МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б.07 «ОРГАНИЗАЦИЯ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ»

Направление			
подготовки/специальность_	02.03.02	Фундаментальная	информатика и
информационные технологи	И		
Направленность (профиль) /	специализаг	ДИЯ	
Математическое и прогр	раммное обе	спечение компьютер	рных технологий
* *		•	•
Форма обучения очная			
Квалификация (степень) выг	тускника б	акапа в р	

Рабочая программа дисциплины «Организация вычислительных систем» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.02 «Фундаментальные информатика и информационные технологии»

Программу составил:

Выскубов Е.В. доцент кафедры вычислительных технологий, кандидат технических наук

Рабочая программа дисциплины «Организация вычислительных систем» утверждена на заседании кафедры вычислительных технологий протокол № 7 «26» апреля 2019 г.

Заведующий кафедрой (разработчика) Вишняков Ю.М.

фамилия, инициалы подпис

Рабочая программа дисциплины «Организация вычислительных систем» обсуждена на заседании кафедры вычислительных технологий протокол № 7 «26» апреля 2019 г.

Заведующий кафедрой (разработчика) Вишняков Ю.М. . фамилия, инициалы

подпись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 1 «15» мая 2019 г.

Председатель УМК факультета Коваленко А.В. .

фамилия, инициалы

подпись

Рецензенты:

Схаляхо Ч.А., доцент КВВУ им. С.М. Штеменко, кандидат физикоматематических наук, доцент.

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВПО «Кубанский государственный университет», кандидат физико-математических наук, доцент.

1 Цели и задачи освоения дисциплины

1.1 Цель освоения дисциплины

Целью дисциплины «Организация вычислительных систем» является изучение организации современных компьютерных систем и процессов обработки информации на всех уровнях компьютерных архитектур, включая логический цифровой уровень, уровень системы команд, уровень архитектурной поддержки механизмов операционных систем программирования.

1.2 Задачи дисциплины

В результате изучения дисциплины студент должен овладеть компетенцией ОПК-2 «Способность применять компьютерные суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности», при этом студент должен:

знать принципы построения ЭВМ, устройство основных блоков, принципы их взаимодействия, основной памяти и периферийных устройств, основных типов компьютеров параллельного действия, методы выполнения программ на машинном языке;

уметь разрабатывать представления данных и программы решения различных задач, проводить анализ архитектуры и структуры ЭВМ и систем; оценивать эффективность архитектурно-технических решений, реализованных при построении ЭВМ и систем;

владеть навыками работы с технической документацией и методиками оценки показателей качества и эффективности ЭВМ и систем, навыками программирования алгоритмов на языке ассемблера.

1.3 Место дисциплины в образовательной программе

Дисциплина «Организация вычислительных систем» относится к блоку дисциплин базовой части ООП. Для изучения дисциплины необходимо предварительно изучить дисциплины «Дискретная математика», «Компьютерный практикум» «Основы программирования».

Материал данной дисциплины необходим для освоения дисциплин алгоритмов и вычислительных процессов», «Операционные «Теория системы», «Компьютерные «Основы кибернетики», «Методы сети», разработки трансляторов», «Программные платформы управления процессами».

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у

обучающихся универсальных/ общепрофессиональных/ профессиональных компетенций (УК/ОПК/ПК):

No	Код и наименование	Индикаторь	и достижения компо	стенций
п.п.	компетенции	знает	умеет	владеет
1.	ОПК-2	составные части,	проводить	навыками
	Способен применять	общие принципы	анализ	работы с
	компьютерные∖	организации и	архитектуры и	технической
	суперкомпьютерные	функционирования	структуры ЭВМ	документацией
	методы, современное	компьютерных	и систем;	и методиками
	программное	систем; архитектуры	оценивать	оценки
	обеспечение, в том	процессоров и	эффективность	показателей
	числе отечественного	микропроцессорных	архитектурно-	качества и
	происхождения, для	систем.	технических	эффективности
	решения задач		решений,	ЭВМ и систем
	профессиональной		реализованных	
	деятельности		при построении	
			ЭВМ и систем	

2 Структура и содержание дисциплины

2.1 Распределение трудоемкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 5 зач.ед. (180 часа), их распределение по видам работ представлено в таблице.

