МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 61.0.08 «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ»

Направление подготовки/специальность_02.03.02 <u>Фундаментальная</u> информатика и информационные технологии_____

(код и наименование направления подготовки/специальности)

Направленность (профиль) /
специализация Вычислительные технологии
наименование направленности (профиля) специализации)
Программа подготовки _академический бакалавриат (академическая /прикладная)
Форма обучения очная
(очная, очно-заочная, заочная)
Квалификация (степень) выпускника бакалавр

Краснодар 2019

Рабочая программа дисциплины Б1.О.08 «Интегральное исчисление» составлена в соответствии с образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Программу составил(а):

Кособуцкая Екатерина Владимировна, доцент, к. физ.-мат. н.

Ф.И.О., должность, ученая степень, ученое звание

/ подпись

Рабочая программа дисциплины Б1.О.08 «Интегральное исчисление» утверждена на заседании кафедры Вычислительных Технологий протокол № 7 «26 » апреля 2019 г.

Заведующий кафедрой (разработчика) Вишняков Ю.М

(фамилия, инициалы)

подпись

Утверждена на заседании учебно-методической комиссии факультета Компьютерных Технологий и Прикладной Математики

протокол № 1 от <u>«15» мая 2019</u> г

Председатель УМК факультета

Коваленко А.В.

подпись

фамилия, инициалы

Рецензенты:

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук.

Зайков В.П. Ректор НЧОУ ВО «Кубанский институт информзащиты» д.экон. наук, к.т.н., доцент.

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Цели изучения дисциплины определены государственным образовательным стандартом высшего профессионального образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная информатика», в рамках которой преподается дисциплина.

Интегральное исчисление — общеобразовательная математическая дисциплина, объектом изучения которой являются бесконечно большие и бесконечно малые величины, функции, производные и интегралы функций. Язык математического анализа и его методы используют для описания законов природы, разнообразных процессов в технике, экономике и обществе. Владение основами дифференциального исчисления необходимо для освоения методов оптимизации, исследования и решения дифференциальных уравнений и других математических дисциплин.

1.2 Задачи дисциплины

Задачи:

- -освоение методов исследования локальных свойств функций;
- –применение методов дифференциального и интегрального исчислений при моделировании процессов и систем;
- применение научных знаний анализа функций действительных переменных для моделирования и исследования динамических процессов;
- -разработка методов и алгоритмов решения оптимизационных задач;
- -способность изучать современную научно-техническую литературу.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Интегральное исчисление» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина «Интегральное исчисление» тесно связана с другими: алгебра и геометрия, дифференциальные уравнения, теория вероятностей и математическая статистика, теория систем и системный анализ, физика, численные методы, концепции современного естествознания, уравнения математической физики.

В совокупности изучение этой дисциплины готовит обучаемых к различным видам практической, научно-теоретической и исследовательской деятельности.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных компетенций (ОПК)

№	Код и наименование	Индикатор	ы достижения ко	мпетенции
п.п.	компетенции	знает	умеет	владеет
1.	ОПК-1: Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной	методы интегрального исчисления, применяемые для моделировании состояний систем.	Самостоятель но приобретать и использовать в практической деятельности новые знания и умения, стремится к	языком анализа функций при описании законов естествознания в смежных областях научных
	деятельности		саморазвитию.	интересов.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 5 зач. ед. (180 часов), их

распределение по видам работ представлено в таблице (для студентов ОФО)

Вид учебн	юй работы	Всего		Семе	естры	
		Часов		(ча	сы)	
				2	3	
Контактная работа, в то	Контактная работа, в том числе:					
Аудиторные занятия (вс	его):					
Занятия лекционного типа		34	34			
Лабораторные занятия		50	50			
Занятия семинарского тип	а (семинары,					
практические занятия)		-	_			
Иная контактная работа	•					
Контроль самостоятельной	й работы (КСР)	2	2			
Промежуточная аттестаци	я (ИКР)	0,5	0,5			
Самостоятельная работа	, в том числе:					
Курсовая работа		-	-			
Проработка учебного (те	оретического) материала	49	49			
Выполнение индивидуальн						
сообщений, презентаций)		-	_			
Реферат		-	-			
Подготовка к текущему ко	онтролю	-	-			
Контроль:						
Подготовка к экзамену	44,5	44,5				
Общая трудоемкость	час.	180	180			
-	в том числе контактная	96.5	96 F			
	работа	86,5	86,5			
	зач. ед	5	5			

