Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе,

качеству образования – первый

проректор

Хагуров Т.А.

nodrines

2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.12.04 «ОПТИКА»

Направление подготовки

наноэлектроника»

11.03.04 «Электроника и

Направленность (профиль) Нанотехнологии в электронике

Программа подготовки Академический бакалавриат

Форма обучения Очная

Квалификация (степень) выпуска Бакалавр

Краснодар 2019

Рабочая программа дисциплины Б1.О.12.04 «Оптика» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.03.01 Радиотехника, профиль «Радиотехнические средства передачи, приема и обработки сигналов».

Программу составил: канд. физ.-мат. наук, доцент кафедры физики и информационных систем Скачедуб А.

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем «06» апреля 2018 г., протокол № 15.
Заведующий кафедрой (разработчика) Богатов Н.М.

Рабочая программа обсуждена на заседании кафедры радиофизики и нанотехнологий «27» марта 2018 г., протокол № 9. Заведующий кафедрой (выпускающей) Копытов Г.Ф.

Утверждена на заседании учебно-методической комиссии физико-технического факультета

«12» апреля 2018 г., протокол № 10.

Председатель УМК факультета Богатов Н.М.

Botatob 11111

Рецензенты:

В.А. Исаев, доктор физ.-мат. наук, заведующий кафедрой теоретической физики и компьютерных технологий физико-технического факультета ФГБОУ ВО «КубГУ»

Л.Р. Григорьян, кандидат физ.-мат. наук, ген. директор ООО НПФ «Мезон»

1 Цели и задачи изучения дисциплины

1.1 Цель освоения дисциплины

Данная дисциплина ставит своей целью изучение закономерностей излучения, поглощения и распространения света, формирование представлений о двойственной природе света, проявляющейся через свойства электромагнитных волн и квантов электромагнитного поля — фотонов и развить представление о современной физической оптике.

1.2 Задачи дисциплины

Основные задачи дисциплины – сформировать у студентов представление о современной физической оптике как математическом обобщении наблюдений, практического опыта и экспериментов, выявлять общие закономерности в ходе профессиональной деятельности с привлечением современного математического аппарата.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Оптика» является компонентом курса физики и входит в базовую часть математического и естественнонаучного цикла. Необходимыми предпосылками для успешного освоения курса является следующее. В цикле математических дисциплин: знание основ линейной алгебры и математического анализа, умение дифференцировать и интегрировать, разложить функцию в ряд Тейлора, решать простейшие дифференциальные уравнения, владеть элементами векторного анализа, включая хорошее понимание интегральных теорем Остроградского-Гаусса и Стокса.

В цикле общефизических дисциплин необходимыми предпосылками являются знание основ классической механики, молекулярной физики, электричества и магнетизма, аналитической геометрии.

В свою очередь, разделы курса «Оптика» являются основой для изучения общетехнических и инженерных дисциплин, таких как «Основы атомной физики», «Основы ядерной физики» и других.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной дисциплины направлен на формирование следующих у обучающихся

следующих компетенций: ОПК 1, ОПК-2.

№	Индекс	Содержание компетенции (или её		изучения учебной д бучающиеся должны	
п.п.	компетенции	части)	знать	уметь	владеть
1.	ОПК-1	Способностью	Законы	Применять	Практическими
		представлять	излучения,	полученные	навыками
		адекватную	поглощения,	знания для	работы с
		современному	распространени	решения	оптическими
		уровню знаний	я света и	физических	устройствами,
		научную картину	описывающие	задач.	обработки
		мира на основе	ИХ		данных
		знания основных	математические		оптических
		положений, законов	соотношения,		измерений,
		и методов	единицы		выполнения
		естественных наук и	измерения		расчетов,
		математики.	оптических		решения задач.
			величин,		

No	Индекс	Содержание компетенции (или её		изучения учебной д бучающиеся должнь	
п.п.	компетенции	части)	знать	уметь	владеть
			принципы работы оптических устройств.		
2.	ОПК-2	Способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физикоматематический аппарат.	Смысл оптических понятий, величин, законов, принципов, постулатов.	Описывать и объяснять оптические явления, фундаментальные опыты.	Практическими навыками работы с учебной литературой.

