Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

УТВЕРЖДАЮ

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

31 мая 2019 ї

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.05 МАТЕМАТИЧЕСКИЕ АЛГОРИТМЫ ОБРАБОТКИ ИЗОБРА-ЖЕНИЙ

индекс и наименование дисциплин	ы в соответствии с учебным планом
Направление подготовки/специальност	ь <u>02.04.01 математика и компью</u> -
терные науки	
(код и наименование направлени	ия подготовки/специальности)
Направленность (профиль) / специализ	ация математические и компьютер-
ное моделирование	-
(наименование направлен	ности (профиля) специализации)
Программа подготовки академ	ическая
(академическая /пр	
Форма обученияочная	
(очная, очно-зас	очная, заочная)
Квалификация (степень) выпускника	магистр
. , , , , , , , , , , , , , , , , , , ,	(бакалавр, магистр, специалист)

Рабочая программа дисциплины МАТЕМАТИЧЕСКИЕ АЛГОРИТМЫ ОБРАБОТКИ ИЗОБ-РАЖЕНИЙ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки

02.04.01 математика и компьютерные науки

код и наименование направления подготовки

Программу составил(и):	
С.В. Усатиков, д-р. физмат. наук, доц.,	14
проф. кафедры математических и	6 dB
компьютерных методов КубГУ	
И.О. Фамилия, должность, ученая степень, ученое звание	подпись
Н.М. Токарев, препод. кафедры информационных	11/1/
образовательных технологий КубГУ	1111
И.О. Фамилия, должность, ученая степень, ученое звание	подпись
Рабочая программа дисциплины МАТЕМАТИЧЕСКИЕ АЛГОГ	
РАЖЕНИЙ утверждена на заседании кафедры математическо	
рования протокол № <u>11</u> « <u>15</u> » апреля 2019:	Γ.
	An
Заведующий кафедрой (разработчика) <u>Лежнев А.В.</u>	Mus
фамилия, инициалы	подпись
Рабочая программа обсуждена на заседании кафедры математи делирования протокол № <u>11</u> « <u>15</u> » апреля	ческого и компьютерного мо-2019г.
Заведующий кафедрой (разработчика) <u>Лежнев А.В.</u> фамилия, инициалы	подпись
Утверждена на заседании учебно-методической комиссии факуютерных наук протокол № <u>2</u> « <u>24</u> » апреля 2019	
Town FII	Trustal
Председатель УМК факультета <u>Титов Г.Н.</u>	——————————————————————————————————————
¥*************************************	подинов
Dayraynayyyy	
Рецензенты:	
Барсукова В.Ю., канд. физ-мат. наук, доц., зав. кафедры функци КубГУ	онального анализа и алгебры

Терещенко И.В., канд. физ-мат. наук, доц., зав. кафедрой общей математики КубГТУ

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Целями освоения дисциплины «Математические алгоритмы обработки изображений» являются: освоение математического аппарата обработки изображений; изучение современных алгоритмов цифровой обработки, восстановления, анализа, классификации и распознавания изображений.

1.2 Задачи дисциплины

Предлагаемый курс должен помочь слушателям получить правильное и всестороннее представление о возможностях использования математических алгоритмов для обработки изображений.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Математические алгоритмы обработки изображений» относится к базовой части цикла дисциплин учебного плана.

Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для решения исследовательских задач. Для успешного освоения дисциплины магистрант должен владеть обязательным минимумом содержания основных образовательных программ по математике и информатике для бакалавров.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/профессиональных компетенций (ОК/ПК)