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в _1__ семестре *(очная форма)*

	Наименование разделов (тем)		Ко	личеств	о часов	
№			Аудиторная работа			Внеаудит орная работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Функции многих переменных. Пределы, непрерывность	14	2	-	6	6
2.	Частные производные и полный дифференциал функции многих переменных.	18	6	-	6	6
3.	Экстремумы функции многих переменных. Исследование функций многих переменных.	20	6	-	6	8
4.	Первообразная функции и неопределенный интеграл.	22	6	-	8	8
5.	Методы вычисления неопределенных интегралов.	20	4	-	8	8

6.	Определенный интеграл Римана. Формула Ньютона – Лейбница.	20	4	-	8	8
7.	Приложения определенного интеграла.		6	1	8	5
	ИТОГО по разделам дисциплины	133	34	1	50	49
	Контроль самостоятельной работы (КСР)	2				
	Промежуточная аттестация (ИКР)	0,5				
	Подготовка к текущему контролю	44,5				
	Общая трудоемкость по дисциплине	180				·

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины 2.3.1 Занятия лекционного типа

No	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1.	Функции многих переменных. Пределы, непрерывность	Основные понятия функций многих переменных. Пределы. Непрерывность.	1. Коллоквиум 2. Зачет 3. Экзамен
2.	Частные производные и полный дифференциал функции многих переменных.	Частные производные. Полный дифференциал. Дифференцирование сложных функций. Дифференцирование неявных функций Производные и дифференциалы высших порядков.	1. Коллоквиум 2. Зачет 3. Экзамен
3.	Экстремумы функции многих переменных. Исследование функций многих переменных.	Экстремумы функций многих переменных. Методы исследования функций многих переменных.	1. Коллоквиум 2. Зачет 3. Экзамен
4.	Первообразная функции и неопределенный интеграл.	Определение понятия неопределенного интеграла. Таблицы интегралов. Непосредственное интегрирование. Интегрирование рациональных функций.	1. Коллоквиум 2. Зачет 3. Экзамен
5.	Методы вычисления неопределенных интегралов.	Метод подстановки. Метод интегрирования по частям. Примеры. Рекуррентные формулы. Примеры. Интегрирование простейших иррациональностейИнтегрирование тригонометрических и гиперболических функций.	1. Коллоквиум 2. Зачет 3. Экзамен
6.	Определенный	Понятие определенного интеграла Свойства	1. Коллоквиум

	D	Ф И	2 2
	интеграл Римана.	определенного интеграла. Формула Ньютона-	2. Зачет
	Формула Ньютона –	Лейбница. Интегрирование по частям в	3. Экзамен
	Лейбница.	определенном интеграле. Длина дуги плоской	
		кривой. Площадь плоской фигуры. Площадь	
		криволинейной трапеции и криволинейного	
		сектора. Понятие кубируемости и объема.	
		Площадь поверхности вращения, ее	
		вычисление. Физические приложения	
		определенных интегралов. Приближенные	
		вычисления определенных интегралов.	
		Понятие несобственных интегралов 1- го и 2-	
		го рода. Формулы интегрального исчисления	
		для несобственных	
		Понятие определенного интеграла Свойства	
		определенного интеграла. Формула Ньютона-	
		Лейбница. Интегрирование по частям в	
		1 1	
		определенном интеграле.	1 10
7.		Длина дуги плоской кривой. Площадь плоской	1. Коллоквиум
		фигуры. Площадь криволинейной трапеции и	2. Зачет
		криволинейного сектора. Понятие	3. Экзамен
		кубируемости и объема. Площадь	
	Приложения	поверхности вращения,ее вычисление.	
	определенного	Физические приложения определенных	
	интеграла.	интегралов. Приближенные вычисления	
	pula.	определенных интегралов.	
		Понятие несобственных интегралов 1- го и 2-	
		го рода. Формулы интегрального исчисления	
		для несобственных	

2.3.2 Занятия семинарского типа не предусмотрены

2.3.3 Лабораторные занятия

№	Наименование раздела (темы)	Тематика лабораторных занятий	Форма текущего контроля
1	2	3	4