2 Структура и содержание дисциплины Распределение трудоёмкости дисциплины по видам работ 2.1

Общая трудоёмкость дисциплины составляет 5 зач. ед. (180 часов), их распределение по видам работ представлено в таблице.

Вид учебной работы				Семе	естры	
Вид учест	Bith y teories pacetis				сы)	
		часов		(4a	Сы)	
			3			
Контактная работа, в том ч	исле:					
Аудиторные занятия (всего)) :	90	90			
Занятия лекционного типа		36	36	-	-	-
Лабораторные занятия		36	36	-	-	-
Занятия семинарского типа (с	еминары, практические	18	18			
занятия)		10	10	-	_	-
·			-	-	-	-
Иная контактная работа:	Иная контактная работа:					
Контроль самостоятельной ра	боты (КСР)	6	6			
Промежуточная аттестация (І	IKP)	0,5	0,5			
Самостоятельная работа, в	гом числе:					
Курсовая работа		1	-	-	-	ı
Проработка учебного (теоре	тического) материала	20	20	-	-	ı
Выполнение индивидуальных з	ваданий (подготовка					
сообщений, презентаций)		_	_	-	_	-
Реферат	_	-	-	-	-	
Подготовка к текущему контр	36,8	36,8	-	-	-	
Контроль:						
Подготовка к экзамену	Подготовка к экзамену					
Общая трудоемкость	час.	180	180	-	-	-

в том числе контактная работа	96,5	96,5		
зач. ед.	5	5		

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Основные разделы дисциплины:

		Количество часов					
№ раздела	Наименование разделов	Всего	Аудиторная работа			Самостоятельная	
			Л	П3	ЛР	работа	
1	2	3	4	5		7	
1.	Предмет и задачи физической оптики	17	4	2	4	7	
2.	Поляризация света	21	4	2	8	7	
3.	Интерференция света	19	6	2	4	7	
4.	Дифракция света	17	4	2	4	7	
5.	Геометрическая оптика	21	6	4	4	7	
6.	Дисперсия света	17	4	2	4	7	
7.	Квантовая оптика	17	4	2	4	7	
8.	Нелинейная оптика	17,5	4	2	4	7,5	
	Итого по дисциплине	146,5	36	18	36	56,5	

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Предмет и задачи физической оптики	Предмет и задачи физической оптики, ее место среди других физических наук. Электромагнитная природа света. Шкала электромагнитных волн. Структура электромагнитной волны. Поляризация электромагнитных волн. Сферические электромагнитные волны. Плотность потока энергии и плотность импульса электромагнитных волн.	Ответы на контрольные вопросы (КВ) / выполнение практических занятий (ПЗ) / тестирование (Т) / Защита лабораторных работ (ЛР)
2.	Поляризация света	Отражение и преломление электромагнитных волн на границе раздела двух диэлектрических сред. Формулы Френеля для отраженных и преломленных световых волн. Закон Брюстера. Полное внутреннее отражение света. Закон Малюса. Двойное лучепреломление.	КВ / ПЗ / Т Защита ЛР

3.	Интерференция	Интерференция света. Суперпозиция когерентных	КВ / ПЗ / Т
	света	электромагнитных волн. Получение	Защита ЛР
		интерференционной картины. Интерференция	
		электромагнитных волн в диэлектрической среде.	
		Понятие о голографии.	
4.	Дифракция света	Принцип Гюйгенса-Френеля. Метод зон Френеля.	КВ / ПЗ / Т
		Дифракция Френеля, дифракция Фраунгофера.	Защита ЛР
		Дифракционная решетка.	
5.	Геометрическая	Геометрическая оптика как предельный случай	КВ / ПЗ / Т
	оптика	волновой оптики. Построение изображений в	Защита ЛР
		оптических системах. Аберрации оптических	
		систем. Простейшие оптические приборы.	
6.	Дисперсия света	Поглощение и рассеяние света в веществе.	КВ / ПЗ / Т
		Дисперсия света.	Защита ЛР
7.	Квантовая	Тепловое излучение. Закон теплового излучения	КВ / ПЗ / Т
	оптика	Кирхгофа. Законы излучения черного тела.	Защита ЛР
		Фотоэлектрический эффект. Квантовая природа	
		света.	
8.	Нелинейная	Генерация гармоник, самофокусировка света,	КВ / ПЗ / Т
	оптика	многофотонное поглощение, вынужденное	Защита ЛР
		рассеяние света.	