№	Индекс компе-	Содержание компе- тенции (или её ча-	В результате изуч	ения учебной дисп ощиеся должны	циплины обуча-
П.П.	тенции	сти)	знать	уметь	владеть
1.	ПК-1	Способен демон- стрировать фунда- ментальные знания математических и естественных наук, программирования и информационных технологий	современные методы обработки изображений, знать механизмы формирования, представления, искажения и улучшения изображений	разрабатывать и программировать специализированные алгоритмы обработки изображений.	Навыками применения математиче- ских методов к решению прикладных задач
2.	ПК-2	Способность проводить научные исследования, на основе существующих методов в конкретной области профессиональной деятельности	назначение существующих современных средств компьютеризации научных исследований и обучения, их функциональные возможности и особенности применения;	применять в практической деятельности автоматизированные средства обработки информации, выполнения расчетов и моделирования, обработки и оформления результатов исследований	навыками компьютерно й графики в научных исследования х; навыками дистанционно го обучения, технологий и средств; видеоконфере нций

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач.ед. (72 часа), их распределение по

видам работ представлено в таблице.

Вид учебной работы		Всего			стры	
		часов		(ча	сы)	
			3			
Контактная работа, в то	м числе:					
Аудиторные занятия (все	ero):	22	22			
Занятия лекционного типа		10	10	-	-	-
Лабораторные занятия		-	-	-	-	-
Занятия семинарского типа ские занятия)	а (семинары, практиче-	12	12	-	-	-
		-	-	-	-	-
Иная контактная работа	•					
Контроль самостоятельной	і́ работы (КСР)	-	-	-	-	-
Промежуточная аттестаци	я (ИКР)	0,2	0,2	-	-	-
Самостоятельная работа, в том числе:						
Курсовая работа		-	-	-	-	-
Проработка учебного (теој	ретического) материала	15	15	-	-	-
Выполнение индивидуалы сообщений, презентаций)	ных заданий (подготовка	15	15	-	-	-
Реферат		10	10	-	-	-
Подготовка к текущему ко	нтролю	9,8	9,8	-	-	-
Контроль:						
Подготовка к экзамену		-	-	-	-	-
Общая трудоемкость	час.	72	72	-	-	-
	в том числе контактная работа	22,2	22,2			
	зач. ед	2	2			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 3 семестре

No		Количество часов				
раз-	раз- Наименование разделов		Аудиторная работа			Самостоятель-
дела			Л	П3	ЛР	ная работа
1.	Математические методы обработки изображений	35	5	6		24
2.	Математические методы ана- лизы изображений	36,8	5	6		25,8
3.	ИКР	0,2				0,2
	Итого по дисциплине:	72	10	12		50

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

No	Наименование	Содержание раздела	Форма текущего
212	раздела	содержание раздела	контроля
1	2	3	4
1.		Поворот изображения. Масштабирова-	Реферативный до-
	Основы обработки	ние. Проблема повторного квантова-	
		ния. Дифференцирование изображения.	

	цветных изображений	Псевдоградиент Ди Зензо. Свёртки. Быстрые свёртки с полиномами. Сглаживание с сохранением границ. Медианная фильтрация. Морфологические операции. Размыкание (opening) и замыкание (closing). Алгоритмы Ван Херка. Задача цветоредукции. Метод Ксредних. Метод медианного сечения. Метод восьмеричного дерева (quadtree). Кластеризация в цветовом пространстве. Бинаризация изображений. Методы глобальной, локальной и адаптивной бинаризации. Метод двух средних. Метод Отсу. Метод Ниблэка.	
2.	Восстановление изображений	Задача обращения аппаратной функции. Рефокусировка. Томография. Задача шумоподавления. Нормальный, импульсный и периодический (муар) шум. Алгебраический метод. Винеровская фильтрация. Байесовский подход. Морфологический подход.	Реферативный до-
3.	Частотный и вейвлет - анализ	Частотный анализ и фильтрация сигнала. Фурье-анализ. Преобразование Фурье с окном. вейвлет-анализ. Частотно-временное окно. Преобразование Хаара. Классификация изображений. Анализ цветовых распределений. Инва-риантные описания изображения.	Реферативный до-
4.	Сегментация изображений	Объектная сегментация изображений. Цветовая сегментация. Текстурная сегментация. Фильтры Габора. Выделение границ. Замыкание границ. Алгоритмы поиска кратчайшего пути. Метод водоразделов. Методики слияния областей, разрезания областей, соревнования областей	Реферативный до- клад
5.	Сжатие изображений	Сжатие изображений. Сжатие без потерь: RLE (PCX, TIFF), Хаффмана (TIFF), LZW (TIFF, GIF, PNG), арифметическое кодирование. Сжатие с потерями: косинусное преобразование (JPEG), вейвлет-преобразование (DjVu).	Реферативный до- клад