1.	Функции многих переменных. Пределы, непрерывность	Область определения функций нескольких переменных. Окрестность точки на плоскости, - Окрестность бесконечности на плоскости. Окрестность точки в пространстве. Окрестность бесконечности в пространстве . Линии и поверхности уровня функций двух и трёх переменныхокрестность точки в пространстве. Предел функции двух и трёх переменных. Непрерывность в точке и в ограниченной замкнутой области.	1. Контрольная работа 2. Зачет 3. Экзамен
2.	Частные производные и полный дифференциал функции многих переменных.	Частные приращения функции. Частные производные высших порядков. Полное приращение функции двух и трёх переменных. Определение полного дифференциала. Теорема о связи существования полного дифференциала и частных производных функции. Полные дифференциалы высших порядков. Дифференцирование сложных функций, заданных неявно. Касательная плоскость и нормаль к поверхности.	1. Контрольная работа 2. Зачет 3. Экзамен
3.	Экстремумы функции многих переменных. Исследование функций многих переменных.	Необходимое условие экстремума функции нескольких переменных. Достаточное условие экстремума функции нескольких переменных. Достаточное условие экстремума функции двух переменных. Наибольшее и наименьшее значения функции двух переменных, непрерывной в ограниченной замкнутой области.	 Контрольная работа Зачет Экзамен
4.	Первообразная функции и неопределенный интеграл.	Понятие неопределенного интеграла, свойства неопределенного интеграла. Таблица основных интегралов.	1. Контрольная работа 2. Зачет 3. Экзамен
5.	Методы вычисления неопределенных интегралов.	Конкретные подстановки (линейная, тригонометрические, метод логарифмической производной). Интегрирование по частям. Рекуррентные формулы. Интегрирование элементарных дробей (4 типа). Интегрирование рациональных функций (метод неопределённых коэффициентов). Интегрирование дробнолинейных и квадратичных иррациональностей. Интегрирование дифференциального бинома. Интегрирование тригонометрических и трансцендентных функций.	1. Контрольная работа 2. Зачет 3. Экзамен
6.	Определенный интеграл Римана. Формула Ньютона — Лейбница.	Понятие определённого интеграла Римана. Критерии интегрируемости. Некоторые классы интегрируемых функций. Свойства определённого интеграла. Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменной в определённом интеграле. Спрямляемые и гладкие кривые. Длина дуги плоской кривой. Квадрируемые фигуры.	1. Контрольная работа 2. Зачет 3. Экзамен

		Вычисление площади квадрируемой плоской	
		фигуры. Площади криволинейной трапеции и	
		криволинейного сектора. Понятия кубируемости	
		и объёма. Вычисление объёмов. Объём тела	
		вращения. Площадь поверхности вращения и её	
		вычисление. Физические приложения	
		определённого интеграла (масса стержня,	
		моменты массы, центр тяжести). Приближённое	
		вычисление определённых интегралов.	
7.		Криволинейные интегралы 1-го рода.	1. Контрольная
		Геометрический и физический смысл.	работа
		Криволинейные интегралы 2-го рода. Работа	2. Зачет
		силы. Связь между кривволиинейными	3. Экзамен
	Приложения	интегралами 1-го и 2-го рода. Ориентация	
	определенного	кривой. Формула Грина. Условия независимости	
	интеграла.	криволинейного интеграла 2-го рода от пути	
		интегрирования. Интеграл по замкнутой кривой.	
		Необходимое условие независимости. Критерий	
		независимости криволинейного интеграла 2-го	
		рода от пути интегрирования.	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Функции нескольких переменных. Предварительные сведения. Предел функции нескольких переменных. Непрерывная функция многих переменных. Теорема об ограниченности функции. Равномерная непрерывность.	Основы математического анализа [Электронный ресурс] : учебник : в 2 т. Т. 2 / Фихтенгольц Г. М СПб. : Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.
2.	Частная производная и производная по направлению. Производная сложной функции. Полный	Основы математического анализа [Электронный ресурс] : учебник : в 2 т. Т. 2 / Фихтенгольц Г. М СПб. : Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.