2.3.2 Занятия семинарского типа

Варианты практических заданий берутся из задачника Иродов И.Е. Задачи по общей физике М.: БИНОМ. Лаборатория знаний, 2014.

Наименование	Тематика практических занятий	Форма текущего
раздела	(семинаров)	контроля
2	3	4
	Индивидуальные задания для каждого студента	Проверочная
1. Входной контроль	l	контрольная работа,
знаний		проверка домашнего
		задания.
	Методы получения поляризованного света. Закон	Проверочная
	Брюстера, закон Малюса. Степень поляризации	контрольная работа,
	света	проверка домашнего
2. Поляризация света	Задачи для решения в аудитории: № 1.2.3, 1.2.6,	задания.
	1.3.4, 1.3.5,	
	На дом: № 1.2.9, 1.3.7 (§ 1.1, гл. 1, стр. 23, § 1.3, стр.	
	26-27)	
	Опыты Френеля, опыты Юнга. Интерференция в	Проверочная
3. Интерференция		контрольная работа,
света	Задачи для решения в аудитории: № 2.1.1, 2.1.2,	
СВСТИ	2.1.6 (§ 2.1, стр. 32-33) На дом: № 2.1.5, 2.1.7 (§ 2.1,	задания.
	гл.2, стр. 33, стр. 34)	
		Проверочная
4. Дифракция света	Задачи для решения в аудитории: № 2.3.1, 2.3.2(§	контрольная работа,
	2.3, стр. 47-48)	проверка домашнего
	На дом: 2.3.3 (§ 2.3, стр. 48)	задания.
5. Дисперсия света	Задачи для решения в аудитории: № 2.4.1, 2.4.3 (§	Проверочная
э. дисперени света	2.4, стр. 51-53)	контрольная работа,

	На дом: № 2.4.7, 2.4.8 (§ 2.4, стр. 55)	проверка д	омашнего
		задания.	
	Задачи для решения в аудитории: § 5.1, стр. 86-91	Проверочная	I
7 Vnovember outsure		контрольная	работа,
7. Квантовая оптика		проверка д	омашнего
		задания.	
	Задачи для решения в аудитории:: № 3.1.1, 3.1.3 (§	Проверочная	I
Q Полимойнов оптико	3.1, стр. 59-61)	контрольная	работа,
о. Пелинеиная оптика	3.1, стр. 59-61) На дом: № 3.1.8, 3.1.11 (§ 2.4, стр. 62-61)	проверка д	омашнего
		задания.	
9. Итоговая	Индивидуальные задания для каждого студента	Проверочная	I
контрольная работа		контрольная	работа.

2.3.3 Лабораторные занятия

В процессе проведения физического практикума используются активные и интерактивные формы проведения занятий с целью овладения студентами общепрофессиональными компетенциями: ОПК-1, ОПК-2.

КОМ	компетенциями: ОПК-1, ОПК-2.				
№ п/п	№ раздела дисциплины	Тематика лабораторных работ	Форма текущего контроля		
1	2	Определение показателя преломления твердых и жидких оптических сред.	Защита ЛР № 1		
2	7	Изучение законов фотоэффекта.	Защита ЛР № 2		
3	6	Проверка закона Малюса. Изучение вращения плоскости поляризации	Защита ЛР № 3		
4	5	Изучение зрительной трубы и микроскопа	Защита ЛР № 4		
5	3, 7	Определение концентрации раствора поляриметром	Защита ЛР № 5		
6	4	Изучение явления дифракции.	Защита ЛР № 6		
7	5	Исследование оптических систем.	Защита ЛР № 7		
8	6	Спектрофотометр ФМ-56. Оптические характеристики стекол.	Защита ЛР № 8		
9	7	Проверка закона Брюстера	Защита ЛР № 9		
10	7	Изучение законов теплового излучения.	Защита ЛР № 10		
11	2	Определение преломляющего угла бипризмы Френеля.	Защита ЛР № 11		
12	5	Исследование погрешностей оптических систем.	Защита ЛР № 12		
13	4, 6	Измерение спектральных характеристик светофильтров	Защита ЛР № 13		
14	3	Определение радиуса кривизны линзы с помощью колец Ньютона	Защита ЛР № 14		
15	2	Сравнение дифракционного и дисперсионного спектров	Защита ЛР № 15		
16	2	Изменение скорости света	Защита ЛР № 16		
17	6	Проверка закона Ламберта	Защита ЛР № 17		