Вид учебной работь	Всего часов	Семестры (часы) 2	
Контактная работа, в том числе:			
Аудиторные занятия (всего):		106,3	106,3
Занятия лекционного типа		50	50
Лабораторные занятия		52	52
Занятия семинарского типа (семинары, п	рактические занятия)	-	-
Иная контактная работа			
Контроль самостоятельной работы (КСР))	4	4
Промежуточная аттестация (ИКР)		0,3	0,3
Самостоятельная работа, в том числе:		38	38
Курсовая работа		-	-
Проработка учебного (теоретического) м	атериала	28	28
Выполнение индивидуальных заданий (п	одготовка	4	4
сообщений, презентаций)			
Реферат		-	-
Подготовка к текущему контролю		6	6
Контроль		экзамен	экзамен
Подготовка к экзамену		35,7	35,7
Общая трудоемкость	час	180	180
- 1	в том числе	106,3	106,3
	контактная работа	5	5
	зач. ед.	S	S

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые во 2 семестре (очная форма).

]	Количе	ество ча	сов
Nº	Наименование разделов	Всего	Аудит	орная	работа	Внеаудиторная работа
раздела			Л	ЛР	КСР	CPC
1	2	3	4	5	6	7
1	Представление данных в ЭВМ и машинная логика	33	10	14	1	8
	Структура микропроцессора и режимы адресации	43	10	22	1	10
3	Команды, прерывания и обмен	29	10	10	1	8
4	Виды памяти, конвейеры	22,5	10	4	0,5	8
5	Многопроцессорная организация ВС	16,5	10	2	0,5	4
	Итого по дисциплине:	144	50	52	4	38

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π 9 – лабораторные занятия, Π 8 – контроль самостоятельной работы студента, Π 9 – самостоятельная работа студента

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

№ раз-	Наименование раздела	Содержание раздела	Форма текущего
дела	1		контроля
	данных в ЭВМ и машинная логика	Хронология развития электронновычислительной техники. Принципы построения ЭВМ Дж. фон Неймана. Блоксхема ЭВМ Дж. фон Неймана. Представление данных в ЭВМ. Стандарт представления чисел с плавающей точкой. Ошибки в машинной арифметике. ASCII, Unicode, RGB. Сигналы аналоговые и цифровые. Цифровые микросхемы. Различные уровни представления сигналов в цифровых устройствах. Виды организации связей между устройствами. Дешифратор. Шифратор. Триггер, схема, таблица переходов RSтриггера.Счетчик. Регистр (схемы).	

ЛР Структурная базовой Структура схема модели персональной микропроцес-ЭВМ. Этапы выполнения сора и команды. Программная модель Intel 8086. Группы регистров. Назначение регистров. режимы Структура 32-разрядного микропроцессора. адресации Режимы работы в IA-32. Регистры 32-битной архитектуры. Логическое адресное пространство. Виды. Адресация в реальном режиме (вычисление физического адреса). Адресация в защищенном режиме. Селектор. Схема преобразования логического адреса в линейный адрес. Описание дескриптора сегмента. Назначение полей дескриптора. Формат команды микропроцессора IA-32. Варианты RR и RS, с непосредственным Формат и назначение полей операндом. постбайта. Режимы адресации. Примеры регистровой адресации, косвенной регистровой адресации, непосредственной адресации, регистровой относительной. базово-индексной адресации (двоичное представление команд). Адресация командах перехода. Близкий переход. Внутрисегментный косвенный переход. Межсегментный прямой косвенный И переходы. ЛР Команды, Команды Пример условных переходов. среднего программы прерывания и вычисления обмен арифметического массива. элементов Реализация while, repeat, циклов машинными командами. Пример программы поиска максимального элемента в массиве. Команды умножения, деления, сдвигов. Порты ввода/вывода и команды in, out. Прерывания. Классификация прерываний. прерываний. Виды аппаратных Виды программных прерываний. Типы прерываний. Таблица векторов прерываний в реальном режиме И действия при поступлении прерывания. Примеры кодов прерывания. Разрешение прерываний. запрет Программные командой прерывания Работа с BIOS. Вызов DOS через программное Пример прерывание. Средства DOS. (фрагмент программы). Прерывания