	дифференциал. Касательная плоскость. Геометрический смысл дифференциала.	
3.	Экстремумы функции многих переменных. Исследование функций многих переменных.	Основы математического анализа [Электронный ресурс] : учебник : в 2 т. Т. 2 / Фихтенгольц Г. М СПб. : Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.
4.	Первообразная функции и неопределенный интеграл. Таблица основных интегралов. Свойства непределенных интегралов. Простейшие правила интегрирования.	Основы математического анализа [Электронный ресурс]: учебник: в 2 т. Т. 2 / Фихтенгольц Г. М СПб.: Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.
5	Понятие определенного интеграла, его геометрический и экономический смысл. Свойства определенных интегралов. Интеграл как функция верхнего предела. Формула ньютона □ лейбница.	Основы математического анализа [Электронный ресурс]: учебник: в 2 т. Т. 2 / Фихтенгольц Г. М СПб.: Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.
6	Геометрические приложения определенного интеграла. Вычисление площади криволинейной трапеции. Вычисление площади поверхности и объема тела вращения.	Основы математического анализа [Электронный ресурс]: учебник: в 2 т. Т. 2 / Фихтенгольц Г. М СПб.: Лань, 2008 464 с https://e.lanbook.com/reader/book/411/#1.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

С точки зрения применяемых методов используются как традиционные информационно-объяснительные лекции, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематические обзоры теории функций и математического анализа.

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в традиционных аудиториях. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы. Это обусловлено тем, что в процессе исследования часто встречаются задачи, для которых единых подходов не существует. Каждая конкретная задача при своем исследовании имеет множество подходов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Текущий контроль знаний студентов представляет собой:

- выполнение домашних заданий;
- выполнение самостоятельной работы;
- проведение контрольных работ.

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания полученные во время лабораторных занятий. Для контроля знаний периодически проводятся аудиторные самостоятельные работы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

 при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

№ п/п	Контролируемые разделы (темы) дисциплины*	Код контролируемой компетенции (или ее части)	Наименование оценочного средства	
			Текущий контроль	Промежуточная аттестация
1	Функции многих переменных. Пределы, непрерывность	ОПК-1	Контрольная работа №5-	Вопрос на экзамене 1-3
2	Частные производные и полный дифференциал функции многих переменных.	ОПК-1	Контрольная работа №5-	Вопрос на экзамене 4-8
3	Экстремумы функции многих переменных. Исследование функций многих переменных.	ОПК-1	Контрольная работа №5-	Вопрос на экзамене 9-16
4	Первообразная функции и неопределенный интеграл.	ОПК-1	Контрольная работа №2-	Вопрос на экзамене 17-18
5	Методы вычисления неопределенных интегралов.	ОПК-1	Контрольная работа №1,3-	Вопрос на экзамене 19-20
6	Определенный интеграл Римана. Формула Ньютона – Лейбница.	ОПК-1	Контрольная работа №4-	Вопрос на экзамене 21-23
7	Приложения определенного интеграла.	ОПК-1	Контрольная работа №6-	Вопрос на экзамене 24-25

Показатели, критерии и шкала оценки сформированных компетенций

Код и наименование	Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания				
компетенций	пороговый	учения и критериям их о базовый	оценивания Продвинутый		
	пороговыи	Оценка	продвинутыи		
	Удовлетворительно /зачтено	Хорошо/зачтено	Отлично /зачтено		
ОПК-1:	Знает – базовые	Знает - основные	Знает –		
Способен	методы основные	методы основные	основные методы		
применять	понятия,	понятия,	основные понятия,		
фундаментальные	определения и	определения и	определения и свойства		
знания,	свойства объектов	свойства объектов	объектов интегрального		
полученные в	интегрального	интегрального	исчисления,		
области	исчисления,	исчисления,	формулировки и		
математических и	формулировки и	формулировки и	доказательства		
(или)	доказательства	доказательства	утверждений, методы их		
естественных	утверждений,	утверждений,	доказательства,		
наук, и	методы их	методы их	возможные сферы их связи		
использовать их в	доказательства,	доказательства,	и приложения в других		
профессиональной	возможные сферы	возможные сферы	областях математического		
деятельности	их связи и	их связи и	знания и дисциплинах		
	приложения в	приложения в	естественнонаучного		
	других областях	других областях	цикла; знаком с		
	математического	математического	нестандартными		
	знания и	знания и	подходами к решению		
	дисциплинах	дисциплинах	задач.		
	естественно-	естественно-			
	научного цикла;	научного цикла;			
	Умеет –	Умеет –	<i>Умеет</i> – доказывать		
	доказывать	доказывать	основные утверждения		
	базовые	базовые	математики, решать задачи		
	утверждения	утверждения	математики, применять		
	математики,	математики,	полученные навыки в		
	решать базовые	решать основные	других областях и		
	задачи математики,	задачи	дисциплинах естественно-		
	применять	математики,	научного цикла; проводить		
	полученные	применять	доказательства		
	навыки в других	полученные	нестандартным путем.		
	областях и	навыки в других			
	дисциплинах	областях и			
	естественно-	дисциплинах			
	научного цикла;	естественно-			
		научного цикла;			
	Владеет -	Владеет -	Владеет – (уверенно)		
	аппаратом	аппаратом	аппаратом математики,		
	математики,	математики,	базовыми методами		
	базовыми	основными	доказательства		
	методами	методами	утверждений, навыками		
	доказательства	доказательства	применения этого в других		
	утверждений,	утверждений,	областях и дисциплинах		
	навыками	навыками	естественнонаучного		
	применения этого в	применения этого	цикла. Демонстрирует		