2.3.4 Прикладная тематика курсовых работ (проектов)

Курсовые проекты не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Проработка теоретического материала	Методические рекомендации по организации самостоятельной работы студентов, ФГБОУ ВО «КубГУ», 2012 33 с.
2	Реферат	 Бушенева Ю.И. Как правильно написать реферат, курсовую и дипломную работы: Учебное пособие для бакалавров [Электронный ресурс]: учеб. пособие – Электрон. дан. – М.: Дашков и К, 2016. – 140 с. https://e.lanbook.com/book/93331. Кузнецов И.Н. Рефераты, курсовые и дипломные работы. Методика подготовки и оформления [Электронный ресурс]: учеб. пособие – Электрон. дан. – М.: Дашков и К, 2016. – 340 с.
		https://e.lanbook.com/book/93303.
	Подготовка	Вылегжанина А.О. Деловые и научные презентации [Электронный
3	презентации	ресурс]: учебное пособие – Электрон. дан. – М., Берлин: Директ-Медиа,
	по теме	2016. – 115 c.
	реферата	http://biblioclub.ru/index.php?page=book_view_red&book_id=446660.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3 Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- опрос;
- домашние задания;
- индивидуальные практические задания;
- тестирование;
- публичная защита лабораторных работ;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение домашних работ и индивидуальных типовых расчетов, подготовка к опросу, тестированию и зачету).

Для проведения лекционных занятий могут использоваться мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности

изучаемого материала, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Эффективное обсуждение сложных и дискуссионных вопросов и проблем.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем подготовки индивидуальных докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- лекции с проблемным изложением;
- обсуждение сложных и дискуссионных вопросов и проблем и разрешение проблем;
- компьютерные занятия в режимах взаимодействия «преподаватель студент», «студент преподаватель», «студент студент»;
- технологии смешанного обучения: дистанционные задания и упражнения, составление глоссариев терминов и определений, групповые методы Wiki, интернет-тестирование и анкетирование.

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- технология развития критического мышления;
- лекции с проблемным изложением;
- изучение и закрепление нового материала (использование вопросов, Сократический диалог);
- обсуждение сложных и дискуссионных вопросов и проблем («Займи позицию (шкала мнений)», проективные техники, «Один вдвоем все вместе», «Смени позицию», «Дискуссия в стиле телевизионного ток-шоу», дебаты, симпозиум);
 - разрешение проблем («Дерево решений», «Мозговой штурм», «Анализ казусов»);
 - творческие задания;
 - работа в малых группах;
 - технология компьютерного моделирования численных расчетов.

Проведение всех занятий лабораторного практикума предусмотрено в классе снабженном всем необходимым оборудованием и компьютерами для эффективного выполнения соответствующих лабораторных работ.

По итогам выполнения каждой лабораторной работы студент предоставляет и защищает разработанную программу численного моделирования и расчета, причем в беседе с преподавателем должен продемонстрировать знание как теоретического и экспериментального материала, относящегося к работе, так и необходимых для практической реализации работы компьютерных технологий. После защиты лабораторной работы студент обязан предоставить откорректированную и оптимизированную программную разработку в формате использованной компьютерной системы.

Дополнительная форма контроля эффективности усвоения материала и приобретения практических навыков заключается в открытой интерактивной защите лабораторной работы на устном выступлении перед аудиторией сокурсников.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и путем подготовки докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля

Текущий контроль: составление и защита отчета по выполняемым лабораторным работам практикума; проверка самостоятельно выполненных заданий. Ответы на контрольные и дополнительные вопросы по соответствующим разделам дисциплины.

Итоговый контроль: Экзамен.

В процессе выполнения, подготовки к защите, а также сдачи лабораторных работ формируются и оцениваются компетенции: ОПК-1, ОПК-2.