		защищенном режиме. Обращение к таблице дескрипторов прерываний. Формат шлюзов ловушки и прерывания. Организация обмена в вычислительной системе. Магистральномодульный принцип построения ВС. Понятие интерфейса. Контроллеры. Программно-управляемая передача данных. Схема. Порядок работы. Команды процессора. Прямой доступ к памяти. Схема. Действия контроллера ПДП при запросе со стороны УВВ.	
4	Виды памяти, конвейеры	Память. Время выполнения команд при различных режимах адресации к памяти. Иерархия памяти. Характеристики памяти на разных уровнях по объему и времени доступа (числу тактов). Принципы локальности. Время отклика ОЗУ. Динамическая и статическая память. Кэш. Принцип действия. Структура записи в кэше. Алгоритмы отображения из ОЗУ в кэш. Запись из кэша в ОЗУ. Стратегии замещения. Многоуровневая кэш память. Внешняя память. RAID-массивы. Конвейерная организация работы процессора. Пример 5- ступенчатого конвейера. Оценка времени выполнения для конвейера и сравнение с последовательным выполнением. Конфликты в конвейере. Конфликты по управлению. Предсказание переходов. Конфликты по данным.	ЛР
5	Многопроцес- сорная организация ВС	Многопроцессорные вычислительные системы. Суперкомпьютеры и Национальные суперкомпьютерные центры. Классификация Флинна. SIMD и MISD системы. Системы с общей и распределенной памятью. Системы, объединяющие оба принципа. Топологии межпроцессорных связей. Максимальное и среднее расстояние между процессорами Матрица ILLIAC IV.	ЛР

2.3.2 Занятия семинарского типа

Учебным планом не предусмотрены.

2.3.3 Лабораторные занятия

№		Форма
л <u>ч</u> работы	Наименование лабораторных работ	текущего
раооты		контроля
1	Разработка комбинационной схемы	ЛР
2	Разработка последовательностной схемы	ЛР
3	Разработка схемы сумматора	ЛР
4	Изучение представления целых чисел в ЭВМ	ЛР
5	Изучение представления вещественных чисел в ЭВМ	ЛР
6	Исследование ошибок машинной арифметики	ЛР
7	Анализ структуры графического файла	ЛР
8	Изучение организации стека	ЛР
9	Изучение режимов адресации	ЛР
10	Изучение технологии создания программ на ассемблере	ЛР
11	Изучение директив ассемблера	ЛР
12	Изучение функций прерывания 21h	ЛР
13	Организация ввода-вывода в программах на ассемблере	ЛР
14	Изучение арифметико-логических операций	ЛР
15	Вычисление простого выражения	ЛР
16	Изучение отладчика и отладка программ на ассемблере	ЛР
17	Обработка массивов на ассемблере	ЛР
18	Разработка подпрограмм на ассемблере	ЛР
19	Разработка схемы подключения периферийной БИС	ЛР
20	Программирование параллельного порта	ЛР
21	Организация обмена данными через LPT-порт	ЛР
22	Программирование последовательного порта	ЛР
23	Организация обмена данными через СОМ-порт	ЛР
24	Разработка схемы ОЗУ	ЛР
25	Изучение методов коррекции данных при сбоях ЗУ	ЛР
26	Оценка производительности многопроцессорной ВС	ЛР

2.3.4 Примерная тематика курсовых работ (проектов)

Учебным планом не предусмотрены.

3 Образовательные технологии

При проведении занятий по дисциплине используются следующие образовательные технологии:

- технология разноуровневого обучения (дифференцированное обучение);
- технология коллективного взаимодействия (организованный диалог, коллективный способ обучения).

Сомость	Вид занятия	Используемые интерактивные	Количество
Семестр	$(\Pi, \Pi P)$	образовательные технологии	часов

	Л	Компьютерные презентации и обсуждение	50
2	ЛР	Анализ конкретных примеров реализации комбинационных и последовательностных схем, разбор примеров организации вычислительных процедур на ассемблере	
Итого:			102

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства представлены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Организация вычислительных систем».

4.1 Фонд оценочных средств для проведения текущего контроля

Фонд оценочных средств дисциплины состоит из контрольных вопросов к лабораторным работам, средств для промежуточной аттестации (коллоквиума) и итоговой аттестации (экзамена в 2 семестре).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- ответов на теоретические вопросы при сдаче лабораторных работ;
- коллоквиума;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

4.1.1 Пример заданий к коллоквиуму Задание 1.

Дана заданная с помощью таблицы истинности ФАЛ: столбец «Ч» - четные варианты, столбец «Н» - нечетные».

Выполнить минимизацию Φ АЛ и ее реализацию с помощью логических элементов в заданном базисе: четные варианты — 2-И-НЕ, нечетные — 2-ИЛИ-НЕ.

