. Виды списков. Способы задания списков. Вопрос, почему используется класс при работе со списками, а не структура (struct) при реализации на языке С#. Какое действие нельзя выполнять со структурой.
- 10. Знать, как определить список при помощи класса одного и двух. Практическое задание на разработку программного кода по этой части касаются работы со ссылками next, prev. Т.е. работа со ссылками.
- 11. Стек, основные операции в стеке. Как реализовать стек, способы и их достоинства и недостатки.
- 12. Очередь. Добавление и удаление из очереди. Как реализовать очередь, способы и их достоинства и недостатки.
- 13. Графы. Определение. Способы задания графа. Чем граф отличается от дерева. Что такое циклический граф, ориентированный и неориентированный. Поиск в глубину и ширину. Ориентированный и неориентированный граф. Взвешенный граф.
- 14. Кратчайший путь в графе от вершины. Алгоритм Дейкстры. Знать, как работает алгоритм. Практические задания касаются итераций работы алгоритма на примере.

### Перечень вопросов, которые выносятся на экзамен

- 1. Понятие данных и структуры данных. Логическая и физическая структура данных.
- 2. Классификация структур данных.
- 3. Целый тип данных: диапазон допустимых значений, представление в памяти ЭВМ, допустимые операции.
- 4. Вещественный тип данных: диапазон допустимых значений, представление в памяти ЭВМ, допустимые операции.

- 5. Символьный и логический типы: диапазон допустимых значений, представление в памяти ЭВМ, допустимые операции.
- 6. Перечисляемый тип данных: описание, примеры использования.
- 7. Интервальный тип пользователя данных: описание, примеры использования.
- 8. Составные статические структуры данных. Вектор. Физическая структура вектора.
- 9. Двумерный массив и его представление в памяти.
- 10. Операции над структурами данных.
- 11. Записи и таблицы. Представление их в памяти ЭВМ.
- 12. Множества. Операции над множествами.
- 13. Строки и их представление в памяти ЭВМ.
- 14. Указательный тип данных. Типизированные и не типизированные указатели.
- 15. Динамическая память. Основные процедуры и функции работы с динамическими переменными.
- 16. Списки. Однонаправленные списки. Типовые операции над однонаправленными списками
- 17. Двунаправленные списки. Вставка и удаление элементов в двунаправленном списке
- 18. Понятие стека. Стек на основе однонаправленных списков. Типовые операции над стеком.
- 19. Понятие очереди. Очередь на основе однонаправленных списков. Типовые операции над очередями
- 20. Эффективность алгоритмов.
- 21. Классификация алгоритмов по их эффективности
- 22. Понятие рекурсии. Преимущества и недостатки использования рекурсии. Примеры рекурсивных алгоритмов.
- 23. Поиск данных. Алгоритм линейного поиска и оценка его эффективности
- 24. Алгоритм бинарного поиска и оценка его эффективности
- 25. Алгоритм сортировки выбором и оценка его эффективности.
- 26. Алгоритмы сортировки обменом и оценка его эффективности.
- 27. Алгоритмы сортировки вставками и оценка его эффективности.
- 28. Адгоритм быстрой сортировки и оценка его эффективности.
- 29. Рандомизированные алгоритмы. Аппаратные и программные генераторы случайных чисел. Линейные конгруэнтные ГСЧ.
- 30. Применение ГСЧ. Метод Монте-Карло.
- 31. Понятия и цели сортировки.
- 32. Сортировки массивов и сортировки файлов. Терминология.
- 33. Требования к методам сортировки массивов. Меры эффективности.
- 34. Сортировка простыми включениями.
- 35. Сортировка бинарными включениями.
- 36. Сортировка простым выбором.
- 37. Метод «пузырька».
- 38. Шейкер-сортировка.
- 39. Сортировка включениями с убывающим приращением (сортировка Шелла).
- 40. Сортировка с помощью дерева.
- 41. Пирамидальная сортировка.
- 42. Сортировка с разделением (быстрая сортировка).
- 43. Сравнение методов сортировки.
- 44. Сортировка последовательных файлов.
- 45. Простое слияние.
- 46. Рекурсия, терминология.
- 47. Примеры задач, когда не нужно использовать рекурсию.
- 48. Построение кривых Гильберта.
- 49. Построение кривых Серпинского.
- 50. Алгоритмы с возвратом.
- 51. Задача о ходе коня.

- 52. Задача о восьми ферзях.
- 53. Задача об устойчивых браках.
- 54. Задача оптимального выбора.
- 55. Статические и динамические структуры данных. Ссылки.
- 56. Связанные списки. Просмотр связанного списка.
- 57. Очереди.
- 58. Общий алгоритм добавления и исключения.
- 59. Рекурсивная обработка списков.
- 60. Двусвязные кольца.
- 61. Деревья. Двоичные деревья. Деревья общего вида.