2.3.2 Занятия семинарского типа

	2.3.2 Janatha Commia		
No	Наименование	Содержание раздела	Форма текущего
71⊻	раздела	содержание раздела	контроля
1	2	3	4
1.		Поворот изображения. Масштабирова-	Реферативный до-
	Основы обработки	ние. Проблема повторного квантова-	клад
	цветных изображе-	ния. Дифференцирование изображения.	
	ний	Псевдоградиент Ди Зензо. Свёртки.	

		Быстрые свёртки с полиномами. Сглаживание с сохранением границ. Медианная фильтрация. Морфологические операции. Размыкание (opening) и замыкание (closing). Алгоритмы Ван Херка. Задача цветоредукции. Метод Ксредних. Метод медианного сечения. Метод восьмеричного дерева (quadtree). Кластеризация в цветовом пространстве. Бинаризация изображений. Методы глобальной, локальной и адаптивной бинаризации. Метод двух средних. Метод Отсу. Метод Ниблэка.	
2.	Восстановление изображений	Задача обращения аппаратной функции. Рефокусировка. Томография. Задача шумоподавления. Нормальный, импульсный и периодический (муар) шум. Алгебраический метод. Винеровская фильтрация. Байесовский подход. Морфологический подход.	Реферативный до- клад
3.	Частотный и вейвлет - анализ	Частотный анализ и фильтрация сигнала. Фурье-анализ. Преобразование Фу-рье с окном. вейвлет-анализ. Частотно-временное окно. Преобразование Хаара. Классификация изображений. Анализ цветовых распределений. Инва-риантные описания изображения.	Реферативный до-
4.	Сегментация изображений	Объектная сегментация изображений. Цветовая сегментация. Текстурная сегментация. Фильтры Габора. Выделение границ. Замыкание границ. Алгоритмы поиска кратчайшего пути. Метод водоразделов. Методики слияния областей, разрезания областей, соревнования областей	Реферативный до- клад
5.	Сжатие изображений	Сжатие изображений. Сжатие без потерь: RLE (PCX, TIFF), Хаффмана (TIFF), LZW (TIFF, GIF, PNG), арифметическое кодирование. Сжатие с потерями: косинусное преобразование (JPEG), вейвлет-преобразование (DjVu).	Реферативный до- клад

2.3.3 Практические занятия

Занятия практического типа не предусмотрены

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы

обучающихся по дисциплине (модулю)

	1 71 1	
№ I		Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы

1	2	3	
1	Написание	«Методические указания по организации самостоятельной	
	реферативного доклада	работы студентов», утвержденные кафедрой	
		информационных и образовательных технологий, протокол	
		№ 1 от 31 августа 2017 г.	
2	Выполнение проектной	«Методические указания по организации самостоятельно	
	работы	работы студентов», утвержденные кафедрой	
		информационных и образовательных технологий, протокол	
		№ 1 от 31 августа 2017 г.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки 02.04.01 Математика и компьютерные науки реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития требуемых компетенций обучающихся:

- практическая работа с элементами исследования;
- лабораторная работа в компьютерном классе, компьютерная технология обучения;
- метод проектов;
- поисковый, эвристический метод.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

	ov 1 4 4 11 11 11 11 11 11 11 11 11 11 11					
№ п/п	Контролируемые разделы дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства			
1	Математические методы обра- ботки изображений	ПК-1, ПК-2	Расчетно-графическое задание			
2	Математические методы ана- лизы изображений	ПК-1, ПК-2	Расчетно-графическое задание			

Для получения зачета по дисциплине или допуска к экзамену необходимо сформировать «Портфель магистранта», который должен содержать результаты всех предусмотренных учебным планом работ.