Лаг	NA AOT	ФА	Л	
Apı	умен	ПЫ	Ч	Н
a	b	c	f	f
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Задание 2.

Дано содержание ячеек памяти в сегменте данных и содержание регистров в шестнадцатеричном коде. Каким будет содержание ячеек памяти

и регистров

микропроцессора после выполнения указанных команд?

Четные варианты

памят	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
Ь	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
было	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
стало																

регистр	AX	BX	CX	DX	BP	SI	DI	SP	CS	DS	ES	SS	IP
было	0001	0002	0003	0004	0005	0000	A000	B000	C000	D000	E000	F000	1000
стало													

m1: mov si, cx

mov ax, [bx]

add ax, [bx][si]+2 mov [bx], ax

dec bx loop m1

Нечетные варианты

памят	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
Ь	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
было	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
стало																

регистр	AX	BX	CX	DX	BP	SI	DI	SP	CS	DS	ES	SS	IP
Было	0005	0004	0003	0002	0001	0000	0000	8000	9000	A000	B000	C000	D000
Стало													

m2: mov di, cx

mov ax, [bx]-1

add ax, [bx][di]

mov [bx], ax

dec dx

loop m2

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Перечень вопросов к экзамену

- 1. Архитектура ЭВМ. Основные понятия.
- 2. Принципы построения ЭВМ Дж. фон Неймана. Блок-схема ЭВМ Дж. фон Неймана.
- 3. Представление целых чисел в ЭВМ. Порядок расположения байтов в памяти.
 - 4. Стандарт представления чисел с плавающей точкой.
 - 5. Цифровые логические микросхемы. Комбинационные схемы.
 - 6. RS-триггер. D-триггер. Регистры.

- 7. Дешифраторы и шифраторы.
- 8. Счетчики. Последовательностные схемы.
- 9. Формат адресной команды и цикл ее исполнения.
- 10. Организация и назначение регистров микропроцессора і8086.
- 11. Организация памяти микропроцессора і8086.
- 12. Режимы адресации і8086. Схемы вычисления физического адреса.
- 13. Формат команд микропроцессора і8086.
- 14. Система команд микропроцессора і8086.
- 15. Система минимальной конфигурации на основе микропроцессора i8086.
 - 16. Особенности архитектуры ІА-32. Режимы работы.
 - 17. Организация доступа к памяти в ІА-32.
 - 18. Регистровое пространство ІА-32.
 - 19. Структура дескриптора сегмента.
- 20. Поддержка мультизадачности IA-32. Переключение между задачами.
 - 21. Формат команд IA-32.
 - 22. Прерывания. Классификация прерываний.
 - 23. Таблица векторов прерываний в реальном режиме.
- 24. Прерывания в защищенном режиме. Формат шлюзов ловушки и прерывания.
- 25. Магистрально-модульный принцип построения вычислительных систем.
 - 26. Программно-управляемый обмен с внешними устройствами.
 - 27. Прямой доступ к памяти. Контроллер ПДП.
 - 28. Запоминающие устройства в ЭВМ. Иерархия памяти.
 - 29. Организация статического ОЗУ.
 - 30. Организация динамического ОЗУ. Управление динамическим ОЗУ.
 - 31. Модульное построение ОЗУ. Расслоение памяти.
 - 32. Принципы организации кэш памяти.
 - 33. Способы отображения из ОЗУ в кэш память
 - 34. Стратегии замещения информации в кэш памяти.
 - 35. Алгоритмы согласования кэш памяти и ОЗУ.
 - 36. Конвейеризация вычислений. Синхронный линейный конвейер.
 - 37. Конфликты в конвейере команд и способы их устранений.
 - 38. Классификация вычислительных систем М.Флинна.
 - 39. Вычислительные системы с общей и распределенной памятью.
 - 40. Топологии межпроцессорных связей.

4.2.2 Тематика практических заданий

- 1. Разработать схему для реализации ФАЛ, заданной таблицей истинности.
 - 2. Разработать схему счетчика с заданным модулем счета.
 - 3. Указать состояние регистров микропроцессора и ячеек памяти после

выполнения фрагмента программы.

- 4. Разработать подпрограммы инициализации COM-порта условного обмена через COM-порт.
 - 5. Выявить и скорректировать ошибки в хранимых данных.

4.2.3 Критерии оценивания к экзамену

Оценка «отлично»: даны точные и исчерпывающие ответы на вопросы билета и правильно решена задача.