других областях и	в других областях	дополнительные знания и
дисциплинах	и дисциплинах	эрудицию.
естественно-	естественно-	
научного цикла.	научного цикла.	

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

(Указать перечень заданий, круглый столов, кейсов при текущей аттестации, с указанием кодов оцениваемых компетенций)

Контрольная работа 1.

- 1. Разложить по формуле Тейлора $f(x) = x^x 1$ по степеням x 1 до членов 3-го порядка включительно;
- 2. Вычислить интегралы: $\int \frac{dx}{\sin^2 x \sqrt[4]{tg \ x}}; \int \frac{2x^2 + 42x 91}{(x 1)(x + 3)(x + 4)} dx;$
- 3. Исследовать сходимость $\int_{0}^{2} \frac{dx}{\sqrt[3]{x^3 8}}$;
- 4. Найти площадь фигуры, ограниченной кривыми $y = \log_2 x$, $y = \frac{2}{3}(x-1)$;
- 5. Вычислить объем тела, образованного вращением фигуры, ограниченной кривыми $y = \arcsin x$, y = 0, x = 1 вокруг оси Ox
- 6. Найти dy и d^2y неявно заданной функции y(x): $x^2y^2 + x^2 + y^2 1 = 0$
- 7. Исследовать на экстремум функцию $f(x, y, z) = 2x^2 + y^3 + z^2 + 2xz yz y$

Контрольная работа 2.

- 1. Представить функцию $f(x) = 2^{2x}$ в виде многочлена 3-й степени по степеням x, по формуле Тейлора.
- 2. Исследовать функцию $y = \frac{3-2x}{(x-2)^2}$
- 3. Найти экстремумы функции $z = 2x^3 + 6xy^2 30x 24y$.
- 4. Найти неопределенные интегралы $\int \frac{\arcsin x + 1}{\sqrt{1 x^2}} dx$; $\int \cos^3 x \, dx$.
- 5. Вычислить $\int_{0}^{1} x e^{-x} dx$; $\int_{1}^{4} \sqrt{x} dx$.

Контрольная работа 3

1. Вычислить
$$\int \frac{xdx}{\sqrt{1-3x^2-2x^4}}; \quad \int \max_{-4} (x-2,6-x-x^2)dx$$

2. Исследовать сходимость
$$\int_{-1}^{\infty} \frac{\cos^2 x dx}{\sqrt{1+x} \sqrt[3]{x^4+5}}$$

3. Вычислить объем тела, образованного вращением фигуры, ограниченной кривыми $y=4-x^2$, y=0, x=0, $x\ge 0$ вокруг оси Oy

Комплект заданий для зачета

1. Найти интегралы:

$$\int \frac{dx}{(2x-1)^{2}}; 2) \int e^{3-x} dx; 3) \int \frac{2dx}{4+x^{2}}; 4) \int \frac{dx}{\sqrt{1-9x^{2}}}; 5) \int \sin(3-4x) dx; 6)$$

$$\int \frac{dx}{\cos^{2}(x-5)}.$$

2. Найти интегралы:

$$\int \frac{x^2}{x^2+1} dx; 2) \int tg^2 x dx; 3) \int \frac{dx}{\sqrt{x+1}+\sqrt{x-1}}; 4) \int \frac{x^2}{(1-x)^{100}} dx.$$

3. Найти интегралы:

$$\int \frac{x dx}{1 + 4x^2} \int \sin^2 x dx \int \frac{\ln^3 x}{x} dx \int \frac{e^x dx}{1 - e^x} dx$$

4. Найти интегралы:

$$\int \frac{dx}{x^2 - 2x + 2}; 2) \int \frac{xdx}{x^4 - 2x^2 - 1}; 3) \int \frac{x+1}{x^2 + x + 1} dx \int \frac{xdx}{\sqrt{5 + x - x^2}}.$$

5. Найти интегралы:

1)
$$\int \frac{2x+3}{(x-2)(x+5)} dx$$
; 2) $\int \frac{xdx}{(x+1)(x+2)(x+3)}$; 3) $\int \frac{dx}{x^3+1}$.