«Портфель магистранта» представляет собой целевую подборку работ студента на компьютере, раскрывающую его индивидуальные образовательные достижения в учебной дисциплине. Структура портфеля включает следующие учебные материалы:

- результаты выполнения практических работ на компьютере;
- выполненные задания для самостоятельной работы на компьютере;
- выполненными контрольными работами, в том числе работами над ошибками. Критерии оценки учебного портфолио магистранта:

оценка «зачтено» выставляется за 90–100% наличия необходимых материалов в портфолио;

оценка «не зачтено» выставляется, если материалов в портфолио присутствует менее 90%.

4.1 Фонд оценочных средств для проведения текущей аттестации

В ходе текущей аттестации оцениваются промежуточные результаты освоения студентами дисциплины «Математические алгоритмы обработки изображений». Текущий контроль осуществляется с использованием традиционной технологий оценивания качества знаний студентов и включает оценку самостоятельной (внеаудиторной) и аудиторной работы (в том числе рубежный контроль). В качестве оценочных средств используются:

- различные виды устного и письменного контроля (выступление на семинаре, реферат, учебно-методический проект);
- индивидуальные и/или групповые домашние задания, творческие работы, проекты и т.д.;
 - отчет по практической работе.

4.2 Фонд оценочных средств для проведения промежуточной аттестации ВОПРОСЫ К ЗАЧЕТУ

- 1. Каким образом осуществляется дискретизация сигнала?
- 2. Как выбирается величина шага дискретизации?
- 3. Каким образом осуществляется квантование изображения?
- 4. В чем заключается алгоритм двумерной свертки?
- 5. В каких функциях присутствует алгоритм двумерной свертки?
- 6. В чем отличие алгоритма медианной фильтрации от алгоритма фильтрации с помощью операции усреднения с порогом?
- 7. Какие типы шумов формирует функция по зашумлению изображений imnoise?
- 8. Для каких целей можно использовать функцию freqz2?
- 9. Каким образом можно сформировать маску линейного фильтра по желаемой АЧХ?
- 10. Какая функция позволяет сформировать двумерный фильтр из одномерного?
- 11. Что обуславливает искажения изображения при его формировании?
- 12. Какие функции использовались для моделирования «размытия» изображения и его восстановления в задании лабораторной работы?
- 13. Какие принципы лежат в основе построения фильтров Винера, гомоморфного фильтра?
- 14. Какие логические операции над бинарными изображениями вы знаете?
- 15. Какие морфологические операции обработки изображения относятся к базовым?
- 16. Какие операции являются комбинированием эрозии и дилатации?
- 17. Какие функции пакета IPT выполняют операции эрозии и дилатации, замыкания, размыкания?
- 18. В чем заключается сегментация изображения?
- 19. Какие признаки используются для сегментации?
- 20. В чем заключается метод выращивания областей, использующийся для сегментации изображения?

- 21. В чем заключается метод разделения, использующийся для сегментации изображения?
- 22. Что является входными параметрами функции сегментации методом разделения?
- 23. В чем заключается преобразование яркостного среза?
- 24. Какие параметры возвращает функция impixel?
- 25. Какие функции используются для выполнения двумерного прямого и обратного преобразования Фурье в системе MatLab?
- 26. Зачем используется двумерная дискретизация? Приведите примеры функции дискретизации.чем назначение структурообразующего элемента в морфологических операциях?
- 27. Для чего используются морфологические операции?