Оценка «хорошо»:

- при ответе на вопросы билета даны точные и исчерпывающие ответы,
 но при решении задачи допущены незначительные ошибки;
- при ответе на один вопрос билета даны точные и исчерпывающие ответы,

при ответе на другой вопрос допущены незначительные ошибки, задача решена правильно;

 при ответе на оба вопроса билета допущены незначительные ошибки, задача решена правильно.

Оценка «удовлетворительно»:

- при ответе на один вопрос билета даны точные и исчерпывающие ответы, при ответе на другой вопрос билета либо при решении задачи допущены грубые ошибки;
- при ответе на один вопросы билета допущены грубые ошибки, задача решена правильно.

Оценка «неудовлетворительно»: продемонстрировано полное незнание материала при ответе на один из вопросов билета либо не решена задача.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей:

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их

здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа. Для лиц с нарушениями слуха:
- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5 Перечень основной и дополнительной литературы, необходимой для усвоения дисциплины

5.1 Основная литература

- 1. Довгий, П.С. Организация ЭВМ [Электронный ресурс] / П.С. Довгий, В.И. Скорубский. Электрон. дан. Санкт-Петербург: НИУ ИТМО, 2009. 56 с. Режим доступа: https://e.lanbook.com/book/40706.
- 2. Аблязов, Р.З. Программирование на ассемблере на платформе x86-64 [Электронный ресурс] / Р.З. Аблязов. Электрон. дан. Москва : ДМК Пресс, 2011. 304 с. Режим доступа: https://e.lanbook.com/book/1273.
- 3. Богданов, А.В. Архитектуры и топологии многопроцессорных вычислительных систем [Электронный ресурс] : учебное пособие / А.В. Богданов, Е.Н. Станкова, В.В. Мареев, В.В. Корхов. Электрон. дан. Москва : Национальный Открытый Университет "ИНТУИТ", 2016. 135 с. Режим доступа: https://e.lanbook.com/book/100572.

5.2 Дополнительная литература

- 1. Ан, П. Сопряжение ПК с внешними устройствами [Электронный ресурс] : учебное пособие / П. Ан. Электрон. дан. Москва : ДМК Пресс, 2008. 320 с. Режим доступа: https://e.lanbook.com/book/1086.
- 2. Михайлов Б.М., Халабия Р.Ф. Классификация и организация вычислительных систем: Учебное пособие. М.: МГУПИ, 2010. 144 с.
- 3. Гуров, В.В. Архитектура микропроцессоров [Электронный ресурс] : учебное пособие / В.В. Гуров. Электрон. дан. Москва : Национальный Открытый Университет "ИНТУИТ", 2016. 327 с. Режим доступа: https://e.lanbook.com/book/100570.

4.

5.3 Перечень ресурсов информационно-телекоммуникационной сети

«Интернет», необходимых для освоения дисциплины

- 1. Формат данных BMP (bitmap): доступ http://gamesmaker.ru/programming/graphics/format-dannyh-bmp-bitmap
- 2. Полный набор команд процессора 8086: доступ http://www.avprog.narod.ru/progs/emu8086/8086_instruction_set.html
- 3. Функции DOS INT 21H: сервис DOS: доступ http://www.codenet.ru/progr/dos/int_0026.php

6 Методические указания для обучающихся по освоению дисциплины

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, лабораторных работ и зачета.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников и методических указаний автора курса.

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

7.1 Перечень информационных технологий

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении лекций и практических занятий.

7.2 Перечень необходимого программного обеспечения

1. OC Windows XP SP3.

- 2. Ассемблер Tasm или Masm.
- 3. Free Pascal.

7.3 Перечень информационных справочных систем:

1. ЭБС издательства «Лань» http://e.lanbook.com.

8 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

$N_{\underline{0}}$	Вид работ	Материально-техническое обеспечение дисциплины
		и оснащенность
1	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО) PowerPoint. ауд. 129, 131, A305.
2	Лабораторные занятия	Лаборатория, укомплектованная специализированными техническими средствами обучения — компьютерный класс, с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационнообразовательную среду университета. (лаб. 102-106.).
3	Групповые (индивидуальные) консультации	Аудитория, (кабинет) – компьютерный класс.
4	Текущий контроль, промежуточная аттестация	Аудитория, приспособленная для письменного ответа при промежуточной аттестации.
5	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно- образовательную среду университета.