На экзамене в процессе ответов на вопросы оцениваются компетенции: ОПК-1, ОПК-2.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

- 1. Электромагнитная природа света, уравнения Максвелла.
- 2. Волновое уравнение. Плоская и сферическая волны. Представление волн в комплексной форме.
- 3. Плотность потока энергии. Вектор Умова-Пойтинга. Интенсивность света. Световой вектор.
- 4. Эллиптическая, круговая и линейная поляризация гармонических волн. Степень поляризации.
 - 5. Поляризация света при отражении при преломлении. Формула Френеля.
 - 6. Закон Брюстера.
- 7. Распространение света в анизотропных средах. Поляризация при двойном лучепреломлении. Призма Николя. Призма Волластона.
 - 8. Эллипсоид лучевых скоростей. Двуосные и одноосные кристаллы.
 - 9. Закон Малюса.
- 10. Пластинка в четверть длины волны, пол волны, в волну. Интерференция поляризованных волн.
 - 11. Анализ эллиптически, линейно и циркулярно поляризованного света.
 - 12. Вращение плоскости поляризации.
 - 13. Искусственная анизотропия.
 - 14. Основные понятия фотометрии.
 - 15. Соотношения между энергетическими и световыми характеристиками излучения.
- 16. Интерференция света, интенсивность при суперпозиции двух монохроматических волн.
 - 17. Временная и пространственная когерентность света. Измерение когерентности.
 - 18. Двулучевая интерференция, опыт Юнга. Ширина интерференционной полосы
 - 19. Классические интерференционные схемы Бипризма Френеля. Зеркала Френеля
- 20. Интерференция в тонких пленках. Полосы равной толщины. Полосы равного наклона. Кольца Ньютона.
 - 21. Интерферометры: Майкельсона, Линника, Рождественского.
 - 22. Многолучевая интерференция, интерферометр Фабри-Перо.
 - 23. Дифракция света. Принцип Гюйгенса-Френеля.
 - 24. Зоны Френеля. Построение дифракционных картин графическим способом.
- 25. Дифракция Френеля на круглом отверстии, на диске, на краю полуплоскости. Спираль Коню.
 - 26. Зонная пластинка.
 - 27. Дифракция Фраунгофера на щели.

- 28. Прямоугольная амплитудная дифракционная решетка.
- 29. Отражательная решетка, дифракция белого света на решетке, спектральный анализ.
- 30. Дифракция на трехмерных периодических структурах. Структурный рентгеновский анализ.
 - 31. Геометрическая оптика как предельный случай волновой оптики
 - 32. Законы отражения и преломления, явление полного внутреннего отражения.
 - 33. Распространение луча в световоде.
 - 34. Центрированная оптическая система. Преломление на сферической поверхности.
 - 35. Поперечное и угловое увеличение, кардинальные точки и плоскости.
 - 36. Оптические системы. Лупа. Микроскоп. Телескоп.
 - 37. Распространение света в изотропных диэлектриках, фазовая и групповая скорости.
 - 38. Дисперсия света. Ход лучей в призме.
 - 39. Электронная теория дисперсии. Нормальная дисперсия.
 - 40. Аномальная дисперсия.
 - 41. Поглощение света. Закон Бугера.
 - 42. . Тепловое излучение. Закон Киргофа. Формула Релея-Джинса.
 - 43. Формула Планка, закон Стефана-Больцмана, законы Вина.
 - 44. Основные представления квантовой теории излучения света. Фотоэффект.
- 45. Спонтанные и вынужденные переходы в квантовой системе, принципиальная схема лазера. Характеристики некоторых лазеров.
 - 46. Нелинейные явления в оптике. Генерация гармоник. Самофокусировка света.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература

- 1. Савельев И.В. Курс общей физики [Электронный ресурс] : учебное пособие : в 3 т. Т. 2 : Электричество и магнетизм. Волны. Оптика / И. В. Савельев. СПб.: Лань, 2018. 500 с. https://e.lanbook.com/book/98246#authors.
- 2. Калитеевский Н.И. Волновая оптика. / Н.И. Калитеевский, 5-е изд. М.: Лань, 2008. 480 с. Режим доступа https://e.lanbook.com/book/173#book_name
- 3. Мирошников М.М. Теоретические основы оптико-электронных приборов. / М.М. Мирошников, 3-е изд. М.: Лань, 2010. 704 с. Режим доступа https://e.lanbook.com/book/597#book name.
- 4. Кузнецов С.И. Физика: оптика. Элементы атомной и ядерной физики. Элементарные частицы [Электронный ресурс] : учебное пособие для вузов / С. И. Кузнецов. Москва : Юрайт, 2018. 301 с. https://biblio-online.ru/book/F3137DF8-BE69-4CDA-A647-4727B9830251.
- 5. Иродов И.Е. Волновые процессы. Основные законы [Электронный ресурс]: учеб. пособие / И. Е. Иродов. 7-е изд. (эл.). Москва: Лаборатория знаний, 2015. 265 с. https://e.lanbook.com/book/66334.
- 6. Иродов И.Е. Задачи по общей физике [Электронный ресурс] : учебное пособие для вузов / Иродов И.Е. 11-е изд. М. : Лаборатория знаний, 2017. 434 с. https://e.lanbook.com/book/94101.
- 7. Оптика: лабораторный практикум. Ч. 1 / Л.Ф. Добро, Н.М. Богатов, О.Е. Митина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар, 2012. 94 с.
- 8. Оптика: лабораторный практикум. Ч. 2 / Л.Ф. Добро, Н.М. Богатов, О.Е. Митина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар : [Кубанский государственный университет], 2013. 96 с.

5.2 Дополнительная литература

- 1. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, З.Г. Павлова. М.: Высшая школа, 2004. 345 с.
- 2. Ландсберг Г.С. Оптика: учебное пособие для студентов физических спец. вузов / Г.С. Ландсберг. Изд. 6-е, стер. М.: ФИЗМАТЛИТ, 2006. 848 с.
- 3. Ремизов А.Н. Медицинская и биологическая физика: учебник по физике для студентов мед. вузов / А.Г. Максина, А.Я. Потапенко; А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. Изд. 4-е, перераб. и доп. М.: Дрофа, 2003. 559 с.
- 4. Калитеевский, Н.И. Волновая оптика: учебное пособие для студентов вузов / Н.И. Калитеевский. Изд. 5-е, стер. СПб. [и др.] : Лань, 2008. 466 с.
- 5. Иродов, И.Е. Волновые процессы. Основные законы: [учебное пособие для вузов] / И.Е. Иродов. Изд. 2-е, доп. М.: Лаборатория Базовых Знаний: ЮНИМЕДИАСТАЙЛ , 2002. 263 с.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

$N_{\underline{0}}$	Ссылка	Пояснение
		BOOK.ru – электронная библиотечная система (ЭБС)
		современной учебной и научной литературы.
1.	http://www.book.ru	Библиотека BOOK.ru содержит актуальную литературу по всем
		отраслям знаний, коллекция пополняется электронными
		книгами раньше издания печатной версии.
		Айбукс.ру – электронная библиотечная система учебной и
2.	http://www.ibooks.ru	научной литературы. В электронную коллекцию включены
		современные учебники и пособия ведущих издательств России.
2	http://www.sciencedinect.com	Платформа ScienceDirect обеспечивает всесторонний охват
3.	http://www.sciencedirect.com	литературы из всех областей науки, предоставляя доступ к

		более чем 2500 наименований журналов и более 11000 книг из
		коллекции издательства «Эльзевир».
	http://www.scopus.com	База данных Scopus индексирует более 18 тыс. наименований
4.		журналов от 5 тыс. международных издательств, включая более
		300 российских журналов.
5. 1	http://www.scirus.com	Scirus – бесплатная поисковая система для поиска научной
٥.		информации.
	http://www.elibrary.ru	Научная электронная библиотека (НЭБ) содержит
6.		полнотекстовые версии научных изданий ведущих зарубежных
		и отечественных издательств.
	http://scitation.aip.org	Базы данных Американского института физики American
		Institute of Physics (AIP). Тематика баз данных: физика (в т.ч.
		оптика, акустика, ядерная физика, математическая физика),
7		механика (техническая механика), астрономия, химия и
7.		химическая техноло-гия, биоинженерия, энергетика,
		электроника, вычислительная техника (применение
		компьютеров в науке и технике), приборостроение,
		строительство.
	http://diss.rsl.ru	«Электронная библиотека диссертаций» Российской
		Государственной Библиотеки (РГБ) в настоящее время
8.		содержит более 400 000 полных текстов наиболее часто
		запрашиваемых читателями диссертаций. Ежегодное
		оцифровывание от 25000 до 30000 диссертаций.
	http://www.lektorium.tv	«Лекториум ТВ» – видеолекции ведущих лекторов России.
		Лекториум – on-line – библиотека, где ВУЗы и известные
9.		лектории России презентуют своих лучших лекторов. Доступ к
		материалам свободный и бесплатный. Все видеозаписи
		публикуются только на основании договоров.
10.	http://mschool.kubsu.ru	Библиотека информационных ресурсов кафедры
10.		информационных образовательных технологий

7 Методические указания для обучающихся по освоению дисциплины

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению 11.03.01 Радиотехника (профиль: Радиотехнические средства передачи, приема и обработки сигналов), отводится около 56 % времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия.