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических—при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Тропченко, А.А. Методы вторичной обработки и распознавания изображений [Электронный ресурс] : учебное пособие / А.А. Тропченко, А.Ю. Тропченко. Электрон. дан. Санкт-Петербург : НИУ ИТМО, 2015. 215 с. Режим доступа: https://e.lanbook.com/book/91585. Загл. с экрана.
- 2. Горбачев, С.В. Цифровая обработка аэрокосмических изображений [Электронный ресурс] : монография / С.В. Горбачев, С.Г. Емельянов, Д.С. Жданов. Электрон. дан. Томск : ТГУ, 2015. 304 с. Режим доступа: https://e.lanbook.com/book/92018. Загл. с экрана.

5.2 Дополнительная литература:

1. Потапов, А.А. Новейшие методы обработки изображений [Электронный ресурс] : монография / А.А. Потапов, Ю.В. Гуляев, С.А. Никитов, А.А. Пахомов. — Электрон. дан. — Москва : Физматлит, 2008. — 496 с. — Режим доступа: https://e.lanbook.com/book/2703. — Загл. с экрана.

2. Ежова, К.В. Моделирование и обработка изображений [Электронный ресурс] : учебное пособие / К.В. Ежова. — Электрон. дан. — Санкт-Петербург : НИУ ИТМО, 2011. — 93 с. — Режим доступа: https://e.lanbook.com/book/40820. — Загл. с экрана.

5.3. Периодические издания:

- 1. Журнал «Математическое моделирование»
- 2. Журнал «Журнал вычислительной математики и математической физики»
- 3. Журнал «Вычислительные методы и программирование»
- 4. Журнал «Фундаментальная и прикладная математика»

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Научная электронная библиотека Российского фонда фундаментальных исследований (РФФИ) http://www.elibrary.ru/
- 2. Доступ к базам данных компании EBSCO Publishing, насчитывающим более 7 тыс. названий журналов, более 3,5 тыс. рецензируемых журналов, более 2 тыс. брошюр, 500 книг, 500 журналов и газет на русском языке. http://search.ebscohost.com/
- 3. Базы данных Американского института физики American Institute of Physics (AIP) http://scitation.aip.org
- 4. Электронный доступ к авторефератам http://vak.ed.gov.ru/search/http://vak.ed.gov.ru/announcements/techn/581/
- 5. Электронная библиотека диссертаций» Российской Государственной Библиотеки (РГБ) http://diss.rsl.ru/
- 6. Бесплатная специализированная поисковая система Scirus для поиска научной информации http://www.scirus.com
- 7. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/window
- 8. Библиотека электронных учебников http://www.book-ua.org/
- 9. РУБРИКОН информационно-энциклопедический проект компании «Русс портал» http://www.rubricon.com/.

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Для успешного усвоения теоретического материала, необходимо изучение лекции и рекомендуемой литературы из пункта 5.

Лекционные занятия проводятся по основным разделам дисциплины, описанные в пункте 2.3.1. Они дополняются практическими занятиями, в ходе которых студенты готовят индивидуальные проекты. Самостоятельная работа студентов состоит из подготовки материалов и литературы для успешного выполнения проекта.

Форма текущего контроля знаний – посещение лекционных занятий, работа студента на практических занятиях, подготовка реферативных докладов. Итоговая форма контроля знаний по дисциплине – зачет.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю). (при необходимости)

8.1 Перечень информационных технологий.

• Используются электронные презентации при проведении лекционных и практических занятий

• Проверка домашних заданий и консультирование может осуществляться посредством электронной почты

8.2 Перечень необходимого программного обеспечения.

Microsoft Office

8.3 Перечень информационных справочных систем:

Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru/)

9. Материально-техническая база, необходимая для осуществления образова-

тельного процесса по дисциплине (модулю).