6. Найти интегралы:

$$\int \frac{dx}{3+2\sqrt{x}} \int \frac{dx}{1+\sqrt{2x+1}} \int \frac{x^2}{\sqrt{2-x}} dx$$

7. Найти интегралы:

1)
$$\int x \cos x dx$$
; 2) $\int x^2 \ln x dx$; 3) $\int \operatorname{arctg} x dx$; 4) $\int x e^{-x} dx$

8. Найти интегралы:

$$\int \frac{\sin x}{\cos^3 x} dx \int \cos^2 x dx \int \frac{dx}{\sin x} \int \sin 5x \cos x dx$$

9. Найти интегралы:

$$\int_{1}^{\sin x e^{x} dx} \int_{1}^{\frac{dx}{1+e^{x}}} \int_{1}^{\ln^{2} x dx}$$

- 10.Для функции $\mathbf{f}(\mathbf{x}) = \mathbf{x}$ на отрезке [0,1] построить интегральную сумму Римана и суммы Дарбу, разбивая этот отрезок на три равных отрезка.
- 11. Найти определенные интегралы:

$$\int_{0}^{1} \sqrt{1-x} dx \int_{0}^{\pi} \sin x dx \int_{0}^{\pi} \cos x dx \int_{0}^{\pi} \sin 2x dx$$
1) 0 ; 2) 0 ; 3) 0 4) $-\pi$.

12. Найти определенные интегралы:

$$\int_{0}^{\frac{\pi}{2}} x \cos x dx \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}; 3) \int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x} + 1} dx \int_{1}^{e} \frac{dx}{x(1 + \ln^{2} x)}.$$

- 13. Найти площадь области ограниченной прямыми $\mathbf{x} = -2$, $\mathbf{x} = -1$, $\mathbf{y} = 0$ и графиком функции $\mathbf{y} = \mathbf{x}^2 2\mathbf{x} + 3$.
- 14. Найти площадь области ограниченной графиками функций $y = x^2$ и y = 2 x.
- 15. Найти площадь области ограниченной графиками функций $y = \sin x$, y = x $y = \pi x$
- 16. Найти площадь области ограниченной эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - 1. Представить функцию $f(x) = 2^{2x}$ в виде многочлена 3-й степени по степеням x, по формуле Тейлора.
 - 2. Исследовать функцию $y = \frac{3-2x}{(x-2)^2}$
 - 3. Найти экстремумы функции $z = 2x^3 + 6xy^2 30x 24y$.
 - 4. Найти неопределенные интегралы $\int \frac{\arcsin x + 1}{\sqrt{1 x^2}} dx$; $\int \cos^3 x \ dx$.
 - 5. Вычислить $\int_{0}^{1} x e^{-x} dx$; $\int_{1}^{4} \sqrt{x} dx$.

Контрольная работа 5 (вариант задач).

1. Вычислить
$$\int \frac{xdx}{\sqrt{1-3x^2-2x^4}}; \quad \int \frac{3}{1-3} \max(x-2,6-x-x^2) dx$$

- 2. Исследовать сходимость $\int_{-1}^{\infty} \frac{\cos^2 x dx}{\sqrt{1+x} \sqrt[3]{x^4+5}}$
- 3. Вычислить объем тела, образованного вращением фигуры, ограниченной кривыми $y = 4 x^2$, y = 0, x = 0, $x \ge 0$ вокруг оси Oy
- 4. Найти $d^2 f(x, y)$ функции $f = \ln(1 + x + y)$ в точке M(0, 0)
- 5. Исследовать на экстремум функцию $f(x, y) = 2x^3 + 6xy^2 30x 24y$
- 1. Представить функцию $f(x) = 2^{2x}$ в виде многочлена 3-й степени по степеням x, по формуле Тейлора.
- 2. Исследовать функцию $y = \frac{3-2x}{(x-2)^2}$
- 3. Найти экстремумы функции $z = 2x^3 + 6xy^2 30x 24y$.
- 4. Найти неопределенные интегралы $\int \frac{\arcsin x + 1}{\sqrt{1 x^2}} dx$; $\int \cos^3 x \ dx$.
- 5. Вычислить $\int_{0}^{1} x e^{-x} dx$; $\int_{1}^{4} \sqrt{x} dx$.