#### Примеры экзаменационных билетов

#### Экзаменационный билет № \_\_\_

- 1. Алгоритмическое исследование модели. Основной имитационный алгоритм. Модель получения информации
- 2. Рекурсия, терминология.
- 3. Задачи

# Примеры экзаменационных заданий:

- 1. Двунаправленные списки. Вставка и удаление элементов в двунаправленном списке. Понятие стека. Стек на основе однонаправленных списков. Типовые операции над стеком.2.
- 2. Анализ сложности алгоритма быстрой сортировки. Минимальная и максимальная сложности.
- 3. Дан граф. Из вершины 1 выполняется поиск кратчайших расстояний при помощи алгоритма Дейкстры. Опишите первую и вторую итерацию данного алгоритма.



## Критерии оценивания:

#### Критерии оценивания к зачету:

Оценка "зачтено" - Практические задания выполнены в срок в объеме не менее 80%. Студент демонстрирует правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при аргументации ответов на вопросы при защите лабораторных.

Оценка «не зачтено» - Практические задания не выполнены либо предоставлены не в срок в объеме менее 60%, Студент демонстрирует наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

#### Критерии оценивания к экзамену

- 84-100 баллов (оценка «отлично») изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой; Практические задания выполнены в срок в полном объеме.
- 67-83 баллов (оценка «хорошо») наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности. Практические задания выполнены в срок в объеме не менее 80%.
- 50-66 баллов (оценка удовлетворительно) наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике; Практические задания выполнены в объеме не менее 60%.
- 0-49 баллов (оценка неудовлетворительно) ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы». Практические задания не выполнены либо предоставлены не в срок в объеме менее 50%.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

## 5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1.Основная литература:

- 1. Королев Л.Н., Миков А.И. Информатика. Введение в компьютерные науки: учебник для студентов вузов. М.: Абрис, 2012. 367 с. (112 экз. в библиотеке КубГУ).
- 2. Зюзьков, В.М. Математическая логика и теория **алгоритм**ов : учебное пособие / В.М. Зюзьков ; Министерство образования и науки Российской Федерации, Томский Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР). Томск : Эль Контент, 2015. 236 с. ISBN 978-5-4332-0197-2 ; То же [Электронный ресурс]. URL: <a href="http://biblioclub.ru/index.php?page=book&id=480935">http://biblioclub.ru/index.php?page=book&id=480935</a>

#### 5.2.Дополнительная литература:

- 1. Миков А.И., Лапина О.Н. Сложность алгоритмов и задач Краснодар: Кубанский государственный университет, 2013. 99 с. (30 экз. в библиотеке КубГУ).
- 2. Быкова, В.В. Комбинаторные **алгоритмы**: множества, графы, коды : учебное пособие / В.В. Быкова ; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет. Красноярск : Сибирский федеральный университет, 2015. 152 с. : табл., ил. Библиогр.: с. 120-121. ISBN 978-5-7638-3155-9 ; То же [Электронный ресурс]. URL: <a href="http://biblioclub.ru/index.php?page=book&id=435666">http://biblioclub.ru/index.php?page=book&id=435666</a>

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах

- 1. ЭБС Издательства «Лань» http://e.lanbook.com,
- 2. ЭБС «Университетская библиотека онлайн» www.biblioclub.ru,
- 3. ЭБС «Юрайт» http://www.biblio-online.ru,
- 4. 3FC «ZNANIUM.COM» www.znanium.com,
- 5. 9EC «BOOK.ru» <a href="https://www.book.ru">https://www.book.ru</a>.

### 6. Методические указания для обучающихся по освоению дисциплины

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал для получения теоретических сведений, для выполнения лабораторных работ и подготовки к экзамену.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников и методических указаний автора курса.

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

# 7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

#### 7.1 Перечень информационных технологий.

- Проверка домашних заданий и консультирование посредством электронной почты.
- –Использование электронных презентаций при проведении лекций и практических занятий.

# 7.2 Перечень необходимого программного обеспечения Программное обеспечение

Трансляторы языка С++.

### 7.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

# 8. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

| №  | Вид работ                                  | Материально-техническое обеспечение дисциплины (модуля) и оснащенность                                                                                                                                                                                                                          |
|----|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Лекционные занятия                         | Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО) PowerPoint. ayд. 129, 131, A305.                                                                                                                 |
| 2. | Лабораторные занятия                       | Лаборатория, укомплектованная специализированными техническими средствами обучения — компьютерный класс, с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета. (лаб. 102-106.). |
| 3. | Групповые (индивидуальные) консультации    | Аудитория, (кабинет) – компьютерный класс                                                                                                                                                                                                                                                       |
| 4. | Текущий контроль, промежуточная аттестация | Аудитория, приспособленная для письменного ответа при промежуточной аттестации.                                                                                                                                                                                                                 |
| 5. | Самостоятельная работа, контрольная работа | Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.                                                      |