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и
	_	оснащенность
1	Групповые	Компьютерный класс 301Н, 309Н, 316Н, 320Н, 101А, 105А,
	(индивидуальны	219C
	е) консультации	
2	Текущий	Компьютерный класс 301H, 309H, 316H, 320H, 219C, 101A,
	контроль,	105A
	промежуточная	
	аттестация	
3	Самостоятельна	Аудитории 312Н
	я работа	

Рецензия

на рабочую учебную программу дисциплины «МАТЕМАТИЧЕСКИЕ АЛГОРИТМЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ » Направление подготовки (уровень магистратуры) 02.04.01 Математика и компьютерные науки

Разработчики: Усатиков С.В., д-р физ.-мат. наук, доц., проф. каф. математических и компьютерных методов Куб Γ У;

Токарев Н.М., преподаватель каф. информационных образовательных технологий КубГУ.

Данная рабочая учебная программа предназначена для магистрантов ФГБОУ ВО «КубГУ», по профилям направления подготовки 02.04.01. «Математические и компьютерные методы». Рабочая учебная программа соответствует требованиям ФГОС ВО направления подготовки 02.04.01, утверждённого приказом Министерства образования и науки Российской Федерации, а также учебному плану направления подготовки и Основной образовательной программе высшего образования (ООП ВО). Она выполнена на достаточно высоком методическом уровне, отвечает потребностям подготовки современных магистров и позволит реализовать формирование соответствующих компетенций, согласно ФГОС и ООП, по данной дисциплине. Содержание данной рабочей учебной программы соответствует поставленным целям, современному уровню и тенденциям развития математики и компьютерных наук.

Материал дисциплины построен как логически целостный курс, с опорой на актуальные области приложений, содержащий как классические, так и современные результаты, с иллюстрацией их связей и взаимодействия. В первую очередь разработчиком программы отбирался материал, имеющий фундаментальное значение в избранных областях приложений и являющийся необходимой основой для дальнейшего обучения и подготовки магистерской диссертации. Следует отметить оптимальность содержания разделов и целесообразность распределения по видам занятий и трудоёмкости в часах.

Замечаний и предложений по улучшению программы нет. Данная рабочая учебная программа может быть использована в учебном процессе для подготовки магистрантов по указанным профилям направления 02.04.01.

И.В. Терешенко

Канд. физ-мат. наук, доц., зав. кафедрой общей математики КубГТУ

Рецензия

на рабочую учебную программу дисциплины «МАТЕМАТИЧЕСКИЕ АЛГОРИТМЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ» Направление подготовки (уровень магистратуры) 02.04.01 Математика и компьютерные науки

Разработчики: Усатиков С.В., д-р физ.-мат. наук, доц., проф. каф. математических и компьютерных методов Куб Γ У;

Токарев Н.М., преподаватель каф. информационных образовательных технологий КубГУ.

Рецензируемая рабочая учебная программа соответствует требованиям ФГОС ВО направления подготовки 02.04.01 «Математическое и компьютерное моделирование», ООП ВО и учебному плану направления подготовки. Материал дисциплины построен составителем программы с опорой на исторический обзор современного анализ И состояния методологии математики, математического моделирования и компьютерных наук, с иллюстрацией взаимосвязи с потребностями и техническими возможностями общества, с оптимальным с этой точки зрения содержанием разделов, целесообразным распределением по видам занятий и трудоёмкостью в часах. Разработчиком программы отбирался материал, имеющий фундаментальное значение в избранных областях приложений и являющийся необходимой основой для дальнейшего обучения и подготовки магистерской диссертации.

Содержание данной рабочей учебной программы соответствует поставленным целям, современному уровню и тенденциям развития математики и компьютерных наук, выполнена на достаточно высоком методическом уровне, отвечает потребностям подготовки современных магистров и позволит реализовать формирование соответствующих компетенций, согласно ФГОС и ООП, по данной дисциплине.

Замечаний и предложений по улучшению программы нет. Данная рабочая учебная программа может быть использована в учебном процессе для подготовки магистрантов по профилям направления 02.04.01.

Канд. физ-мат. наук, доц., зав. кафедры функционального анализа и алгебры КубГУ

В. Ю. Барсукова