Контрольная работа (вариант задач).

- 1. Найти двойным интегрированием объем тела ограниченного поверхностями: плоскостями координат, плоскостями x = 4 и y = 4 и параболоидом вращения $z = x^2 + y^2 + 1$.
- 2. Вычислить

$$\iint_S (y^2+z^2)ds$$
 , где S — часть поверхности $z=\sqrt{1-x^2}$, отсеченная плоскостями $y=0,\ y=1$.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Промежуточный контроль осуществляется в конце каждого семестра в форме зачета и экзамена.

Вопросы для подготовки к экзамену

- 1. Функции многих переменных. Примеры.
- 2. Предел функции многих переменных.
- 3. Непрерывная функция
- 4. Частные производные.
- 5. Производная по направлению.
- 6. Полное приращение. Дифференциалы. 1-го и 2-го порядков.
- 7. Геометрический смысл дифференциала.

- 8. Производная сложной функции. Градиент.
- 9. Формула Тейлора.
- 10. Множества открытые и замкнутые. Граничные точки.
- 11. Непрерывная функция на замкнутом ограниченном множестве.
- 12. Локальный экстремум.
- 13. Наибольшее и наименьшее значения.
- 14. Условный экстремум. Функция Лагранжа.
- 15. Теорема о неявной функции.
- 16. Касательная плоскость и нормаль к поверхности.
- 17. Неопределенный интеграл. Первообразная. Таблица основных интегралов.
- 18. Методы интегрирования. Интегрирование по частям. Замена переменных.
- 19. Интегрирование рациональных и иррациональных выражений.
- 20. Интегрирование тригонометрических выражений.
- 21. Суммы Дарбу. Свойства сумм Дарбу.
- 22. Определенный интеграл. Условие существования определенного интеграла.
- 23. Формула Ньютона-Лейбница. Замена переменной, интегрирование по частям.
- 24. Несобственные интегралы. Критерии сходимости. Аналогия с рядами.
- 25. Приложение интегралов. Площадь плоской фигуры. Объем тела. Объем и поверхность тела вращения. Длина дуги.

Перечень компетенций (части компетенции), проверяемых оценочным средством

ОПК-1

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии выставления оценок.

Оценка «отлично»:

- систематизированные, глубокие и полные знания по всем разделам дисциплины, а также по основным вопросам, выходящим за пределы учебной программы;
- точное использование научной терминологии систематически грамотное и логически правильное изложение ответа на вопросы;
- безупречное владение инструментарием учебной дисциплины, умение его эффективно использовать в постановке научных и практических задач;
- выраженная способность самостоятельно и творчески решать сложные проблемы и нестандартные ситуации;
- полное и глубокое усвоение основной и дополнительной литературы, рекомендованной учебной программой по дисциплине;
- умение ориентироваться в теориях, концепциях и направлениях дисциплины и давать им критическую оценку, используя научные достижения других дисциплин;
- -творческая самостоятельная работа на практических/семинарских/лабораторных занятиях, активное участие в групповых обсуждениях, высокий уровень культуры исполнения заданий;
- высокий уровень сформированности заявленных в рабочей программе компетенций.
 Оценка «хорошо»:
- достаточно полные и систематизированные знания по дисциплине;
- умение ориентироваться в основном теориях, концепциях и направлениях дисциплины и давать им критическую оценку;
- использование научной терминологии, лингвистически и логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;
- владение инструментарием по дисциплине, умение его использовать в постановке и решении научных и профессиональных задач;

- усвоение основной и дополнительной литературы, рекомендованной учебной программой по дисциплине;
- самостоятельная работа на практических занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий;
- средний уровень сформированности заявленных в рабочей программе компетенций.
 Оценка «удовлетворительно»:
- достаточный минимальный объем знаний по дисциплине;
- усвоение основной литературы, рекомендованной учебной программой;
- умение ориентироваться в основных теориях, концепциях и направлениях по дисциплине и давать им оценку;
- использование научной терминологии, стилистическое и логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок;
- владение инструментарием учебной дисциплины, умение его использовать в решении типовых задач;
- умение под руководством преподавателя решать стандартные задачи;
- работа под руководством преподавателя на практических занятиях, допустимый уровень культуры исполнения заданий;
- достаточный минимальный уровень сформированности заявленных в рабочей программе компетенций.