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам основной дисциплины.

Контроль может осуществляться также посредством тестирования студентов по окончании изучения тем учебной дисциплины.

Дополнительная форма контроля эффективности усвоения материала и приобретения практических навыков заключается в открытой интерактивной защите работы на устном выступлении перед аудиторией сокурсников. В этом случае защита проходит в режиме краткого

доклада.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

При экзаменационной форме проведения промежуточной аттестации используется пятибалльная система оценок, определенная «Положением об экзаменах и зачетах».

Оценка "5" ("отлично") выставляется студенту, обнаружившему всестороннее систематическое знание учебно-программного материала, умение свободно выполнять практические задания, освоившему основную литературу и знакомому с дополнительной литературой, рекомендованной программой. "Оценка "5" ("отлично") выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившему творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценка "4" ("хорошо") выставляется студенту, обнаружившему полное знание учебнопрограммного материала, успешно выполнившему предусмотренные программой задачи, усвоившему основную рекомендованную литературу. Оценка "4" ("хорошо") выставляется студенту, показавшему систематический характер знаний по дисциплине и способному к их самостоятельному пополнению и обновлению в ходе дальнейшей учебы и профессиональной деятельности.

Оценка "3" ("удовлетворительно") выставляется студенту, обнаружившему знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющемуся с выполнением заданий, предусмотренных программой. Оценка "3" ("удовлетворительно") выставляется студентам, обладающим необходимыми знаниями, но допустившим неточности в ответе на экзамене и при выполнении экзаменационных заданий.

Оценка "2" ("неудовлетворительно") выставляется студенту, обнаружившему существенные пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка "2" ("неудовлетворительно") ставится студентам, которые не могут продолжать обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

8 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1 Перечень информационных технологий

- 1. Компьютерное тестирование по итогам изучения разделов дисциплины.
- 2. Проверка домашних заданий и консультирование посредством электронной почты.
- 3. Использование электронных презентаций при проведении практических занятий.

8.2 Перечень программного обеспечения

Программный продукт	Договор/лицензия
Операционная система MS Windows	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Интегрированное офиснов	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
приложение MS Office	
Антивирус Kaspersky Endpoin	Контракт №69-АЭФ/223-ФЗ от 11.09.2017

Security 10 for Windows				
Программа	Mathcad	И	язык	Контракт №69-АЭФ/223-Ф3 от 11.09.2017
программирования С++				

9 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Вид работ	Материально-техническое обеспечение дисциплины и	
	оснащенность	
Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой:	
	проектор, экран, компьютер/ноутбук и соответствующим	
	программным обеспечением.	
	Специализированные демонстрационные стенды и установки для	
	демонстраций опытов и физических явлений.	
Семинарские	Специальное помещение, оснащенное посадочными местами для	
занятия	учебной работы, белая доска.	
Лабораторные	Лаборатория, укомплектованная специализированной мебелью и	
занятия	техническими средствами обучения.	
Курсовое	Не предусмотрено.	
проектирование	те предусмотрено.	
Групповые		
(индивидуальные)	Аудитория, (кабинет).	
консультации		
Текущий контроль,		
промежуточная	Аудитория, (кабинет).	
аттестация		
Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной	
	техникой с возможностью подключения к сети «Интернет»,	
	программой экранного увеличения и обеспеченный доступом в	
	электронную информационно-образовательную среду	
	университета.	
	Лекционные занятия Семинарские занятия Лабораторные занятия Курсовое проектирование Групповые (индивидуальные) консультации Текущий контроль, промежуточная аттестация Самостоятельная	

Рецензия

на рабочую программу дисциплины «Б1.Б.06.04 ОПТИКА» для студентов направления 11.03.01 Радиотехника (квалификация «бакалавр»)

Программу подготовил кандидат физико-математических наук, доцент кафедры физики и информационных систем физико-технического факультета ФГБОУ ВО «КубГУ» Скачедуб Александр Валерьевич.