Оценка «неудовлетворительно»:

- фрагментарные знания по дисциплине;
- отказ от ответа (выполнения письменной работы); 20
- знание отдельных источников, рекомендованных учебной программой по дисциплине;
- неумение использовать научную терминологию;
- наличие грубых ошибок;
- низкий уровень культуры исполнения заданий;
- -низкий уровень сформированности заявленных в рабочей программе компетенций. Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.
- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации: Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингентаобучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Основы математического анализа [Электронный ресурс] : учебник : в 2 т. Т. 1 / Фихтенгольц Г. М. СПб. : Лань, 2015. 448 с. http://e.lanbook.com/books/element.php?pl1_id=65055.
- 2. **Сборник задач по математическому анализу** [Электронный ресурс] : учебное пособие. Т. 1 : Предел. Непрерывность. Дифференцируемость / Л. Д. Кудрявцев [и др.]. М. : ФИЗМАТЛИТ, 2010. 496 с. https://e.lanbook.com/book/2226#book_name.

5.2 Дополнительная литература:

- 1. Кудрявцев, Л. Д. Краткий курс математического анализа [Электронный ресурс]: учебник.
- Т. 1 : Дифференциальное и интегральное исчисления функций одной переменной. Ряды / Кудрявцев Л. Д. 4-е изд. М. : ФИЗМАТЛИТ, 2015. 444 с. http://znanium.com/catalog.php?bookinfo=854332.
- 2. Основы математического анализа [Электронный ресурс]: учебник: в 2 т. Т. 2 / Фихтенгольц Г. М. СПб.: Лань, 2008. 464 с. https://e.lanbook.com/reader/book/411/#1.

6. Методические указания для обучающихся по освоению дисциплины.

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, лабораторных занятий, позволяющих студентам в полной мере ознакомиться с понятием теории функций вещественной переменной и освоиться в решении практических задач.

Важнейшим этапом курса является самостоятельная работа по дисциплине «теория функций вещественной переменной».

Целью самостоятельной работы бакалавра является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

Самостоятельная работа студентов в ходе изучения дисциплины состоит в выполнении индивидуальных заданий, задаваемых преподавателем, ведущим лабораторные занятия, подготовки теоретического материала к лабораторным занятиям, на основе конспектов лекций и учебной литературы, согласно календарному плану и подготовки теоретического материала к тестовому опросу, зачету и экзамену, согласно вопросам к экзамену.

Указания по оформлению работ:

- работа на лабораторных занятиях и конспекты лекций могут выполняться на отдельных листах либо непосредственно в рабочей тетради;
- оформление индивидуальных заданий желательно на отдельных листах.

Проверка индивидуальных заданий по темам, разобранным на лабораторных занятиях, осуществляется через неделю на текущем лабораторном занятии, либо в течение недели после этого занятия на консультации.

Для разъяснения непонятных вопросов лектором и ассистентом еженедельно проводятся консультации, о времени которых группы извещаются заранее.

В освоении дисциплины инвалидами и лицами с ограниченными возможностямиздоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующиминдивидуализации обучения и установлению воспитательного контакта междупреподавателем и обучающимся инвалидом или лицом с ограниченными возможностямиздоровья.

- 7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.
- 7.1 Перечень информационных технологий.

Информационные технологии – не предусмотрены. 22

7.2 Перечень необходимого программного обеспечения.

Программное обеспечение - не предусмотрено.

7.3Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 3. Электронная библиотечная система «Университетская библиотека ONLINE» (http://www.biblioclub.ru)

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайм».

8. Материально-техническое обеспечение по дисциплине (модулю)

№	Вид работ	Наименование учебной аудитории, ее оснащенность оборудованием и техническими средствами обучения	
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска ауд. 129, 131, A3016, A305, A307	
2.	Лабораторные занятия	Аудитория, укомплектованная маркерной доской ауд. 147-150, 133	
3.	Групповые (индивидуальные) консультации	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133	
4.	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная маркерной доской Ауд. 147-150, 133	
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета Ауд. 102-А и читальный зал .	