Рабочая программа включает следующие разделы: цели и задачи дисциплины, место дисциплины в структуре основной образовательной программы, перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы, общую трудоемкость дисциплины, образовательные технологии, формы промежуточной аттестации, описание учебно-методического, информационного и материально-технического обеспечения дисциплины. Указаны примеры оценочных средств для контроля результатов обучения. В тематическом плане данной дисциплины выделены следующие составляющие: лекции, практические занятия, лабораторные занятия и самостоятельная работа студентов, отвечающие требованиям образовательного стандарта.

Рабочая программа подготовки бакалавров направления 11.03.01 Радиотехника отвечает специфике будущей профессиональной деятельности выпускников, в том числе производственно-технологической, проектной и экспериментально-исследовательской деятельности.

Образовательные технологии характеризуются не только общепринятыми формами, но и выполнением индивидуальных практических заданий и активным вовлечением студентов в учебный процесс, использованием лекций с проблемным изложением, обсуждением сложных и дискуссионных вопросов и проблем, проведением предварительно подготовленных, обучаемыми, компьютерных занятий, и диалоговыми принципами обсуждения возникающих у студентов затруднений, открытой интерактивной защитой лабораторной работы на выступлении перед аудиторией сокурсников.

- В результате изучения дисциплины Оптика студент будет владеть следующими компетенциями:
- способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики (ОПК-1):
- способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физикоматематический аппарат (ОПК-2).

Из всего вышеприведенного следует заключение, что рабочая программа дисциплины полностью соответствует ФГОС ВО и основной образовательной программе по направлению подготовки 11.03.01 Радиотехника, профиль «Фундоментальная физика» (квалификация «бакалавр») и может быть использована в учебном процессе в ФГБОУ ВО «Кубанский государственный университет».

Заведующий кафедрой теоретической физики и компьютерных технологий физико-технического факультета ФГБОУ ВО «КубГУ», доктор физико-математических наук, профессор

Водения

В.А. Исаев

Рецензия

на рабочую программу дисциплины «Б1.Б.06.04 ОПТИКА» для студентов направления 11.03.01 Радиотехника (квалификация «бакалавр»)

Программу подготовил кандидат физико-математических наук, доцент кафедры физики и информационных систем физико-технического факультета ФГБОУ ВО «КубГУ» Скачедуб Александр Валерьевич.

Рабочая программа включает следующие разделы: цели и задачи дисциплины, место дисциплины в структуре основной образовательной программы, перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы, общую трудоемкость дисциплины, образовательные технологии, формы промежуточной аттестации, описание учебно-методического, информационного и материально-технического обеспечения дисциплины. Указаны примеры оценочных средств для контроля результатов обучения. В тематическом плане данной дисциплины выделены следующие составляющие: лекции, практические занятия, лабораторные занятия и самостоятельная работа студентов, отвечающие требованиям образовательного стандарта.

Рабочая программа подготовки бакалавров направления 11.03.01 Радиотехника отвечает специфике будущей профессиональной деятельности выпускников, в том числе производственно-технологической, проектной и экспериментально-исследовательской деятельности.

Образовательные технологии характеризуются не только общепринятыми формами, но и выполнением индивидуальных практических заданий и активным вовлечением студентов в учебный процесс, использованием лекций с проблемным изложением, обсуждением сложных и дискуссионных вопросов и проблем, проведением предварительно подготовленных, обучаемыми, компьютерных занятий, и диалоговыми принципами обсуждения возникающих у студентов затруднений, открытой интерактивной защитой лабораторной работы на выступлении перед аудиторией сокурсников

Из всего вышеприведенного следует заключение, что рабочая программа дисциплины полностью соответствует $\Phi\Gamma$ OC BO и основной образовательной программе по направлению подготовки 11.03.01 Радиотехника, профиль «фундоментальная физика» (квалификация «бакалавр») и может быть использована в учебном процессе в $\Phi\Gamma$ БОУ BO «Кубанский государственный университет».

Рецензент: кандидат физ.-мат. наук, директор ООО НПФ "Мезон"

Л.Р. Григорьян